EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (554-563) ISSN 1307-5543 – www.ejpam.com

On Köthe-Toeplitz and Null Duals of Some Difference Sequence Spaces Defined by Orlicz Functions

Hemen Dutta

Department of Mathematics, A.D.P. College, Nagaon-782002, Assam, India

Abstract. The main aim of this paper is to compute Köthe-Toeplitz and Null duals of some difference sequence spaces, defined by means of a fixed sequence of multiplier and by an Orlicz function. Further the coincidence for three pairs of analogous spaces is established.

2000 Mathematics Subject Classifications: 40A05, 40C05, 46A45.

Key Words and Phrases: Difference sequence spaces, Orlicz function, Köthe-Toeplitz dual, Null dual.

1. Introduction and Preliminaries

Throughout this section w, ℓ_{∞} , ℓ_1 , c and c_0 denote the spaces of *all*, *bounded*, *absolutely summable*, *convergent* and *null* sequences $x = (x_k)$ with complex terms respectively.

http://www.ejpam.com

Email address: hemen_dutta08@rediffmail.com

An Orlicz function is a function $M : [0, \infty) \longrightarrow [0, \infty)$, which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

An Orlicz function *M* is said to satisfy the Δ_2 -condition for all values of *u*, if there exists a constant *K* > 0, such that

$$M(2u) \le KM(u) \ (u \ge 0).$$

The above Δ_2 -condition implies $M(lu) \leq K l^{\log_2 K} M(u)$, for all u > 0, l > 1.

For details on integral representation of Orlicz function as well as on complementary Orlicz functions one may refer to [7, 12].

For an Orlicz function *M*, we have the following inequality:

$$M(\lambda x) < \lambda M(x)$$
, for all $x \ge 0$ and λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [9] used the Orlicz function and introduced the sequence space ℓ_M as follows:

$$\ell_M = \{(x_k) \in w : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0\}.$$

They proved that ℓ_M is a Banach space normed by

$$||(x_k)|| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}.$$

Let $\Lambda = (\lambda_k)$ be a sequence of non-zero scalars. Then for *E* a sequence space, the multiplier sequence space $E(\Lambda)$, associated with the multiplier sequence Λ is defined as

$$E(\Lambda) = \{ (x_k) \in w : (\lambda_k x_k) \in E \}.$$

The scope for the studies on sequence spaces was extended by using the notion of associated multiplier sequences. Goes and Goes [4] defined the differentiated sequence space dE and integrated sequence space $\int E$ for a given sequence space E, using the multiplier sequences (k^{-1}) and (k) respectively. A multiplier sequence can be used to accelerate the convergence of the sequences in some spaces. In some sense, it can be viewed as a catalyst, which is used to accelerate the process of chemical reaction.

The notion of difference sequence space was introduced by Kizmaz [6], who studied the difference sequence spaces $Z(\Delta)$, for $Z = \ell_{\infty}, c, c_0$ and defined as follows:

$$Z(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in Z \},\$$

where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$, for all $k \in N$.

In this paper our aim is to investigate some important structures of some spaces which are defined using an Orlicz function and a multiplier sequence. These spaces generalize the spaces $Z(\Delta)$, for $Z = \ell_{\infty}, c, c_0$ introduced and studied by Kizmaz [6].

Let $\Lambda = (\lambda_k)$ be a non-zero sequence of scalars. Then we define the following sequence spaces for an Orlicz function *M*:

$$c_{0}(M,\Lambda,\Delta) = \{x = (x_{k}) : \lim_{k} M(\frac{|\Delta\lambda_{k}x_{k}|}{\rho}) = 0, \text{ for some } \rho > 0\},\$$
$$c(M,\Lambda,\Delta) = \{x = (x_{k}) : \lim_{k} M(\frac{|\Delta\lambda_{k}x_{k}-L|}{\rho}) = 0, \text{ for some } L \text{ and } \rho > 0\},\$$
$$\ell_{\infty}(M,\Lambda,\Delta) = \{x = (x_{k}) : \sup_{k} M(\frac{|\Delta\lambda_{k}x_{k}|}{\rho}) < \infty, \text{ for some } \rho > 0\},\$$

where $\Delta \lambda_k x_k = \lambda_k x_k - \lambda_{k+1} x_{k+1}$, for all $k \in N$.

