EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 6, No. 1, 2013, 53-58 ISSN 1307-5543 – www.ejpam.com

On Semi-open Sets With Respect To an Ideal

Friday Ifeanyi Michael

Department of Mathematics, Faculty of Science, The University of Western Ontario, London, Ontario, Canada

Abstract. We introduce a notion of semi-open sets in terms of ideals, which generalizes the usual notion of semi-open sets.

2010 Mathematics Subject Classifications: 54C10

Key Words and Phrases: Semi-open sets, Semi-closed sets, Generalized closed sets, Ideals

1. Introduction

With the impetus given by Levine's introduction of semi-open sets and generalized closed sets [11, 12], there have been other attempts by some topologists to study closed sets - to-gether with the accompanying topological notions - from different perspectives [see, for example, 1, 2, 3, 5, 6, 4]. Relevant to the present work is the idea of using topological ideals in describing topological notions, which, for some years now, has been an interesting subject for investigation [see some of the pioneering works in 7, 8, 9]. We recall here that an *ideal* \mathscr{I} on a topological space (X, τ) is a non-empty collection of subsets of X having the *heredity* property (that is, if $A \in \mathscr{I}$ and $B \subset A$, then $B \in \mathscr{I}$) and also satisfying *finite additivity* (that is, if $A, B \in \mathscr{I}$, then $A \cup B \in \mathscr{I}$).

In this paper, we define semi-open sets with respect to an ideal \mathscr{I} , and also study some of their properties. It turns out that our notion of semi-open sets with respect to a given ideal \mathscr{I} generalizes both the usual notion of semi-openness [11] and the notion of semi- \mathscr{I} -openness considered in [5]; in particular, semi- \mathscr{I} -openness implies the usual semi-openness, which in turn implies semi-openness in our sense. Throughout we work with a topological space (X, τ) (or simply X), where no separation axioms are assumed. The usual notation cl(A) for the closure, and int(A) for the interior, of a subset A of a topological space (X, τ) , will be used [see 3, 10, 4, for example].

http://www.ejpam.com

Email address: fmichael@uwo.ca

F. Michael / Eur. J. Pure Appl. Math, 6 (2013), 53-58

2. Semi-openness With Respect To an Ideal

Let *X* be a topological space. Recall that a subset *A* of *X* is said to be *semi-open* [11] if there is an open set *U* such that $U \subseteq A \subset cl(U)$. This motivates our first definition.

Definition 1. A subset A of X is said to be semi-open with respect to an ideal \mathscr{I} (written as \mathscr{I} -semi-open) if there exists an open set U such that $U - A \in \mathscr{I}$ and $A - \operatorname{cl}(U) \in \mathscr{I}$.

If $A \in \mathscr{I}$, then it is easy to see that A is \mathscr{I} -semi-open. Moreover, every open set A is semi-open, and every semi-open set B is \mathscr{I} -semi-open, for any ideal \mathscr{I} on X.

Example 1. Consider a topological space (X, τ) ; $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$. Choose $\mathscr{I} = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$, and observe that $\{b\}$ is \mathscr{I} -semi-open; however, $\{b\}$ is not semi-open in the sense of [11] as there is no open set U such that $U \subset \{b\} \subset cl(U)$. Thus, if a set is \mathscr{I} -semi-open, it may not be semi-open in the usual sense.

For an ideal \mathscr{I} that is not countably additive, the concepts of semi-openness and \mathscr{I} -semi-openness coincide in the following case.

Theorem 1. For an ideal \mathscr{I} on a topological space X, the following are equivalent:

- 1. \mathscr{I} is the minimal ideal on X, that is, $\mathscr{I} = \{\emptyset\}$;
- 2. The concepts of semi-openness and I-semi-openness are the same.

