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Abstract. Let G be a simple connected graph with n vertices and let d; be the degree of its i-th vertex.
The Randi¢ matrix of G is the square matrix of order n whose (i, j)-entry is equal to 1/,/d;d; if the
i-th and j-th vertex of G are adjacent, and zero otherwise. The Randi¢ eigenvalues are the eigenvalues
of the Randi¢ matrix. The Randi¢ energy is the sum of the absolute values of the Randi¢ eigenvalues.

In this paper, we introduce a new index of the graph G which is called Randi¢ Estrada index. In
addition, we obtain lower and upper bounds for the Randi¢ energy and the Randi¢ Estrada index of G.

2000 Mathematics Subject Classifications: 05C50,15A18

Key Words and Phrases: Randi¢ Matrix, Randi¢ Eigenvalue, Randi¢ Energy, Randi¢ Estrada Index

1. Introduction

Let G be a simple connected graph with n vertices and m edges. Throughout this paper,
such a graph will be refered to as connected (n,m)-graph. Let V(G) = {vi,vy,...,v,} be
the vertex set of G. If any two vetices v; and v; of G are adjacent, then we use the notation
v; ~v;. Forv; € V(G), the degree of the vertex v;, denoted by d;, is the number of the vertices
adjacent to v;.

Let A(G) be the (0, 1)-adjacency matrix of G and A4, A,,..., A, be its eigenvalues. These
are said to be eigenvalues of the graph G and to form its spectrum [3]. The Randi¢ matrix of
G is the n x n matrix R=R(G) = [Rij] as the following
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The Randic eigenvalues p1, p,, ..., 0, of the graph G are the eigenvalues of its Randi¢ matrix.
Since A(G) and R(G) are real symmetric matrices, their eigenvalues are real numbers. So we
can order themsothat A; > A, > ... > A, and p; = py > ... > p,.

The energy of the graph G is defined in [11,12,13] as:

n
E=E(G)=Y | (1)
i=1
The Randi¢ energy of the graph G is defined in [1,2] as:
n
RE =RE(G)=_|pi|. 2)
i=1
The Estrada index of the graph G is defined in [7,8,9,10] as:
n
EE=EE(G)= ) e (3)

i=1
Denoting by M; = M; (G) the k-th moment of the graph G

n

My = M, (G) = Z (2"

i=1

Recalling the power series expansion of e*, we have

o0
M
EE = kZ_O o 4)

It is well known that [3] M; is equal to the number of closed walks of length k in the
graph G. Estrada index of graphs has an important role in Chemistry and Physics. For more
information we refer to the reader [7,8,9,10]. In addition, there exist a vast literature that
studies Estrada index and its bounds. For detailed information we may also refer to the reader
[4,5,6,14].

Now we introduce the Randi¢ Estrada index of the graph G.

Definition 1. If G is a connected (n, m)-graph, then the Randi¢ Estrada index of G, denoted by
REE (G), is equal to

REE =REE(G) = Z ePi. (5)
i=1

where p1, P, - .., P, are the Randi¢ eigenvalues of G.

Let

N =N (G) = Z ().
i=1
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Recalling the power series expansion of e¥ we have another expression of Randi¢ Estrada
index as the following
REE(G)=)» — (6)

T
= k!

In this paper, we obtain lower and upper bounds for the Randi¢ energy and the Randi¢
Estrada index of G. Firstly, we give some definitions and lemmas which will be needed then.

Definition 2. [2] Let G be a graph with vertex set V (G) = {v1,vs,...,v,} and Randi¢ matrix
R. Then the Randic degree of v;, denoted by R; is given by

n
Ri == ZRU
j=1

Definition 3. [2] Let G be a graph with vertex set V (G) = {v1,vs,...,v,} and Randi¢ matrix
R. Let the Randi¢ degree sequence be {Rq,R,,...,R,}. Then for each i =1,2,...,n the sequence

;@ () . . .

L7, L™, .., L, ... is defined as follows: Fix a €R, let
1V =R
A L

and for each p > 2, let
1
() _ E : (-1
L7 = —1L .

J
ini v/ didj
Definition 4. [15] Let G be a graph with Randi¢ matrix R . Then the Randi¢ index of G, denoted
by R(G) is given by
1 n
R(G)= 3 > R
i=1

Lemma 1. [1]Let G be a graph with n vertices and Randi¢ matrix R. Then
n
tr(R)=2 p; =0
i=1

and .
1
2\ _ 2 _
tr (R ) —Zpi _ZZdid"
i=1 i~j J
Lemma 2. [2] Let G be a connected graph a be a real number and p be an integer. Then
Sp+1
P
n

2
where S, = zi (LEP )) . Moreover, the equality holds for particular values of a and p if and only
=
if

(p+1)  ;(p+1) (p+1)
Ly Ly Ly

® L, » T T
L L LY
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Lemma 3. [2] A simple connected graph G has two distinct Randié eigenvalues if and only if G
is complete.

2. Bounds for the Randic¢ Energy of a Graph
In this section, we obtain lower and upper bounds for the Randi¢ energy of connected
(n,m)-graph G.

