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Abstract. We study self-dual codes over an infinite family of rings, denoted Rk, which has been re-

cently introduced to the literature. We prove that for each self-dual code over Rk, k ≥ 2, there exist a

corresponding binary self-dual code, a real unimodular lattice, a complex unimodular lattice, a quater-

nionic lattice and an infinite family of self-dual codes. We prove the existence of Type II codes of all

lengths over Rk, for k ≥ 3, and we obtain some extremal binary self-dual codes including the extended

binary Golay code as the Gray images of self-dual codes over Rk for some suitable k. The binary

self-dual codes obtained from Rk all have automorphism groups whose orders are a multiple of 2k.
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1. Introduction

Self-dual codes are an important class of codes and an extensive literature exists on self-

dual codes over finite fields. Self-dual codes over rings have received attention especially with

respect to their connection to unimodular lattices and invariant theory; see [4], [9] and [5]

for a description and extensive bibliographies. They can also be used to construct designs

by using the Assmus-Mattson theorem. In [6], self-dual codes were studied over the ring

F2 + uF2 and they were connected to complex unimodular lattices. In [2], the ring F2 + uF2

was generalized to Σ2m and self-dual codes over this ring were used to construct quaternionic

unimodular lattices and associated Jacobi forms. We shall generalize these rings to an infinite

family of rings denoted by Rk and use these rings to construct binary self-dual codes and real,

complex and quaternionic unimodular lattices. Codes over the ring Rk were first studied in

[7].

In the literature there are constructions for extremal binary self-dual codes with automor-

phism groups of order 2, p (an odd prime), p2 and pq. As was shown in [7], codes over Rk

are all invariant under a group of automorphisms of size 2k. This means that self-dual codes
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constructed from Rk will all have automorphism groups whose orders are a multiple of 2k. So,

we believe that studying self-dual codes over Rk fills a gap in the literature of binary self-dual

codes. We have illustrated several examples at the end of the paper.

The rest of the paper is organized as follows: In Section 2, we will present some definitions

and notations about the rings Rk and about codes over Rk. In Section 3, we will discuss the

projection maps and lifts between Rk and Rk′, for k 6= k′, in connection with self-dual codes.

Section 4 will consist of the description of the binary images of self-dual codes over Rk.

In particular, the existence of Type II codes of all lengths over Rk, for k ≥ 3, and of all even

lengths over R2 will be established. An upper bound on the minimum Lee distance of self-dual

codes will also be given.

In Section 5, we will give a characterization of self-dual codes over Rk of length 1 and 2.

In particular, a full characterization of one-generator self-dual codes of length 1 and 2 will be

given.

Section 6 will highlight the connection between self-dual codes over Rk and real, com-

plex, and quaternionic unimodular lattices. We will finish the paper with some examples of

extremal binary self-dual codes including the extended binary Golay code obtained from the

codes over Rk for some suitable k.

2. Definitions and Notations

For finite k ≥ 1, we define a family of rings by

Rk = F2[u1,u2, . . . ,uk]/〈u2
i = 0,uiu j = u jui〉. (1)

We let R∞ be the ring

R∞ = F2[u1,u2, . . .]/〈u2
i = 0,uiu j = u jui〉, (2)

and R0 = F2.

For all k, finite or infinite, Rk is a commutative ring. Note that the ring R∞ is an infinite

ring while Rk is a finite ring for finite values of k.

To describe the elements of Rk we let, for A⊆ {1,2, . . . , k}

uA :=
∏

i∈A

ui (3)

with u; = 1. Elements of Rk, then can be represented as

∑

A⊆{1,...,k}
cAuA, cA ∈ F2. (4)

It is easily observed that the ring Rk is local whose maximal ideal is given by 〈u1,u2, . . . ,uk〉
and |Rk| = 2(2

k). Rk is not a principal ideal ring nor is it a chain ring. But, it is a Frobenius

ring. It is shown in [11] that codes over Frobenius rings satisfy MacWilliams theorems. See

[11] for other foundational results on codes over Frobenius rings.
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In [7], it is shown that an element of Rk is a unit if and only if the coefficient of u; is 1

and that each unit is also its own inverse. See [7] for proofs of these and other foundational

results for finite k. The proofs are similar for R∞. Throughout, unless otherwise specified, k

can be any natural number greater than 0 or can be∞.

We say that a linear code of length n over Rk is an Rk-submodule of Rn
k
. Notice that a code

over R∞ is an infinite module.

We define the inner product on Rn
k

in the usual way, that is [v,w]k =
∑

viwi. The dual

C⊥ is defined as C⊥ = {v ∈ Rn
k
| [v,w]k = 0 for all w ∈ C}. By [11], we know that for

finite k a linear code C over Rk of length n satisfies |C ||C⊥| = |Rk|n. We say that a code is

self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

We define the Gray map inductively, extending it naturally from the Gray map on R1 from

[6] as follows.

For c ∈ Rn
k
, we can write c= c1 + ukc2 with c1,c2 ∈ Rn

k−1
, then we can define

φk(c) =
�

φk−1(c2),φk−1(c1) +φk−1(c2)
�

,

with φ0 being the identity map on F2.

The Lee weight of a codeword is the Hamming weight of the image of the codeword under

φk. The Lee distance is defined similarly. It’s clear that the Gray map φk is a linear weight

preserving map from Rn
k

to F2kn
2 as was shown in [7].

If all the codewords of a self-dual code have doubly-even Lee weight then the code is said

to be Type II, otherwise it is said to be Type I.

It is immediate that φk is one-to-one and that wL(uA) = 2|A| for each A⊆ {1,2, . . . , k}, see

[7] for details.