Proof. First suppose that $\mathscr{I} = \{\mathscr{O}\}$. It suffices to show that whenever a set *A* is \mathscr{I} -semiopen, then it is semi-open in the usual sense. Indeed, if *A* is \mathscr{I} -semi-open, then there is an open set *U* such that U - A, $A - \operatorname{cl}(U) \in \mathscr{I} = \{\mathscr{O}\}$, and so $U \subset A \subset \operatorname{cl}(U)$, proving that *A* is semi-open. Conversely, suppose that whenever a set *A* is \mathscr{I} -semi-open, then it is semi-open. Let $B \in \mathscr{I}$. Then, *B* is \mathscr{I} -semi-open, and by assumption, *B* is semi-open. Thus, there is an open set V_1 such that $V_1 \subset B \subset \operatorname{cl}(V_1)$. Since $B \in \mathscr{I}$ and $V_1 \subset B$, we have that $V_1 \in \mathscr{I}$, and so $B \cup V_1 \in \mathscr{I}$. As $B \cup V_1$ is \mathscr{I} -semi-open, it is semi-open, so that there is an open set V_2 for which $V_2 \subset (B \cup V_1) \subset \operatorname{cl}(V_2)$. Similarly, there is an open set V_3 such that $V_3 \subset (B \cup V_1 \cup V_2) \subset \operatorname{cl}(V_3)$. Continuing in this way, we have an infinite collection of open sets V_1, V_2, V_3, \ldots , such that $B \cup V_1 \cup V_2 \cup V_3 \cup \ldots \in \mathscr{I}$, which is impossible, as the ideal \mathscr{I} is not closed under countable additivity. Thus, it must be the case that $V_1 = \mathscr{O}$ (similarly for the other V_i 's); therefore, $\operatorname{cl}(V_1) = \mathscr{O}$, and the relations $V_1 \subset B \subset \operatorname{cl}(V_1)$ then give $B = \mathscr{O}$, proving that $\mathscr{I} = \{\mathscr{O}\}$.

Proposition 1. Let \mathscr{I} and \mathscr{I}' be two ideals on a topological space X.

- 1. If $\mathscr{I} \subset \mathscr{I}'$, then every \mathscr{I} -semi-open set A is \mathscr{I}' -semi-open;
- 2. If A is $(\mathscr{I} \cap \mathscr{I}')$ -semi-open, then it is simultaneously \mathscr{I} -semi-open and \mathscr{I}' -semi-open.

Corollary 1. For a subset A of X and an ideal \mathscr{I} on X, recall that $\mathscr{I}_A = \{A \cap S | S \in \mathscr{I}\}$ is also an ideal on X.

1. If a set B is \mathscr{I}_A -semi-open, then it is \mathscr{I} -semi-open.

F. Michael / Eur. J. Pure Appl. Math, 6 (2013), 53-58

2. If $A = \emptyset$, then $\mathscr{I}_A = \mathscr{I}_{\emptyset} = \{\emptyset\}$, the minimal ideal. Thus, if a set *C* is \mathscr{I}_{\emptyset} -semi-open, then *C* is also \mathscr{I} -semi-open.

Proposition 2. If A and B are both \mathscr{I} -semi-open, then so is their union $A \cup B$.

Proof. Let the given conditions hold. To show that $A \cup B$ is \mathscr{I} -semi-open, we need to produce an open set U such that $U - (A \cup B) \in \mathscr{I}$ and $(A \cup B) - \operatorname{cl}(U) \in \mathscr{I}$. Since A and B are both \mathscr{I} -semi-open, there are open sets U_1 and U_2 such that

 $U_1 - A \in \mathscr{I}, A - \operatorname{cl}(U_1) \in \mathscr{I}, U_2 - B \in \mathscr{I}, B - \operatorname{cl}(U_2) \in \mathscr{I}.$

Choose $U = U_1 \cup U_2$, and observe that

$$(U_1 \cup U_2) - (A \cup B) = ((U_1 - A) - B) \cup ((U_2 - B) - A) \in \mathscr{I}.$$

Also,

$$(A \cup B) - \operatorname{cl}(U_1 \cup U_2) = ((A - \operatorname{cl}(U_1)) - \operatorname{cl}(U_2)) \cup ((B - \operatorname{cl}(U_2)) - \operatorname{cl}(U_1)) \in \mathscr{I}.$$

Therefore, by definition, $A \cup B$ is \mathscr{I} -semi-open.

Proposition 3. Let X be a topological space in which there is an open singleton subset $\{a\}$ satisfying $cl(\{a\}) = X$. For any ideal \mathscr{I} on X with $\{a\} \in \mathscr{I}$, we have that:

- 1. Every singleton subset of X is *I*-semi-open;
- 2. Every finite subset of X is \mathscr{I} -semi-open.

Proof. Let the given conditions hold. Suppose that $\{s\}$ is a singleton subset of X. Since $(\{a\} \text{ is open and}) \{a\} - \{s\} = \{a\} \in \mathscr{I}, \text{ and } \{s\} - \operatorname{cl}(\{a\}) = \{s\} - X = \mathscr{O} \in \mathscr{I}, \text{ it follows that } \{s\} \text{ is } \mathscr{I}\text{ -semi-open; this proves } (1).$ To see that (2) holds, let $A = \{s_1, s_2, s_3, \ldots, s_n\}$ be a finite subset of X. Since $A = \{s_1\} \cup \{s_2\} \cup \{s_3\} \cup \ldots \cup \{s_n\}$, the result follows from the fact that each singleton subset $\{s_i\}$ $(i = 1, 2, 3, \ldots, n)$ is $\mathscr{I}\text{ -semi-open}$ and a repeated use of Proposition 2 above.

