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Abstract

In this paper, we take into account the opinion of involute-evolute curves which lie on fully
surfaces and by taking into account the Darboux frames of them we illustrate these curves as
special involute-evolute partner D-curves in E3. Besides, we find the relations between the
normal curvatures, the geodesic curvatures and the geodesic torsions of these curves. Finally,

some consequences and examples are given.
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1 Introduction

In differential geometry, there are many important consequences and properties of curves. Re-
searchers follow labours about the curves. In the light of the existing studies, authors always
introduce new curves. Involute-evolute curves are one of them. C. Huggens discovered involutes
while trying to build a more accurate clock, [1]. Later, the relations Frenet apparatus of involute-
evolute curve couple in the space E3 were given in [2]. A. Turgut examined involute-evolute curve

couple in E™, [3].

In this study, we consider the notion of the involute-evolute curves lying on the surfaces for a
special situation. We determine the special involute-evolute partner D-curves in E2. By using the
Darboux frame of the curves we obtain the necessary and sufficient conditions between xg ,74,kn
and rj, for a curve to be the special involute partner D-curve. k7 and 7} of this special involute

partner D-curve are found. Finally, some special case and examples are given.
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2 Preliminaries

In this section, we give informations about Involute-evolute curves and Darboux frame. Let « (s)
be a curve on an oriented surface M. Since the curve «(s) is also in space, there exists Frenet
frame {T,N,B} at each points of the curve where T is unit tangent vector, N is principal
normal vector and B is binormal vector, respectively. The Frenet equations of the curve « (s) is

given by

T = kN
N'=—xkT +7B
B'= 7N

where k and 7 are curvature and torsion of the curve « (s) , respectively. Since the curve a (s) lies
on the surface M there exists another frame of the curve « (s) which is called Darboux frame and
denoted by {T, g,n}. In this frame T is the unit tangent of the curve, n is the unit normal of the
surface M and g is the unit vector given by g= nxT. Since the unit tangent T is common in
both Frenet frame and Darboux frame, the vectors N, B,g, n lie on the same plane. So that the

relations between these frames can be given as follows

T 1 0 0 T
g | =0 cosp sing || N (2.1)
n 0 —sing cosyp B

where ¢ is the angle between the vectors g and n. The derivative formulae of the Darboux frame

is

0 Kg  En
g | = | —Kyg 0 74 g (2.2)
n —Kp —Tg 0 n

where , k4 is the geodesic curvature, x, is the normal curvature and 7, is the geodesic torsion
of a(s). Here and in the following, we use “dot” to denote the derivative with respect to the arc

length parameter of a curve.

The relations between g , K, , T4 and x , T are given as follows

d
Kg = KCOSQ, Ky = Ksing , ngT—l—d—(p. (2.3)
s

Furthermore, the geodesic curvature k, and geodesic torsion 74 of the curve a (s) can be calculated

as follows



do d*a do dn
Kg:<dg’(is2xn>’ Tg:<ds,n><ds> (24)

In the differential geometry of surfaces, for a curve « (s) lying on a surface M the followings are

well-known

i) a(s) is a geodesic curve & k4 =0,

ii) a (s) is an asymptotic line < &, = 0,

iii) a (s) is a principal lineprincipal line < 7, = 0, [7].
Let o and 3 be two curves in the Euclidean space E3. Let {T,N,B} and {T*,N*,B*} be Frenet
frames of @ and [ , respectively. Then the curve § is called the involute of the curve «, if the

tangent vector of the curve o at the points « (s) passes through the tangent vector of the curve
B at the point 5 (s) and

(T, T*) = 0.

Also, the curve « is called the evolute of the curve §.The pair {«, 8} is said to be a special

involute-evolute pair.

3 Special Involute-Evolute Partner D -Curves in E?

In this section, by considering the Darboux frame, we define involute evolute partner D-curves and

give the characterizations of these curves.