The complete weight enumerator of a code C over Rn
k

is defined as:

cweC (X) =
∑

c∈C

n
∏

i=1

xci
. (5)

The Hamming weight of a vector c is denoted by wt(c) and is the number of non-zero

coordinates of the element. The minimum weight is the minimum of all non-zero weights

in the code. We denote the minimum Hamming distance by dH(C) and the minimum Lee

distance by dL(C). The Hamming weight enumerator is defined as:

WC (x , y) =
∑

c∈C

xn−wt(c) ywt(c). (6)

The Lee weight enumerator is defined to be

LC (z) =
∑

c∈C

zLe(c), (7)

where Le(c) is the Lee weight of the codeword c. The MacWilliams relations for both of these

weight enumerators are given in [7].
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3. Projections and Lifts

For j ≥ k ≥ 0, define Π j,k : R j → Rk by Π j,k(ui) = 0 if i > k and the identity elsewhere.

That is Π j,k is the projection of R j to Rk. Note that if j ≤ k, then Π j,k is taken to be the identity

map on R j. We allow j to be∞ as well and denote this map by Π∞,k.

If C = Π j,k(C
′) for some C ′ and j ≥ k, then C ′ is said to be a lift of C .

Theorem 1. Let C be a self-dual code over R j then Π j,k(C) is a self-orthogonal code over Rk.

Proof. Let v= (v1, . . . , vn) and w= (w1, . . . , wn) be vectors in C . We have that

Π j,k(
∑

viwi) =
∑

(Π j,k(vi)Π j,k(wi)).

If
∑

viwi = 0 in R j then Π j,k(0) = 0 so 〈Π j,k(v),Π j,k(w)〉k = 0. Therefore the code is self-

orthogonal.

The image need not necessarily be self-dual. For example, consider the code 〈u2〉 in R2.

This code is self-dual but its image under Π2,1 is the zero code which is not self-dual.

Theorem 2. Let v1, v2, . . . , vs generate a self-dual code over Rk (of length 1), then v1, v2, . . . , vs

generate a self-dual code over R j for all j > k.

Proof. Let C j be the code generated by v1, v2, . . . , vs over R j. We proceed by induction. We

know Ck is a self-dual code by assumption.

Assume C j is a self-dual code. We have that C j+1 = C j ⊕ u j+1C j, where C j ∩ u j+1C j = ;.
Then we have that |C j+1| = |C j||C j| =

p

22 j
p

22 j
=

p

22 j+1
. Then for vectors v,w,v′,w′ ∈ C j

we have, since C j is self-dual by assumption,

[v+ u j+1v′,w+ u j+1w′] j+1 = [v,w] j + u j+1[v,w′] j + u j+1[v
′,w] j + u2

j+1[v
′,w′] j = 0.

Hence C j+1 is self-dual since it is self-orthogonal and has the proper cardinality. Therefore by

mathematical induction C j is a self-dual code for all finite j.

Next we shall prove that C∞ is self-dual.

If v,w ∈ C∞ then there exists j with v,w ∈ C j and hence [v,w] j = 0 which implies

[v,w]∞ = 0. If w ∈ C⊥∞ then w ∈ C⊥
j

for some j which gives that w ∈ C j and hence in C∞.

Therefore C∞ is self-dual.

Corollary 1. If C is a self-dual code over Rk then there exists a self-dual code C ′ over R j , for

j > k, with Π j,k(C
′) = C.

Notice that the lifts of a self-dual code are also self-dual as we have defined it, but not all

projections are self-dual.

For any ideal I of Rk we have that Ann(I) = I⊥.

The following lemma appears in [7].

Lemma 1. The code 〈ui〉 of length 1 is a self-dual code in Rk for all k ≥ i.
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Proof. This was proved for finite k in [7]. It is true for infinite k by Theorem 2.

If C and D are self-dual codes over Rk then define C × D as {(v,w) | v ∈ C ,w ∈ D}. It is

easy to see that this code is self-orthogonal and of the proper cardinality. Therefore the code

is self-dual.

Theorem 3. Self-dual codes over Rk exist for all lengths and for all k ≥ 1.

Proof. The ideal Iui
= 〈ui〉 is a self-dual code of length 1 for all i, by Lemma 1. By taking

direct products, we conclude that self-dual codes exists for all lengths, for all k ≥ 1.

4. Binary Images

The following is defined in [7]. View Rk as a vector space over F2 with basis

{uA : A⊆ {1,2, . . . , k}}, and define the Gray map of each uA and then extend it linearly to all of

Rk. Fix an ordering on the subsets of {1,2, . . . , k}, that will be defined recursively as follows:

{1,2, . . . , k} = {1,2, . . . , k− 1} ∪ {k}.
We can now define the coordinate-wise Gray map. We denote this map by ψk : Rk→ F2k

2 and

define it as follows:

ψk(uA) = (cB)B⊆{1,2,...,k},

where

cB =

(

1 if B ⊆ A

0 otherwise.
.

We then extend ψk linearly to all of Rk and define the Lee weight of an element in Rk to be

the Hamming weight of its image. We get a linear distance preserving map from Rn
k

to F2k n
2 .

It follows immediately that

wL(uA) = 2|A|. (8)

The map ψk was shown to be equivalent to φk in [7]. The following lemma also appears

in [7].

Lemma 2. Let C be a linear code over Rk of length n. Then

ψk(C
⊥) = (ψk(C))

⊥

where (ψk(C))
⊥ denotes the ordinary dual of ψk(C) as a binary code.

Theorem 4. Let C be a self-dual code over Rk of length n, then ψk(C) is a binary self-dual code

of length 2kn. If C is a Type II code then ψk(C) is Type II and if C is Type I then ψk(C) is Type I.