Proposition 3 does not hold for any choice of ideal.

Example 2. Consider $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, X\}$, and observe that $cl(\{a\}) = X$. If we choose the minimal ideal $\mathscr{I} = \{\emptyset\}$ on X, then the singleton subset $\{b\}$ is not \mathscr{I} -semi-open, as there is no open set U satisfying $U - \{b\} \in \mathscr{I}$ and $\{b\} - cl(U) \in \mathscr{I}$ simultaneously.

Proposition 4. Let A and B be subsets of a topological space X such that A is open, $A \subset B$, and A is dense in B (that is, $B \subset cl(A)$). Then B is \mathscr{I} -semi-open for any ideal \mathscr{I} on X. In particular, the conclusion holds in the special case when B = cl(A).

Remark 1. If two sets A and B are \mathscr{I} -semi-open, then their intersection $A \cap B$ need not be \mathscr{I} semi-open. For example, let $X = \{a, b, c\}$ be equipped with a topology $\sigma = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$.
Note that $cl(\{a\}) = \{a, b\}$ and $cl(\{c\}) = \{b, c\}$; moreover, the subsets $\{a, b\}$ and $\{b, c\}$ are semiopen with respect to the minimal ideal $\mathscr{I} = \{\emptyset\}$, in view of Proposition 4 above. However, the
singleton subset $\{b\} = \{a, b\} \cap \{b, c\}$ is not semi-open with respect to the minimal ideal $\mathscr{I} = \{\emptyset\}$.

F. Michael / Eur. J. Pure Appl. Math, 6 (2013), 53-58

Obviously, if $A, B \in \mathscr{I}$, then $A \cap B$ will be semi-open with respect to the ideal \mathscr{I} . For those subsets that are not members of the ideal \mathscr{I} , one rather strong condition for their intersection to be semi-open with respect to the ideal \mathscr{I} is given below.

Proposition 5. Let \mathscr{I} be an ideal on a topological space *X*, where every non-empty open subset of *X* is dense, and the collection of open subsets of *X* satisfies the finite intersection property.

- 1. If A is \mathscr{I} -semi-open and $A \subset B$, then B is \mathscr{I} -semi-open;
- 2. If A is \mathscr{I} -semi-open, then so is $A \cup B$, for any subset B of X;
- 3. If both A and B are \mathscr{I} -semi-open, then so is their intersection $A \cap B$.

Proof. (1) Suppose that *A* is \mathscr{I} -semi-open, and that $A \subset B$. There is an open set *U* such that $U - A \in \mathscr{I}$ and $A - \operatorname{cl}(U) \in \mathscr{I}$. Notice that such an open set *U* is necessarily non-empty, since we are dealing with those subsets of *X* that do not belong to the ideal \mathscr{I} . Since $A \subset B$, we have that $U - B \subset U - A \in \mathscr{I}$; moreover, $B - \operatorname{cl}(U) = B - X = \emptyset \in \mathscr{I}$. Thus, *B* is \mathscr{I} -semi-open.

(2) Since $A \subset B \Leftrightarrow A \cup B = B$, (2) immediately follows from (1).

(3) Suppose that both *A* and *B* are \mathscr{I} -semi-open. Without loss of generality, suppose that $A \cap B \neq \emptyset$; otherwise, $A \cap B$ will be trivially \mathscr{I} -semi-open. By assumption, there are open sets *U* and *V* such that U - A, $A - \operatorname{cl}(U) \in \mathscr{I}$ and V - B, $B - \operatorname{cl}(V) \in \mathscr{I}$. Consider the open set $U \cap V$, which is non-empty (by the finite intersection property). Since $(U \cap V) - (A \cap B) = ((U - A) \cap V) \cup (U \cap (V - B)) \in \mathscr{I}$ and $(A \cap B) - \operatorname{cl}(U \cap V) = (A \cap B) - X = \emptyset \in \mathscr{I}$, it follows that $A \cap B$ is \mathscr{I} -semi-open.

Remark 2. In Example 2, we saw that the singleton subset $\{b\}$ was not semi-open with respect to the minimal ideal $\mathscr{I} = \{\emptyset\}$. Notice that the set $\{a, b\} = \{a\} \cup \{b\}$ is semi-open with respect to $\mathscr{I} = \{\emptyset\}$, simply because the non-empty open singleton subset $\{a\}$ is dense in X; this is an instance of Proposition 5(2) above.

Proposition 6. Under the conditions of Proposition 5, we have that A is \mathscr{I} -semi-open if and only if cl(A) is \mathscr{I} -semi-open.