It is obvious that $c_0(M, \Lambda, \Delta) \subset c(M, \Lambda, \Delta) \subset \ell_{\infty}(M, \Lambda, \Delta)$.

Throughout the paper *X* will denote one of the sequence spaces c_0, c and ℓ_{∞} . The sequence spaces $X(M, \Lambda, \Delta)$ are Banach spaces normed by

$$\|x\|_{\Delta} = |\lambda_1 x_1| + \inf\{\rho > 0 : \sup_k M(\frac{|\Delta \lambda_k x_k|}{\rho}) \le 1\}.$$

Now we shall write $\Delta^{-1}x_k = x_k - x_{k-1}$, for all $k \in N$. It is trivial that $(\Delta \lambda_k x_k) \in X(M)$

if and only if $(\Delta^{-1}\lambda_k x_k) \in X(M)$. Now for $x \in X(M, \Lambda, \Delta^{-1})$, we define

$$||x||_{\Delta^{-1}} = \inf\{\rho > 0 : \sup_{k} M(\frac{|\Delta^{-1}\lambda_{k}x_{k}|}{\rho}) \le 1\}.$$

It can be shown that $X(M, \Lambda, \Delta)$ is a *BK*-space under the norms $\|.\|_{\Delta}$ and $\|.\|_{\Delta^{-1}}$ respectively and it is obvious that the norms $\|.\|_{\Delta}$ and $\|.\|_{\Delta^{-1}}$ are equivalent.

Obviously $\Delta^{-1} : X(M, \Lambda, \Delta^{-1}) \longrightarrow X(M)$, defined by $\Delta^{-1}x = y = (\Delta^{-1}\lambda_k x_k)$, is isometric isomorphism.

Hence $c_0(M, \Lambda, \Delta^{-1})$, $c(M, \Lambda, \Delta^{-1})$ and $\ell_{\infty}(M, \Lambda, \Delta^{-1})$ are isometrically isomorphic to $c_0(M)$, c(M) and $\ell_{\infty}(M)$ respectively. From abstract point of view $X(M, \Lambda, \Delta^{-1})$ is identical with X(M), for $X = c_0$, c and ℓ_{∞} .

The results obtained in the next section also hold for the spaces $c_0(M, \Lambda, \Delta^{-1})$, $c(M, \Lambda, \Delta^{-1})$ and $\ell_{\infty}(M, \Lambda, \Delta^{-1})$ as well as for the spaces associated with these three spaces.

Now we define the spaces $\tilde{c}_0(M, \Lambda, \Delta)$, $\tilde{c}(M, \Lambda, \Delta)$ and $\tilde{\ell_{\infty}}(M, \Lambda, \Delta)$ as follows:

 $\tilde{c}_0(M,\Lambda,\Delta)$ is a subspace of $c_0(M,\Lambda,\Delta)$ consisting of those $x \in c_0(M,\Lambda,\Delta)$ such that

$$\lim_{k} M(\frac{|\Delta\lambda_{k}x_{k}|}{d}) = 0 \text{ for each } d > 0.$$

Similarly we can define $\tilde{c}(M, \Lambda, \Delta)$ and $\tilde{\ell_{\infty}}(M, \Lambda, \Delta)$ as subspace of $c(M, \Lambda, \Delta)$ and $\ell_{\infty}(M, \Lambda, \Delta)$ respectively.

It is obvious that $\tilde{c}(M, \Lambda, \Delta) \subset \tilde{c}(M, \Lambda, \Delta) \subset \tilde{\ell}_{\infty}(M, \Lambda, \Delta)$. Also as above we can show that $\tilde{c}_0(M, \Lambda, \Delta)$, $\tilde{c}(M, \Lambda, \Delta)$ and $\tilde{\ell}_{\infty}(M, \Lambda, \Delta)$ are isometrically isomorphic to $\tilde{c}_0(M)$, $\tilde{c}(M)$ and $\tilde{\ell}_{\infty}(M)$ respectively.