Proof. If C = C⊥ then by Lemma 2, ψk(C) =ψk(C
⊥) =ψk(C)

⊥.

Since ψk is distance preserving, the following corollary immediately follows from the

bounds given in [10]. Note that for k ≥ 2, the length of the binary image of a code over Rk

will always be divisible by 4, hence the case n ≡ 22 (mod 24) is not possible for the image of

an Rk code. Hence we need not consider that special case for binary codes.
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Corollary 2. Let dL(n, I) and dL(n, I I) denote the minimum distance of a Type I and Type II code

over Rk of length n, respectively. Then for k ≥ 2 we have

dL(n, I), dL(n, I I) ≤ 4

�

2k−2n

6

�

+ 4.

Another corollary follows from the fact that a self-dual binary code must contain the all

1-vector, and as the pre-image under ψk of the all 1-vector corresponds to the all u1u2 . . . uk-

vector in Rk we get the following corollary.

Corollary 3. Any self-dual code over Rk must contain the all u1u2 . . . uk-vector.

Example 1. We have seen that 〈ui〉 is a self-dual code of length 1 in Rk for all k with i ≤ k.

Let Ck = 〈ui〉 be the code over Rk. Then ψk(Ck) is a self-dual code of length 2k with minimum

Hamming distance 2.

It is well known that if a binary Type II code of length n exists, then n must be a multiple of

8. We first show that Type II codes over Rk of any length exist for all k ≥ 3. Note that, by taking

direct sums, it is enough to show that Type II codes of length 1 exist over Rk for any k ≥ 3. Let

k ≥ 3, take the code C over Rk of length 1 generated by {uA : 1 ∈ A,A 6= {1}} ∪ {u2u3 . . . uk}.
Note that C can be viewed as an F2-vector space with basis

{u1u2,u1u3, . . . ,u1u2 . . . uk,u2u3 . . . uk}.

Since every basis element is orthogonal to every other basis element, C is self-orthogonal. To

prove self-duality of C we just have to look at the size. The number of subsets of {1,2, . . . , k}
that contain 1 properly is 2k−1− 1. Adding the vector u2u3 . . . uk, we see that

|C |= 22k−1

=

p

22k
. So C is self-dual. Note that every element of C is an F2-linear combination

of the uA where |A| ≥ 2, so the Lee weight of every codeword is divisible by 4 and the minimum

Lee weight of C is 4. Thus we have proved the following theorem.

Theorem 5. Type II codes over Rk of all lengths exist for any k ≥ 3.

The case when k = 1 was resolved in [6]. So we only need to look at the case when k = 2.

Note that if C is any linear code over R2 of length n, then ψ2(C) is a binary linear code of

length 4n. By the observation about the lengths of binary Type II codes, we know that we

should only look for Type II codes of even lengths over R2. Again, by taking direct sums if

necessary, we only need to look for a Type II code of length 2 over R2. Indeed, let C be the

linear code over R2 of length 2, generated by the vector (1,1+ u1u2). It turns out that C is

a self-dual code with Lee weight enumerator 1+ 14z4 + z8, so it is Type II. In fact the binary

image of C is an [8,4,4] code which is the extended Hamming code. Thus we have proved

that following result.

Theorem 6. Type II codes exist over R2 for all even lengths.
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Consider the complete weight enumerator of a self-dual code C . It is held invariant by the

action of the MacWilliams relations. That is the complete weight enumerator is held invariant

by the matrix Mk, where

Mk =
1
p

22k
Tk.

The matrix Tk is defined as follows.

Let
∑

A⊆{1,2,...,k} cAuA ∈ Rk. Then (cA) can be thought of as a binary vector of length 2k. Let

wt(cA) be the Hamming weight of this vector.

Then

χ1(
∑

A⊆{1,2,...,k}
cAuA) = (−1)wt(cA). (9)

Let T be a square 22k

by 22k

matrix indexed by the elements of Rk and define

Ta,b = χa(b) = χ1(ab). (10)

The complete weight enumerator is also held invariant by the action of multiplication by a

unit. It is shown in [7] that these actions are all generated by multiplication by the unit 1+us

for 1≤ s ≤ k. Let As be the permutation matrix that gives the permutation α→ (1+ us)α.

Then the group of invariants of a Type I code over Rk is

GI = 〈Mk,A1, . . . ,As〉. (11)

Let Bk be the diagonal matrix indexed by the elements of Rk with

(Bk)α = iLe(α),

where i2 = −1.

Then the weight enumerator of a Type II code is also held invariant by Bk. Then the group

of invariants of a Type II code over Rk is

GI I = 〈Mk, Bk,A1, . . . ,As〉. (12)

The invariants for the Hamming weight enumerator is the same for any ring of order 22k

.

That is, it is held invariant by the matrix 1p
22k

�

1 (22k − 1)

1 −1

�

. The Hamming weight enu-

merator does not change for Type II codes. It follows that weight enumerator is a polynomial

in x + (22k − 1)y and y(x − y). See [8] for details.

The Lee weight enumerator for a code over Rk is indistinguishable from the Hamming

weight enumerator for binary self-dual codes. Therefore, the Lee weight of a Type II code

is a polynomial in the weight enumerator of the extended length 8 Hamming code and the

extended binary Golay code of length 24. The Lee weight enumerator of a Type I code is a

polynomial in 1+ z2 and the weight enumerator of the extended length 8 Hamming code.
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5. Self-Dual Codes of Length 1 and 2

5.1. Length 1 Self-Dual Codes over Rk

We first note that if a length 1 code C , generated by a + uk b, with a, b ∈ Rk−1 is self-

orthogonal, then we must have that a is a non-unit in Rk−1, because if a were a unit, then we

would have (a+ uk b)2 = a2 = 1 6= 0.