Proof. If *A* is \mathscr{I} -semi-open, then - because $A \subset cl(A)$ - so is cl(A), by Proposition 5(2). Conversely, suppose that cl(A) is \mathscr{I} -semi-open. Then there is an open set *U* such that $U - cl(A) \in \mathscr{I}$ and $cl(A) - cl(U) \in \mathscr{I}$. Notice that *U* is necessarily non-empty; otherwise, we would have $cl(U) = \emptyset$, which forces $A \in \mathscr{I}$, which we don't want (as we're dealing with those subsets that do not belong to the ideal \mathscr{I}). To show that *A* is \mathscr{I} -semi-open, consider the open set $V = U - cl(A) = U \cap (cl(A))^c \in \mathscr{I}$, by assumption. We have that $V - A = U \cap (cl(A))^c \cap A^c \in \mathscr{I}$, because of the heredity property; moreover, $A - cl(V) = A - cl(U \cap (cl(A))^c) = A - X = \emptyset \in \mathscr{I}$. This shows that *A* is \mathscr{I} -semi-open.

Theorem 2. The following are equivalent for a subset A of X:

REFERENCES

- 1. X A is \mathscr{I} -semi-open.
- 2. There exists a closed set F such that $int(F) A \in \mathscr{I}$ and $A F \in \mathscr{I}$.

Proof. First suppose that X - A is \mathscr{I} -semi-open. Then there exists an open set U such that $U - (X - A) \in \mathscr{I}$ and $(X - A) - \operatorname{cl}(U) \in \mathscr{I}$. Since U - (X - A) = A - (X - U) and $(X - A) - \operatorname{cl}(U) = \operatorname{int}(X - U) - A$, we have (2) by choosing the closed set X - U as F. Conversely, if we suppose that (2) holds, then the choice of the open set U = X - F shows that X - A is \mathscr{I} -semi-open.

Definition 2. A subset A of X is said to be semi-closed with respect to \mathscr{I} (written as \mathscr{I} -semiclosed) if and only if X - A is \mathscr{I} -semi-open.

Proposition 7. If both A and B are \mathscr{I} -semi-closed, then so is their intersection $A \cap B$.

Proof. Let the given conditions hold. There are closed sets F_1 and F_2 such that $int(F_1) - A, A - F_1 \in \mathscr{I}$ and $int(F_2) - B, B - F_2 \in \mathscr{I}$. With $F = F_1 \cap F_2$, we have that

$$\operatorname{int}(F_1 \cap F_2) - (A \cap B) = ((\operatorname{int}(F_1) - A) \cap \operatorname{int}(F_2)) \cup (\operatorname{int}(F_1) \cap (\operatorname{int}(F_2) - B)) \in \mathscr{I},$$

and

$$(A \cap B) - (F_1 \cap F_2) = ((A - F_1) \cap B) \cup (A \cap (B - F_2)) \in \mathscr{I};$$

therefore, $A \cap B$ is \mathscr{I} -semi-closed.

References

- K. Al-Zoubi. On generalized ω-closed sets. International Journal of Mathematics and Mathematical Sciences, 2005(13):2011–2021, 2005.
- [2] S.P. Arya and T.M. Nour. Characterization of s-normal spaces. *Indian Journal of Pure and Applied Mathematics*, 21(8):717–719, 1990.
- [3] C. Boonpok. Generalized closed sets in isotonic spaces. International Journal of Mathematical Analysis, 5:241–256, 2011.
- [4] R. Davi, K. Balachandran, and H. Maki. Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces. *Indian Journal of Pure and Applied Mathematics*, 26(3):271–284, 1995.
- [5] E. Hatir and T. Noiri. On semi-*I*-open sets and semi-*I*-continuous functions. Acta Mathematica Hungarica, 107(4):345–353, 2005.
- [6] S. Jafari and N. Rajesh. Generalized closed sets with respect to ideals. *European Journal of Pure and Applied Mathematics*, 4(2):147–151, 2011.
- [7] D. Jankovic and T.R. Hamlett. Ideals in topology and applications. *Lecture Notes in Pure and Applied Mathematics*, pages 115–125, 1990.

- [8] D. Jankovic and T.R. Hamlett. Ideals in topology and the set operator. *Bollettino della Unione Matematica Italiana*, 7:863–894, 1990.
- [9] D. Jankovic and T.R. Hamlett. New topologies from old via ideals. *American Mathematical Monthly*, 97:295–310, 1990.
- [10] J.L. Kelly. *General topology*. D van Nostrand Company Incorporated, Princeton, N.J., 1955.
- [11] N. Levine. Semi-open sets and semi-continuity in topological spaces. *American Mathematical Monthly*, 70:36–41, 1963.
- [12] N. Levine. Generalized closed sets in topology. *Rendiconti del Circolo Matematico di Palermo*, 19:89–96, 1970.