Definition 1. Let M and N be oriented surfaces in three dimensional Euclidean space E3
and the arc length parameter curves « (s) and 3 (s*) lying fully on M and N , respectively. Denote
the Darboux frames of « (s) and 5 (s*) by {T,g,n} and {T*, g*,n*}, respectively. If there exists
a corresponding relationship between the curves a and 5 such that, at the corresponding points
of the curves, the Darboux frame element T of a coincides with the Darboux frame element g* of
[, then « is called a special evolute D-curve of [ and f is a special involute D -curve of a. Then,

the pair {a, 8} is said to be a special involute evolute D -pair.

Theorem 1. Let a(s) and (3 (s*) be two curves in the Euclidean space E3. If the pair {«, 3}

is a special involute-evolute D-pair, then

B(s)=a(s)+(c=s)T(s).

Proof. Suppose that the pair {a, S} is a special involute evolute D-pair. From definition of



special involute-evolute D-pair, we know

B(s)=a(s)+A(s)T(s). (3.1)
Differentiating both sides of the equation (3.1) with respect to s and use the Darboux formulas,

we obtain

a:; =T (s) + A(S)T (8) 4 kg (S) A ()& (S) + in (s) A (s)n (s).

Since the direction of T coincides with the direction of g*, we get

T* (5%)

A (s) =-1 (3:2)

and

A(s)=c—s (3.3)

where is ¢ constant. Thus, the equality (3.1) can be written as follows

B(s)=a(s)+(c—s)T(s). (3.4)

Corollary 1. Let o (s) and 3 (s*) be two curves in the Euclidean space E>. If the pair {a, 8}
is a special involute-evolute D-pair, then the distance between the curves « (s) and f(s*) is

constant.

Theorem 2. Let M and N be oriented surfaces in three dimensional Euclidean space E?
and the arc length parameter curves « (s) and 3 (s*) lying fully on M and N , respectively. 3 (s*)
is special involute D-curve of «(s) if and only if the normal curvature x}, of 3 (s*) and the

geodesic curvature k4 , the normal curvature s, and the geodesic torsion 74 of a (s) satisfy the

2 2 % :
o Ky + Ky Aknkg - " Kgkn
n — 9 g .
Kg cos Kg

for some nonzero constants A, where 0 is the angle between the vectors n and n* at the corre-

following equation

sponding points of « (s) and S (s*).

Proof. Suppose that M and N are oriented surfaces in three dimensional Euclidean space
E3 and the arc length parameter curves « (s) and 3 (s*) lying fully on M and N, respectively.
Denote the Darboux frames of « (s) and 5 (s*) by {T,g,n} and {T*,g*,n*}, respectively. Then

by the definition we can assume that

B(s)=a(s)+A(s)T(s) (3.5)



for some function A (s). By taking derivative of (3.5) with respect to s and applying the Darboux

formulas (2.2) we have

d * .
T*dis = <1 + /\) T+\igg + Minn (3.6)
From (3.2) we get
Lds”
T E = Al‘i}gg + )\K]nn. (37)
On the other hand we have
T* = cos g — sin On. (3.8)

Differentiating (3.8) with respect to s, we obtain

*

(k;g" + rpn*) 6298 = (kg cos0—Ky sin @) T+ (Tg - 9) sin 0g+ (Tg — 9) cosfn

From the last equation and the fact that

n* = sinfg + cosfn

we have

*

(k;8" + fiysin g + K, cosOn) ;

= (Knsin@ — kg cos0) T+ <7'g - 9) sin 0g+ <Tg - 9) cosfn.
s

Since the direction of T is coincident with g* we have

. N dS*
0=1y— Ky I (3.9)
From (3.6) and (3.8) we obtain
ds* Akg A&n,
ds  cosf  sind (3.10)
and
—Akn = ARg tand (3.11)

By taking the derivative of this equation and applying (3.9) we get

2 2 * :
‘= ( + ) (i, ) 4 e (312)

Kg cost Kg

that is desired.

Conversely, assume that the equation (3.12) holds for some nonzero constants A. Then by
using (3.10), (3.11) and (3.12) gives us

ds*\* : .
K ( ;s ) = Nhnkg— AN hghin+A° (K2 + K2) 74 (3.13)



Let define a curve
B(s)=a(s)+A(s)T(s).