We will prove that if a is a non-unit and b is a unit, then 〈a+ uk b〉 is a self-dual code. For

this we will first introduce the following map:

Ψk : Rk→ R2
k−1

defined by

Ψk(a+ uk b) = (b, a+ b). (13)

It is easy to verify that Ψk is a linear bijection from Rn
k

to R2n
k−1

and furthermore it is distance

preserving. The following lemma will help us resolve the previous question.

Lemma 3. If C is a length 1 code over Rk generated by a+ uk b with a, b ∈ Rk−1, then Ψk(C) is

a length 2 code over Rk−1 generated by (b, a+ b) and (a, a).

Proof. We note that (x + uk y)(a+ uk b) = ax + (x b+ a y)uk for all x , y ∈ Rk−1 and hence

Ψk((x + uk y)(a+ uk b)) = (x b+ a y, x b+ a y + ax) = x(b, a+ b) + y(a, a).

Since x and y are arbitrary elements in Rk−1, we see that Ψk(C) must be generated by

(b, a+ b) and (a, a).

Theorem 7. Let C be the length 1 code over Rk generated by a+ uk b where a is a non-unit and

b is a unit in Rk−1. Then C is self-dual.

Proof. We first note that (a+ uk b)(a+ uk b) = a2 + uk(ab+ ab) = 0 since a is a non-unit.

Therefore, C is a self-orthogonal code. By multiplying by b, which is a unit, we might assume

that C is generated by a′ + uk where a′ is a non-unit in Rk−1. Since C is self-orthogonal we

only need to prove that it has the right cardinality. But now looking at Ψk(C), we see that by

Lemma 3, it is generated by (1,1+ a′) and (a′, a′). Since a′(1,1+ a′) = (a′, a′), we see that

Ψk(C) is actually generated over Rk−1 by (1,1+ a′), and so it has size 22k−1

. But since Ψk is

bijective, we see that C is a length 1 code over Rk of size 22k−1

and so it must be self-dual.

Note that by changing the indices of the ui if necessary, we can generalize the previous

theorem as follows:

Corollary 4. Let C be a length 1 code over Rk generated by a+ ui b for some i with 1 ≤ i ≤ k,

where a is a non-unit and b is a unit in Rk, such that a and b are not aui, nor is bui equal to 0,

that is, ui is not a part of either expression. Then C is a self-dual code.

This gives us a large class of length 1 self-dual codes. Namely, if the generator is a non-unit

of the form ui + c for some i, then the code it generates turns out to be self-dual.
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Theorem 8. Every self-dual code generated by a single element is generated by an element of the

form given in Theorem 7.

Proof. We shall prove that if a one-generator code is not of the form described above,

i.e., if every set in the support of the generator contains at least two elements, then it cannot

generate a self-dual code over Rk. To prove this, we let a be a non-unit in Rk with k ≥ 2

and every component in a is of the form uA with |A| ≥ 2. We will prove that C = 〈a〉 cannot

be self-dual. Of course, C is self-orthogonal, giving that C ⊆ C⊥. To prove that C is not

self-dual, we will exhibit an element in C⊥ that is not in C . We let uB be an element with

minimal B 6= ; such that a · uB = 0. For example, if a = u1u2, we can choose uB to be u1

or u2. If a = u1u2 + u3u4, then we can choose uB to be u1u3 or u1u4 or u2u3 or u2u4. Note

that uB = u1 . . . uk if and only if a is of the form u1 + u2 + . . .+ uk, so in our case we know

that |B| < k. After rearranging the indices if necessary, we might assume, without loss of

generality, that uB = u1u2 . . . us, with s < k.

Now, by definition, uB ∈ C⊥. Therefore, it is enough to show that uB 6∈ C .

Assume that r · a = u1u2 . . . us. If a contains just one component, then we would have

s = 1 and we know in that case u1 6∈ C . Because uB = u1 . . . us, we must have

a = u1a1 + u2a2+ . . .+ usas,

where a1, a2, . . . , as are non-zero non-units. Additionally, ai does not contain any of the

u1,u2, . . . ,ui−1 for i = 2,3 . . . , s.

Since as contains some of us+1, . . . ,uk, in order for ra to be u1u2 . . . us, r must contain us.

Therefore we can write r = r1us. Now, aus = u1usa1 + u2usa2 + . . . us−1usas−1. We know that

us−1usas−1 6= 0, because if it were, uB\{s−1} would annihilate a, contradicting the minimality

of B. Again since usas−1 contains elements from us+1, . . . ,uk, we must have that r1 contains

us−1. Continuing this way, we see that r = u1u2 . . . us. But in that case it is impossible to have

ra = u1u2 . . . us.

Thus, we have classified all one-generator length 1 self-dual codes over Rk for k ≥ 2.

Not all length one self-dual codes are principal ideals. For example, the code

〈u1u2,u1u3,u2u3〉 over R3 is self-dual but not principal.

We generalize this to the following theorem.

Theorem 9. Let k be odd, with D1, D2, . . . , Ds the subsets of {1,2, . . . , k} of size ⌈ k

2
⌉ where

s =

�

k

⌈ k

2
⌉

�

. Then C = 〈uD1
,uD2

, . . . ,uDs
〉 is a self-dual code of length 1.

Proof. For any Di, D j we have |Di ∪ D j | = |Di|+ |D j| − |Di ∩ D j |. Since ⌈ k

2
⌉+ ⌈ k

2
⌉ > k and

the maximum of |Di ∪ D j | is k we have |Di ∩ D j | > 0. This implies that uDi
uD j
= 0 for all i, j.

Hence C is self-orthogonal.