Moreover $X(M, \Lambda) \subset X(M, \Lambda, \Delta)$ and $\tilde{X}(M, \Lambda) \subset \tilde{X}(M, \Lambda, \Delta)$ which can be shown by using the following inequality:

$$M(\frac{|\Delta\lambda_k x_k|}{2\rho}) \leq \frac{1}{2}M(\frac{|\lambda_k x_k|}{\rho}) + \frac{1}{2}M(\frac{|\lambda_{k+1} x_{k+1}|}{\rho}).$$

2. Köthe-Toeplitz and Null Dual Spaces

In this section we compute Köthe-Toeplitz or α -dual and Null or *N*- dual of some difference sequence spaces as described in the preceding section.

Let E and F be two sequence spaces. Then the F dual of E is defined as

$$E^F = \{(x_k) \in w : (x_k y_k) \in F \text{ for all } (y_k) \in E\}.$$

For $F = \ell_1$ and c_0 , the duals are termed as α -(or Köthe-Toeplitz) dual and N-(or Null) dual of E and denoted by E^{α} and E^N respectively. If $X \subset Y$, then $Y^z \subset X^z$ for $z = \alpha, N$.

Lemma 1. $x \in \ell_{\infty}(M, \Lambda, \Delta)$ implies $\sup_{k} M(\frac{|k^{-1}\lambda_{k}x_{k}|}{\rho}) < \infty$, for some $\rho > 0$.

Proof. Let $x \in \ell_{\infty}(M, \Lambda, \Delta)$, then

$$\sup_{k} M(\frac{|\lambda_{k}x_{k} - \lambda_{k+1}x_{k+1}|}{\rho}) < \infty, \text{ for some } \rho > 0.$$

Then there exists a U > 0 such that

$$M(\frac{|\lambda_k x_k - \lambda_{k+1} x_{k+1}|}{\rho}) < U, \text{ for all } k \in N.$$

Taking $\eta = k\rho$, for an arbitrary fixed positive integer *k*, by the subadditivity of modulus, the monotonicity and convexity of *M*:

$$M(\frac{|\lambda_{1}x_{1}-\lambda_{k+1}x_{k+1}|}{\eta}) < \frac{1}{k} \sum_{l=1}^{k} M(\frac{|\lambda_{l}x_{l}-\lambda_{l+1}x_{l+1}|}{\rho}) < U.$$

Then the above inequality, the inequality

$$\frac{|\lambda_{k+1}x_{k+1}|}{(k+1)\rho} \le \frac{1}{k+1} (\frac{|\lambda_1x_1|}{\rho} + k \frac{|\lambda_1x_1 - \lambda_{k+1}x_{k+1}|}{k\rho})$$

and the convexity of M imply

$$M(\frac{|\lambda_{k+1}x_{k+1}|}{(k+1)\rho}) \leq \frac{1}{k+1}(M(\frac{|\lambda_1x_1|}{\rho}) + kM(\frac{|\lambda_1x_1 - \lambda_{k+1}x_{k+1}|}{k\rho}))$$

$$\leq \max\{M(\frac{|\lambda_1 x_1|}{\rho}), U\} < \infty$$

Hence we have the desired result.

Lemma 2. $x \in \ell_{\infty}(M, \Lambda, \Delta)$ implies $\sup_{k} k^{-1} |\lambda_{k} x_{k}| < \infty$.

Proof. Proof is obvious by using Lemma 1.

Remark 1. Similar results as in Lemma 1 and Lemma 2 hold for $\tilde{\ell_{\infty}}(M, \Lambda, \Delta)$ also, where the statement 'for some $\rho > 0$ ' should be replaced by 'for every $\rho > 0$ '.