By taking the derivative of the last equation with respect to s twice, we get

*

ds
T*
ds

= Ag8 + Akpn (3.14)

and

*

o (A5 L dPst : .
(k;g"+rin") < i > TR (kp 4+ K7) T+ ()\f-sg - f-sg—)\/fnrg) g+ ()\kan — Kn — )\nng) n

ds ds?
(3.15)
respectively. Taking the cross product of (3.14) with (3.15) we have
B ’ 2 : : 2 2 2.3 2 2.3 2
(Hgn —kr g) ( Is > = [)\ (ng/@n — Knkg + KyTg + mnrg)] T-X\* (k) + HnK,g) g+A (mg + Kgki) m.
(3.16)
By substituting (3.13) in (3.16) we get
ds*\* ds*\*
(kyn*—kpg") ( s > = —K) ( s > T-N (k3 + &nng) g+\> (Iig + Kgkz) . (3.17)

Taking the cross product of (3.14) with (3.17) we have

ds*\* ds*\*? ds*\*
(—win*—kig") < - ) =)\ (k2 + "‘052;) THAkp k), ( 75 ) g—AKghy, (ds) n. (3.18)

From (3.17) and (3.18) we have
4 4
%2 «2 ds* % * % ds* 3 % 2 2\2
,(nn +hg ) (d8> n"* = [Hnﬂg<ds> + Nk, (nnJr/ig)
ds* 2 (ds*\?
Kn { [)\252 (kp + 53] < Is > + A&, <ds> }g—
ds* 2 (ds*\°
Kg { [)\2,%; (ni + nﬁ)] ( Is ) + Ak, < Is > }n.
Furthermore, from (3.14) and (3.17) we get

(E)Q = \2 (Kz + /@2)
ds n g

A\ 2

rg (%) = (2 +s2)

respectively. Substituting (3.20) in (3.19) we obtain

T+ (3.19)

(3.20)

*

%2 %2 ds 4 * 2 % 2 2 ds* 2 ds* 3
() (G ) o= m R G e () e () per (2D

2 %/ 2 2 ds* L2 [ds* 3
Kg Q [A /ﬁlg(,‘{n—l-lig)] Is + A&, s n.




Equality (3.14) and (3.21) shows that the vectors T* and n* lie on the plane Sp{g,n}. So, at the
corresponding points of the curves, the Darboux frame element T of a coincides with the Darboux

frame element g* of 8 . Thus, the proof is completed.
Special Case 1. Let §(s*) be an asymptotic special involute D-curve of a.

i) Consider that «(s) is an asymptotic line. Then « (s) is special evolute D-curve of 3 (s*) if
and only if the geodesic curvature x, , the geodesic normal &,, and the geodesic torsion 74 of a (s)
satisfy the following equation,

Kp = —Tgkyg.

ii) Consider that a (s) is a principal line. Then « (s) is special evolute D-curve of g (s*) if
and only if he geodesic curvature k, and the geodesic normal k, of a(s) satisfy the following
equation,

o Finky
kg

Theorem 3. Let the pair {«, 5} be a special involute evolute D-pair in the Euclidean space

*

E3.Then the relation between the geodesic curvature Ky

and the geodesic torsion 7 of 8 (s*) is
given as follows

* * 1
kg +Tg= DY
for some nonzero constants A, where 6 is the angle between the vectors n and n* at the corre-

sponding points of « (s) and 3 (s*).

Proof. Let the pair {a, 8} be a special involute-evolute D-pair in the Euclidean space

E3.Then from (3.5) we can write

B(s) = als)+A(s)T(s)

for some constants A. The last equation is written as follows

Since the direction of T is coincident with g* we have

a(s)=p5(s)—A(s)g" (s). (3.22)
By differentiating (3.22) with respect to s and since the direction of T is coincident with g* we
have
* * 1
:‘ig + Tg = —X



Special Case 2. Let the pair {«, 8} be a special involute-evolute D-pair in the Euclidean
space E3.

i) If 8 is geodesic curve, then

ii) If B is principal line, then

Theorem 4. Let the pair {«, 5} be a special involute-evolute D-pair in the Euclidean space
E3. Then the following relations hold:

. k ds dG

1) Kn _Tg ds* ~ ds*

e ds __ * * o3
i) kg7 = —Ky cos O + T sin 0

iii) K, d‘ii = Ky sinf + 7, cos o

ds

iv) k) = (knsinf — Kgcos0) 7%

Proof.
i) By differentiating the equation (n,n*) = cosf with respect to s* we have
de

ds*
Using the fact that the direction of T coincides with the direction of g* and

d X N .
<(/<;nTng) diss*’ n*> + <n, -k, T —7,g > = —sinf

T* = cosfg —sinfn
g* = sinfg+ cosfn
we easily get that
. ds db
K

=7, — —
o9 dsr ds*

Similarly, other choices are testified.
Theorem 5. Let the pair {«, 8} be a special involute-evolute D-pair in the Euclidean space

E3. Then geodesic curvature 7 of 3 (s*) is

3
H; — )\2 (ﬁi_ng) <C§li> (K;g cos 6 + Kn Sin@)
S



where 6 is the angle between the vectors n and n* at the corresponding points of « (s) and 3 (s*).

Proof. Suppose that the pair {«, 8} is a special involute-evolute D-pair in the Euclidean 3
space E3. From the first equation of (2.4) and by using the fact that T is coincident with g* we

have

: a8 ep

fo = \@sds2 "

ds \ 3

s*) (kg cosb + Ky, sinb).
s

Il
>~
(V]
—
=N
3
|
=N
@
S—
7N
QU

Special Case 3. Let the pair {«, 8} be a special involute-evolute D-pair in the Euclidean

space F3.

i) If a is a geodesic curve, then the geodesic curvature x; of 3 (s*) is

KE = N3 ( ds >3sin9
g n dS* :

ii) If o is an asymptotic line, then the geodesic curvature s} of 3 (s*) is

3
K= A2k < ds ) cosf.
g g dS*

Theorem 6. Let the pair {«, 8} be a special involute evolute D -pair in the Euclidean space

E3.Then geodesic curvature 7y of B(s*) is

" . 9 9 ds \? ds \ 2
T, = —Asinfcosf (nn—l—f{g) ) Akpkg 7 )
where 0 is the angle between the vectors n and n* at the corresponding points of a (s) and S (s*).
Proof. Suppose that the pair {«, 8} is a special involute-evolute D-pair in the Euclidean

space E3. From the first equation of (2.4) and by using the fact that T is coincident with g* we

have

, 4 . dn*
Ty = ds*’n 8 ds*

2 2
= —Asinfcosf (k2 +x2) ((is*) — Afinkg <£> '




Corollary 2. Let the pair {«, 3} be a special involute-evolute D-pair in the Euclidean space E°.

i) If a is a geodesic curve, then the geodesic curvature 7} of 5 (s*) is

g ds*

2
7% = —Asinf cos Ok ( ds ) .

ii) If o is an asymptotic line, then the geodesic curvature 7 of 3 (s*) is

* . o ds ?

T, = —Asinf cos bk (ds*) .
Example 1. Let a(s) = (sin s,cos s,sin® s — 3sin s cos? 5) be a curve. This curve lies on the

surface z = 23 —3zy? (monkey saddle). The special involute D-curve of the curve a (s) can be given

below 3 (s) = (sins + (c — s) cos s, cos s + (s — ¢) sin s,sin’ s — 3sin s cos? s + (1 — 5)(9sin® scos s — 3cos® s)) , ¢ €

R. For specially, ¢ = 1 and s € [0,27], we can draw special involute-evolute D-pair {«, 3} with

helping the programme of Mapple 12 as follow,

Figure 1. Special Involute-Evolute Partner D-Curves

Example 2. Let a(s) = (s sin s, s cos 8,82) be a curve. This curve lies on the surface
2z = 2% + 9% . The special involute D-curve of the curve a(s) can be given below 3 (s) =
(ssins+ (c— s)(sins + scoss),scoss + (c — s)(cos s — ssins), s? + 2(c — s)s) , ¢ € R. This curve
lies on the surface z = —\/m .For specially, ¢ = 0 and s € |0, %71'], we can draw special
involute-evolute D-pair {«, f}with helping the programme of Mapple 12 as follow,
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Figure 2. Special Involute-Evolute Partner D-Curves
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