Assume that
∑

uB ∈ C⊥. This implies that (
∑

uB)uDi
= 0 for all i. If is easy to see that this

implies that uBuDi
= 0 for all i. Thus B ∩ Di 6= ; for all i. This implies that each B must have

cardinality at least k − ⌈ k

2
⌉+ 1 = ⌈ k

2
⌉ when k is odd. Thus B is a subset of {1,2, . . . , k} with

cardinality at least ⌈ k

2
⌉. Hence uB ∈ 〈uD1

,uD2
, . . . ,uDs

〉, that is uB ∈ C . Therefore C = C⊥.
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Note that for k even one would need sets of size k

2
+ 1 to be self-orthogonal. But

k−( k

2
+1) = k

2
−1. Hence the code is not self-dual since there exist sets of size k

2
−1 that are not

disjoint from all sets of size k

2
+1. For example, if k = 4, the code 〈u1u2u3,u1u2u4,u1u3u4,u2u3u4〉

would generate a self-orthogonal code but u1u2 ∈ C⊥ and not in C .

5.2. Length 2 Self-Dual Codes over Rk

We first note that, for any a ∈ Rk, with k ≥ 1, a2 = 1 if a is a unit and a2 = 0 otherwise.

This tells us that every codeword in a length 2 self-dual code over Rk must be of the form

(a1, a2) where the ai are units or of the form (b1, b2) where the bi are non-units. We first start

with the following proposition.

Proposition 1. Let C be a linear code over Rk of length 2 generated by (1,1+ u1u2 . . . uk) with

k ≥ 2. Then C is a Type II code with minimum distance 4.

Proof. We have that 〈(1,1+u1u2 . . . uk), (1,1+u1u2 . . . uk)〉k = 0 in Rk giving that C is self-

orthogonal. Because there is a 1 in the first coordinate, every Rk-multiple of (1,1+ u1 . . . uk)

is distinct, and so we have |C | = |Rk| = 22k

. Since |R2
k
| = 22k+1

= |C | · |C⊥| we see that

|C⊥| = |C |= 22k

. We know that C is self-orthogonal which implies that C is self-dual.

To prove that the weight of every element is divisible by 4, we first observe that

a · (u1u2 . . . uk) =

(

u1u2 . . . uk if a is a unit

0 if a is a non-unit.

This means we have

a · (1,1+ u1u2 . . . uk) =

(

(a, a+ u1u2 . . . uk) if a is a unit

(a, a) if a is a non-unit.

If a is a non-unit, then wL(a(1,1+ u1 . . . uk)) = wL(a, a) = 2wL(a). Therefore the Lee weight

is a multiple of 4 since, by [7], we know that the Lee weight of every non-zero non-unit is

even.

If a is a unit, then

wL(a(1,1+ u1 . . . uk)) = wL(a, a+ u1u2 . . . uk) = wL(a) +wL(a+ u1 . . . uk) = 2k

by [7]. When k ≥ 2 this is divisible by 4.

We have found a class of Type II codes over Rk of length 2 for all k ≥ 2. The binary images

of these codes are Type II codes with parameters [2k+1, 2k, 4], which are extremal when k = 2

and k = 3.

The following proposition can be proven in exactly the same way as the previous proposi-

tion.
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Proposition 2. Let C be the length 2 code over Rk, for k ≥ 4, generated by

c= (1,1+u1u2+u3 . . . uk). Then C is a Type II self-dual code over Rk with minimum Lee distance

8. Hence the binary image is an extremal Type II code when k = 4.

The following is an easy observation that can be proven in the same manner.

Proposition 3. Let C be a linear code over Rk of length 2 generated by (a, b) where a and b are

units in Rk. Then C is a self dual code.

Conversely, any self-dual code of length 2 over Rk that contains a vector of the form

(a1, a2), where the ai are units, must be generated by that vector and hence be a one-generator

code.

Of course, a vector of the form (b1, b2) where the bi are non-units, cannot generate a

self-dual code by itself, because multiplying it by u1 . . . uk would yield the zero vector, hence

the size of such a code can be at most 22k−1. Thus we need a second generator in such a case.

6. Lattices

There is a vast literature connecting codes and lattices. See [3] for details and an extensive

literature.

Let F be either R,C or H and let O be Z,Z[i], or Z[i, j,k], respectively.

A lattice in F n is a free O -module. The standard inner product attached to the ambient

space is defined as

v · u =
∑

viui , (14)

where the involution is the identity for the real numbers and the standard involution for the

complex numbers and the quaternions.

We define L∗ = {u ∈ F n | u · v ∈ O for all v ∈ L}. For the quaternions we only need to

define one orthogonal here since u·v ∈ O if and only if v·u ∈ O . If the lattice L satisfies L ⊆ L∗

it is said to be integral and if the lattice L satisfies L = L∗ then it is said to be unimodular.

The norm of a vector v is N(v) = v · v. If the norm of every vector in a unimodular lattice

is an even integer then we say the lattice is even.

We describe a family of reduction maps.

Define

hH : O n→ Rn
2, (15)

to be the linear map where hH(i+ 1) = u1, hH(j+ 1) = u2, and hH(k+ 1) = u1 + u2 + u1u2.

Define

hC : O n→ Rn
1, (16)

to be the linear map where hC(i+ 1) = u1.