For the next theorem, let $D_1 = \{a = (a_k) : \sum_{k=1}^{\infty} k |\lambda_k^{-1} a_k| < \infty\}, D_2 = \{b = (b_k) : \sup_k k^{-1} |\lambda_k b_k| < \infty\}.$

Theorem 1. Let M be an Orlicz function. Then

 $\begin{aligned} (i) \ [c(M,\Lambda,\Delta)]^{\alpha} &= [\ell_{\infty}(M,\Lambda,\Delta)]^{\alpha} = D_{1}, \\ (ii) \ [\tilde{c}(M,\Lambda,\Delta)]^{\alpha} &= [\tilde{\ell_{\infty}}(M,\Lambda,\Delta)]^{\alpha} = D_{1}, \\ (iii) \ D_{1}^{\alpha} &= D_{2}. \end{aligned}$

Proof. (i) Let $a \in D_1$, then $\sum_{k=1}^{\infty} |k\lambda_k^{-1}a_k| < \infty$. Now for any $x \in \ell_{\infty}(M, \Lambda, \Delta)$ we have $\sup_k |k^{-1}\lambda_k x_k| < \infty$. Then we have

$$\sum_{k=1}^{\infty} |a_k x_k| \leq \sup_k |k^{-1} \lambda_k x_k| \sum_{k=1}^{\infty} |k \lambda_k^{-1} a_k| < \infty.$$

Hence $a \in [\ell_{\infty}(M, \Lambda, \Delta)]^{\alpha}$.

Thus

$$D_1 \subseteq [\ell_{\infty}(M, \Lambda, \Delta)]^{\alpha} \tag{1}$$

Again we know

$$[\ell_{\infty}(M,\Lambda,\Delta)]^{\alpha} \subseteq [c(M,\Lambda,\Delta)]^{\alpha} \subseteq [c_0(M,\Lambda,\Delta)]^{\alpha}$$
⁽²⁾

Conversely suppose that $a \in [c(M, \Lambda, \Delta)]^{\alpha}$. Then $\sum_{k=1}^{\infty} |a_k x_k| < \infty$, for each $x \in c(M, \Lambda, \Delta)$. So we take

$$x_k = \lambda_k^{-1} k, k \ge 1$$

then

$$\sum_{k=1}^{\infty} |k\lambda_k^{-1}a_k| = \sum_{k=1}^{\infty} |a_kx_k| < \infty.$$

This implies that $a \in D_1$. Thus

$$[c(M,\Lambda,\Delta)]^{\alpha} \subseteq D_1. \tag{3}$$

Combining (3) with (1), (2) it follows

$$[c(M,\Lambda,\Delta)]^{\alpha} = [\ell_{\infty}(M,\Lambda,\Delta)]^{\alpha} = D_1$$

This completes the proof of part(i).

(*ii*) Proof is similar to that of part (*i*).

(*iii*) The proof of the inclusion $D_1^{\alpha} \supseteq D_2$ is similar to that of $D_1 \subseteq [\ell_{\infty}(M, \Lambda, \Delta)]^{\alpha}$.

For the converse part suppose $a \in D_1^{\alpha}$ and $a \notin D_2$. Then we have

$$\sup_k |k^{-1}\lambda_k a_k| = \infty$$

Hence we can find a strictly increasing sequence (k_i) of positive integers k_i such that

$$|k_j^{-1}\lambda_{k_j}a_{k_j}| > j^2$$
 for all $j \ge 1$

We define the sequence x by

$$x_{k} = \begin{cases} |a_{k_{j}}^{-1}|, \text{ if } k = k_{j} \\ 0, \text{ otherwise} \end{cases}$$

Then $x \in D_1$, because

$$\sum_{k=1}^{\infty} |k\lambda_k^{-1}x_k| = \sum_{j=1}^{\infty} |k_j\lambda_{k_j}^{-1}a_{k_j}^{-1}| \le \sum_{j=1}^{\infty} j^{-2} < \infty$$

Thus $x \in D_1$ but $\sum_{k=1}^{\infty} |a_k x_k| = \sum_{j=1}^{\infty} |a_{k_j} x_{k_j}| = \infty$. This is a contradiction to $a \in D_1^{\alpha}$. Hence $a \in D_2$. This completes the proof.