Let N and M be two positive integers. We first consider the following auxiliary quantity Q
as

N
Q= =) (7)
i=1

where q;, i =1,2,...,N are some numbers which some how can be computed from the graph
G. For which we only need to know that they satisfy the conditions

q; =0, foralli=1,2,...,N
and
N
D (@) =2m ®)
i=1
or, the conditions (7), (8) and
N
P=P@G) =] [a (9)
i=1
if all the conditions (7)-(9) are taken into account then [11]

V2MN — (N -1)D<Q< y/2MN —D (10)

where
D =2M — Np#/N, (11)

For the graph energy (namely by setting into (10) and (11) N =n, M = m and P = |detA|),
this yields [11]

V2m+n(n—1)|detA" <E(G) < y/2m(n— 1)+ n |det A",

The Randi¢ energy-counterpart of the estimates (10) and (11) is obtained as the following
result.

Theorem 1. Let G be a connected (n, m)-graph and A be the absolute value of the determinant
of the Randi¢ matrix R. Then

1 +n(n—1)A%/n (12)
d;d;

RE(G)> [2)]

i~j
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and

+nA2/n, (13)

RE(G)S\/z(n—DZd_ld_
i~j 17

Proof. The result is easily obtained using the estimates (10), (11) and Lemma 1.

In [1] the following result for RE (G) was obtained

RE(G)< [2n)] ! (14)
£ d;d;

Remark 1. The upper bound (13) is sharper than the upper bound (14). Using arithmetic-
geometric mean inequality, we obtain

> nA2/n

2; d,d;

and considering the upper bound (13) we arrive at

which is the upper bound (14).

3. Bounds for the Randi¢ Estrada Index of a Graph

In this section, we consider the Randi¢ Estrada index of connected (n,m)-graph G. We
also adapt the some results in [4] and [14] on the Randi¢ Estrada index to give lower and
upper bounds for it.

Theorem 2. Let G be a connected (n, m)-graph. Then

[ Sp+1 n—1
REE(G)>eV ™50 + ——nu—. (15)
1 [l
en—l Sp

2

() : :
L, . Moreover, the equality holds in

—

n
where a is a real number, p is an integer and S, = > (
i=1
(15) if and only if G is the complete graph K,,.

Proof. Starting with the equation (5) and using arithmetic-geometric mean inequality, we
obtain

REE(G) = eP1+4eP24...4¢Pn
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> ePr+(n—1) (l_[epi) 7 (16)

i=2
1 n
= e+ (n-1) (e_pl)"‘1 , since Zpi:O. a7
i=1
Now we consider the following function

n—1

fO)=e +

en—1
for x > 0. We have .
f(x)=e“—e n1>0

for x > 0. It is easy to see that f is an increasing function for x > 0. From the equation (17)
and Lemma 2, we obtain

[ Sp+1 n—1
REE(G)>eV s 4+ ——, (18)

1 St

en—l Sp

Now we assume that the equality holds in (15). Then all inequalities in the above argument
must be equalities. From (18) we have

_ Sp+1
P1= S
P
T A A e L0+ ‘ ‘ . .
which implies —- = %5~ = --- = 2 . From (16) and arithmetic-geometric mean in-
L} L LY
equality we get p, = p3 =--+ = p,,. Therefore G has exactly two distinct Randi¢ eigenvalues,

by Lemma 3, G is the complete graph K,.
Conversely, one can easily see that the equality holds in (15) for the complete graph K,.
This completes the proof of theorem.

Now we give a result which states a lower bound for the Randi¢ Estrada index involving
Randi¢ index.

Corollary 1. Let G be a connected (n, m)-graph. Then

2R(G) n—1
REE(G)>e™n +

(19)

2R(G)
e n(n—1)

where R (G) denotes the Randi¢ index of the graph G. Moreover the equality holds in (19) if and
only if G is the complete graph K,,.

Proof. In [2], the authors showed that the folllowing inequality (see Theorem 4)

R
2R
, 2R(@) 20)
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n

2
where S,= ; (ngp )) . Combining Theorem 2 and (20) we get the inequality (19).
Also, the equality holds in (19) if and only if G is the complete graph K,,.

Theorem 3. Let G be a connected (n, m)-graph.Then the Randi¢ Estrada index REE (G) and the
Randié energy RE (G) satisfy the following inequality

RE(G)

1
SRE(G)(e—1)+n—n, SREE(G)Sn—1+e 2 . 21)

where n denotes the number of positive Randi¢ eigenvalues of G. Moreover, the equality holds
on both sides of (21) if and only if G = K;.

Proof. Lower bound: Since e* > ex, equality holds if and only if x =1 and e* > 1+ x,
equality holds if and only if x = 0, we get

REE(G) = zn:epi =St Y e
=1 pi>0 0i<0
> Yepit ) (1+p)
pi>0 pi<0

= e(pi+pat-+pn)+(M—n)+ (Prr1++pn)
n

= (=D (pr+pat-+p,)+(n—n)+> p;
i=1

= %RE(G)(e—l)+n—n+.

Upper bound: Since f (x) = e* monotonically increases in the interval (—o0, +00), we get

n

REE(G) =Zepi < n—mﬁ—ie”i

i=1 i=1
Therefore

ny k
REE(G) = n—mﬁ—ZZ%

i=1 k>0

S NN

k>1 i=
1| & ‘ RE(G)
<YL [Zpi] ne14e
k>1 """ i=1

It is easy to see that the equality holds on both sides of (21) if and only if RE (G) = 0. Since G
is a connected graph this only happens in the case of G =K.
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4. Concluding Remarks

In this paper, the Randi¢ Estrada index of a graph is introduced. Also the Randi¢ energy
and the Randi¢ Estrada index are studied. In section 2, a sharper upper bound and a new
lower bound for the Randi¢ energy are obtained. In section 3, some bounds for the Randi¢
Estrada index involving Randi¢ index, Randi¢ energy and some other graph invariants are also
put forward.
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