Define

hR : O n→ Rn
0, (17)

where R0 = F2 and hR(n) = n (mod 2).
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Each of these maps is a ring homomorphism and it can be seen that h−1(C) is a free

O -module. The lattices induced from a code C are defined as follows:

ΛH(C) :=
1p
2

h−1
H
(C) = {v ∈ O n | v (mod 2O ) ∈ C}. (18)

ΛC(C) :=
1p
2

h−1
C
(C) = {v ∈ O n | v (mod 2O ) ∈ C}. (19)

ΛR(C) :=
1p
2

h−1
R
(C) = {v ∈ O n | v (mod 2O ) ∈ C}. (20)

Lemma 4. If C is a self-dual code over R2 then ΛH(C) is a quaternionic unimodular lattice. If

C is a self-dual code over R1 then ΛC(C) is a complex unimodular lattice. If C is a self-dual code

over R0 = F2 then ΛR(C) is a real unimodular lattice.

Proof. The first result can be found in [2]. Notice that in the notation of [2], α corresponds

to u1, β corresponds to u2 and γ corresponds to u1+u2+u1u2. The second result can be found

in [6] where the rings is written as F2+ uF2 and u corresponds to u1. The third result can be

found in [1] and numerous other papers, see [3].

Let k ≥ 2.

For α ∈ Rk write α = α0 + α1uk−1 + α2uk + α3uk−1uk with αi ∈ Rk−2. Then define

Φ2 : Rk→ R2k−2

2 by Φ2(α) = φk−2(α0) +φk−2(α1)u1 +φk−2(α2)u2 +φk−2(α3)u1u2.

For α ∈ Rk write α = α0 +α1uk with αi ∈ Rk−1. Then define

Φ1 : Rk→ R2k−1

2 by Φ1(α) = φk−1(α0) +φk−1(α1)u1.

Theorem 10. Let k ≥ 2. If C is a self-dual code over Rk of length n then Φ2(C) is a self-dual

code over R2 of length 2k−2n. If C is a self-dual code over Rk of length n then Φ1(C) is a self-dual

code over R2 of length 2k−1n.

Proof. The proof follows from Theorem 4.

Theorem 11. Let C be a self-dual code over Rk of length n, k ≥ 2 with i, j ≤ k. Then ΛH(Φ2(C))

is a quaternionic unimodular lattice of length 2k−2n, ΛC(Φ1(C)) is a complex unimodular lattice

of length 2k−1n, and ΛR(φk(C)) is a real unimodular lattice of length 2kn.

Proof. Follows by applying Lemma 4 and Theorem 10.

7. Extremal Binary Self-Dual Codes Obtained from Codes over Rk

Note that, in Section 5, we introduced the map

Ψk : Rk→ R2
k−1
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given by Ψk(a+ uk b) = (b, a+ b). It is easy to verify that Ψk is a linear bijection from Rn
k

to

R2n
k−1

and furthermore it is distance preserving. Now let c1+ukd1,c2+ukd2 be two vectors in

Rn
k

such that

< c1 + ukd1,c2 + ukd2 >k= 0.

This means

< c1,c2 >k−1= 0, < c1,d2 >k−1 + < c2,d1 >k−1= 0. (21)

It follows that

< Ψk(c1+ ukd1),Ψk(c2+ ukd2)>k−1= < (d1,c1 + d1), (d2,c2 + d2)>k−1

= < d1,d2 >k−1 + < c1+ d1,c2+ d2 >k−1

= < d1,d2 >k−1 + < c1,c2 >k−1 + < c1,d2 >k−1

+ < c2,d1 >k−1 + < d1,d2 >k−1

=0

by (21). This leads to the following lemma:

Lemma 5. If C is a self-dual code over Rk of length n, then Ψk(C) is a self-dual code over Rk−1

of length 2n.

Proof. Note that the above observation tells us that Ψ preserves self-orthogonality. But,

since Ψk is an injective map, the sizes of the codes are preserved as well, which implies that

if C is a self-dual code of length n over Rk, then Ψk(C) is a self-dual code of length 2n over

Rk−1.

Combining this with Theorem 4, we obtain the following result:

Theorem 12. Suppose C is a self-dual code over Rk of length n, and that its binary image ψk(C)

is a binary self-dual code with parameters [2kn, 2k−1n, d]. Then there exists a self-dual code D

over Rk−1 of length 2n such that ψk−1(D) is a binary self-dual code with the same parameters

and moreover is equivalent to ψk(C).

Consequently, when we are trying to get some known binary codes as the images of linear

codes over Rk, it suffices to find the largest k for which we can do that. Because if it is linear

over Rk, then it will be linear over Ri for all i ≤ k.

7.1. Examples

We are now ready to give some known binary self-dual codes as the images of self-dual

codes over Rk.

Corollary 4.4 in [7] states that if a binary code is the image of a code over Rk then the

automorphism group of the code contains k distinct automorphisms which are involutions

corresponding to multiplication in the ring by 1+ui for i = 1 . . . k. Hence, the codes described

below have a rich automorphism structure containing at least the group generated by these

involutions. In general, it is important to find the largest k such that a binary code is the

image of a code over Rk since this says the most about its automorphism group.
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7.2. [8, 4, 4] Binary Self-Dual Code

Because of the length of the code, the largest k for which the code can be the image of a

code over Rk is 3. If we take C1 to be the linear code of length 1 over R3 generated by u1u2,

u1u3 and u2u3, then C1 is a self-dual code with weight enumerator 1+ 14z4 + z8. The binary

image is an extremal Type II code with parameters [8,4,4]. By the above argument, we know

that we can find the same code to be linear over R2 as well. In that case the generator can be

taken as the vector (1,1+ u1u2).

7.3. [16, 8, 4] Binary Self-Dual Code

For length 16, the largest k for which the code can be the image of a code over Rk is 4.

We take the code C2 to be the length 1 code over R4 generated by u1u2, u1u3, u1u4, u2u3u4.

The code C2 turns out to be a self-dual code with Lee weight enumerator

LC2
(z) = 1+ 28z4 + 198z8+ 28z12 + z16.

The code ψ4(C2) is a binary Type II code with parameters [16,8,4] and is extremal. We know

that we can get the same code from R2 and R3 as well. In particular, ψ3(< (1,1+ u1u2u3)>)

and ψ2(< (1,1+ u1u2, 1+ u1, 1+ u1 + u1u2), (0,0,1+ u1, 1+ u1 + u1u2) >) have the same

parameters and weight enumerators.

7.4. The Extended Golay Code

Let C3 be the linear code over R3 of length 3 generated by the following vectors

(u2,u1 + u3 + u1u2,u1 + u1u2), (u1 + u2,u1 + u1u2,u2 + u3 + u1u2), (u3,u2 + u1u3,u1 + u2).

Then ψ3(C3) is a binary Type II self-dual code with parameters [24,12,8] and C3 has Lee

weight enumerator

LC3
(z) = 1+ 759z8 + 2576z12+ 759z16+ z24,

which is the weight enumerator of the extended binary Golay code.

We can of course get the same code from R2 as well. In fact, if D is the linear code over

R2 of length 6 generated by

(1,0,0,1+ u1u2,u2,u1 + u2), (0,1,0,u2, 1+ u1 + u1u2,u1 + u1u2)

and

(0,0,1,u1 + u2,u1 + u1u2, 1+ u2 + u1u2),

then ψ2(D) has the same parameters and the weight enumerator.

This code together with the map ΛR produces the Leech lattice.
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7.5. Binary Self-Dual Code with Parameters [32, 16, 8]

Let C4 be the linear code over R5 of length 1 generated by

{uiu juk | 1≤ i < j < k ≤ 5}.
Then C4 is a self-dual Type II code by Theorem 9, and has Lee weight enumerator

LC4
(z) = 1+ 620z8+ 13888z12+ 36518z16+ 1388z20+ 620z24 + z32.

So we see that ψ5(C4) is an extremal binary Type II code of parameters [32,16,8].

Of course by the argument given at the beginning of the section we know that we can

get the same code from R2,R3 and R4 as well. For example, if E is the linear code over R4 of

length 2 generated by the vector (1,1+ u1u2 + u3u4), then ψ4(E) has the same parameters

and the weight enumerator as the above one.

This code is an example of a code constructed using Theorem 9. It is easy to see that any

code constructed with this theorem over Rk will be a [2k, 2k−1, 2⌈
k

2
⌉] binary self-dual code.

The next in the family would be a [128,64,16] code.

7.6. Binary Self-Dual Code with Parameters [40, 20, 8]

Let C5 be the linear code over R2 generated by the matrix [I5|A] where

A=















1+ u1u2 u1 u1 u1 + u2 u2

u1 1+ u1u2 u1 + u2 u1 u2

u1 u1 + u2 + u1u2 1+ u1u2 u1u2 u1 + u2 + u1u2

u1 + u2 u1 + u1u2 0 1+ u1u2 u2

u2 + u1u2 u2 u1 + u2 + u1u2 u2 1+ u1u2















.

Then C5 is a self-dual code over R2 of length 10 with weight enumerator

1+ 125z8+ 1664z10+ 10720z12+ . . .. The binary image ψ2(C5) is a en extremal singly-even

self-dual code with parameters [40,20,8] and has an automorphism group of order 27.

7.7. Binary Self-Dual Code with Parameters [44, 22, 8]

Let C6 be the linear code over R2 of length 11 generated by the matrix

�

I5 |
0 | A

�

where

A is the 6× 6 matrix given by

A=







1+ u2 + u1u2 u1u2 1+ u2 + u1u2 1+ u2 + u1u2 1+ u2 1+ u1
1+ u2 1+ u1 + u2 + u1u2 1+ u2 1+ u1 + u2 + u1u2 1+ u2 u1

1+ u1 + u2 + u1u2 1+ u1 u1 u1 + u1u2 u2 1+ u2
u1 1+ u2 + u1u2 1+ u1u2 0 u1 + u2 1+ u1 + u1u2
0 1 u1 1+ u1 u1 1+ u2
0 u2 + u1u2 u1u2 0 u2 u2






.

Then C6 is a self-dual code over R2 of length 11 with weight enumerator

1+ 104z8 + 512z10 + . . .. The binary image ψ2(C6) is an extremal singly-even self-dual code

with parameters [44,22,8] with |Aut(C)| = 216 · 32 · 52.
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7.8. Binary Self-Dual Code with Parameters [56, 28, 12]

The existence of Type I extremal self-dual code of length 56 is not known in the literature,

however extremal Type II code of length 56 is known and there is only one possible weight

enumerator for such codes, that starts with 1+8190z12+. . .. We are going to give two separate

constructions for this code, one from R2 and one from R3 with different automorphism groups:

From R2: Let C7 be the linear code over R2 of length 14, generated by the matrix [I7|A] where

the rows of A are given by

{(1+ u1, 1+ u2, 1,u1,u1, 1+ u1, 1+ u1 + u2), (1+ u1u2,u1 + u2, 1+ u1 + u2 + u1u2,

1+ u2 + u1u2,u1 + u2 + u1u2,u1 + u1u2,u1 + u1u2), (0,1+ u1 + u2 + u1u2, 1+ u1,

1+ u1 + u2,u1 + u1u2, 1+ u2 + u1u2, 1+ u1), (1+ u1u2, 1+ u1 + u1u2,u2 + u1u2,

1+ u1 + u2 + u1u2,u1, 1+ u1 + u2 + u1u2, 1+ u1u2), (u2 + u1u2,u2 + u1u2,u2,u1 + u2 + u1u2,

1+ u1 + u2 + u1u2, 1+ u1 + u2 + u1u2, 1+ u2), (0,1,u1+ u2 + u1u2,u2 + u1u2, 1+ u1 + u2, 1,u1),

(u1, 1+ u2,u2 + u1u2,u2, 1+ u2 + u1u2,u2, 1+ u1 + u2)}

Then ψ2(C7) is an extremal binary Type II self-dual code of parameters [56,28,12] with an

automorphism group of order 4.

From R3: Let C ′7 be the linear code over R3 of length 7 generated by the matrix

�

I3 |
0 | A

�

,

where A is a 4× 4 matrix over R3 whose rows are

{(1+ u3 + u1u3 + u1u2u3, 1+ u1 + u2 + u2u3 + u1u2u3, 1+ u2 + u3 + u1u2 + u1u3 + u2u3

+ u1u2u3,u1 + u3 + u1u2u3), (u2 + u1u2 + u1u3, 1+ u2 + u3 + u1u2 + u2u3, 1+ u3 + u1u2 + u2u3

, 1+ u1 + u2 + u1u2 + u1u3 + u2u3 + u1u2u3), (1+ u1 + u3 + u1u2u3,u2 + u2u3,

1+ u1u2 + u1u3 + u2u3 + u1u2u3, 1+ u1 + u2 + u3 + u1u2 + u2u3), (u1 + u3 + u1u2 + u1u3

+ u1u2u3,u1 + u3 + u1u3 + u1u2u3, 0,u1 + u3 + u1u2 + u1u3)}.

ψ3(C
′
7) is an extremal binary self-dual code of parameters [56,28,12] with an automorphism

group of order 8.

7.9. Binary Self-Dual Code with Parameters [64, 32, 12]

Let C8 be the linear code over R3 of length 8 generated by the matrix [I4|A] where A is a

4× 4 matrix over R3 whose rows are

{(1+ u1 + u1u2 + u1u3 + u1u2u3, 1+ u1 + u2 + u1u2 + u1u3 + u2u3 + u1u2u3, 1+ u3

+ u1u2u3,u3 + u2u3), (u3 + u1u2 + u2u3, 1+ u2 + u1u2, 1+ u1 + u3 + u2u3, 1+ u1 + u3

+ u1u3 + u1u2u3), (1+ u1 + u3 + u1u3 + u2u3 + u1u2u3,u1 + u1u2 + u2u3, 1+ u1 + u3 + u1u2

+ u2u3, 1), (1+ u2 + u3 + u2u3 + u1u2u3, 1+ u1 + u2u3,u1 + u1u3 + u2u3 + u1u2u3,

1+ u1 + u2 + u2u3 + u1u2u3)}.
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Then C8 turns out to be a Type I code with Lee weight distribution 1+1888z12+20736z14+. . .

We see that ψ3(C8) is an extremal binary Type II code with parameters [64,32,12] and an

automorphism group of order 8.

8. conclusion

Binary self-dual codes are a rich source of research in coding theory. There are numerous

methods of constructing good self-dual codes, in particular extremal binary self-dual codes,

which are self-dual codes that attain the upper bounds. Recently, the family of rings that are

called Rk have been introduced in coding theory and have proved to be useful in constructing

binary codes with good parameters.

In this work, we worked our the general properties of self-dual codes over Rk and used

these codes to obtain binary self-dual codes. We gave alternate constructions for some of the

well known good self-dual binary codes such as the extended Hamming code and the extended

binary Golay code. Binary codes that are images of codes over Rk have automorphism groups

of size that are multiple of 2k. That is why working over Rk helps construct binary self-dual

codes of high automorphism groups.

The rich algebraic structure of Rk can prove to be useful in obtaining better codes in

the future. The connection of codes over Rk with some other structures such as lattices and

designs can further be explored. We obtained a number of extremal binary self-dual codes of

certain lengths from Rk. This can be done for more lengths and to a further extent.

ACKNOWLEDGEMENTS The authors wish to thank the anonymous referees for their useful

comments and suggestions.

References

[1] E. Bannai, S.T. Dougherty, M. Harada, and M. Oura. Type II Codes, Even Unimodular

Lattices, and Invariant Rings, IEEE Transactions on Information Theory, 45:1194-1205,

1999.

[2] Y.J. Choie and S.T. Dougherty. Codes over Σ2m and Jacobi Forms over the Quaternions,

Applicable Algebra in Engineering, Communications and Computing 15:129-147, 2004.

[3] J.H. Conway and N.J.A. Sloane. Sphere Packing, Lattices and Groups (2nd ed.), New

York: Springer-Verlag, 1993.

[4] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag,

NY, 3rd ed., 1998.

[5] S.T. Dougherty, T. A. Gulliver and M. Harada. Type II self-dual codes over finite rings

and even unimodular lattices, Journal of Algebraic Combinatorics, 9:233–250, 1999.



REFERENCES 106

[6] S.T. Dougherty, M. Harada, P. Gaborit, and P. Solé. Type II Codes Over F2 + uF2, IEEE

Transactions on Information Theory, 45:32-45, 1999.

[7] S.T. Dougherty, B. Yıldız and S. Karadeniz. Codes over Rk, Gray Maps and their Binary

Images, Finite Fields and their Applications 17:205–219, 2011.

[8] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. Amsterdam:

North-Holland, 1977.

[9] G. Nebe, E. M. Rains and N. J. A. Sloane. Self-Dual Codes and Invariant Theory. Springer-

Verlag, 2006.

[10] E.M. Rains. Shadow Bounds for self-dual Codes, IEEE Transactions on Information The-

ory, 44:134–139, 1998.

[11] J. Wood. Duality for modules over finite rings and applications to coding theory. Ameri-

can Journal of Mathematics, 121:555-575, 1999.