If we take $\lambda_k = 1$, for all $k \in N$ in Theorem 1, then we obtain the following corollary.

Corollary 1. For X = c and ℓ_{∞} , (i) $[X(M, \Delta)]^{\alpha} = [\tilde{X}(M, \Delta)]^{\alpha} = H_1$, (ii) $H_1^{\alpha} = H_2$,

where

$$H_{1} = \{a = (a_{k}) : \sum_{k=1}^{\infty} |ka_{k}| < \infty\}$$

and
$$H_{2} = \{b = (b_{k}) : \sup_{k} |k^{-1}b_{k}| < \infty\}.$$

For the next theorem, let $G_1 = \{a = (a_k) : \lim_k k \lambda_k^{-1} a_k = 0\}.$

Theorem 2. Let M be an Orlicz function. Then

$$\begin{split} (i) \ [c(M,\Lambda,\Delta)]^N &= [\ell_{\infty}(M,\Lambda,\Delta)]^N = G_1, \\ (ii) \ [\tilde{c}(M,\Lambda,\Delta)]^N &= [\tilde{\ell_{\infty}}(M,\Lambda,\Delta)]^N = G_1. \end{split}$$

Proof. (*i*) Proof is immediate using Lemma 2.

(*ii*) Proof is similar to that of part (i).

If we take $\lambda_k = 1$, for all $k \in N$ in Theorem 2, then we obtain the following corollary.

Corollary 2. For X = c and ℓ_{∞} , (*i*) $[X(M, \Delta)]^N = [\tilde{X}(M, \Delta)]^N = L_1$, where $L_1 = \{a = (a_k) : \lim_k ka_k = 0\}$.

Theorem 3. If *M* satisfies the Δ_2 -condition, then we have $X(M, \Lambda, \Delta) = \tilde{X}(M, \Lambda, \Delta)$, for every $X = c_0$, *c* and ℓ_{∞} .

Proof. We give the proof for $X = \ell_{\infty}$ and for other spaces it will follow on applying similar arguments.

To prove the theorem, it is enough to show that $\ell_{\infty}(M, \Lambda, \Delta)$ is a subspace of $\tilde{\ell_{\infty}}(M, \Lambda, \Delta)$.

Let $x \in \ell_{\infty}(M, \Lambda, \Delta)$, then for some $\rho > 0$,

$$\sup_{k} M(\frac{|\Delta\lambda_k x_k|}{\rho}) < \infty$$

Therefore

$$M(\frac{|\Delta\lambda_k x_k|}{\rho}) < \infty$$
, for every $k \in N$.

Choose an arbitrary $\eta > 0$. If $\rho \le \eta$ then $M(\frac{|\Delta \lambda_k x_k|}{\eta}) < \infty$ for every $k \in N$. Let now $\eta < \rho$ and put $l = \frac{\rho}{\eta} > 1$.

Since *M* satisfies the Δ_2 -condition, there exists a constant *K* such that

$$M(\frac{|\Delta\lambda_k x_k|}{\eta}) \le K(\frac{\rho}{\eta})^{\log_2 K} M(\frac{|\Delta\lambda_k x_k|}{\rho}) < \infty \text{ for every } k \in N.$$

Now let us denote

$$S = \sup_{k} M(\frac{|\Delta \lambda_k x_k|}{\rho}) < \infty, \text{ for the fixed } \rho > 0.$$

Then it follows that for every $\eta > 0$, we have

$$\sup_{k} M(\frac{|\Delta\lambda_k x_k|}{\eta}) \leq K(\frac{\rho}{\eta})^{\log_2 K} . S < \infty.$$

REFERENCES

ACKNOWLEDGEMENTS The author is very grateful to the anonymous referee for the constructive comments and helpful suggestions which have improved the presentation of this paper.

References

- [1] R.S. Alsaedi and A.H.A. Bataineh, On a generalized difference sequence spaces defined by a sequence of Orlicz functions, International Mathematical Forum, 2:4 (2007), 167-177.
- [2] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bulletin of the Malaysian Mathematical Sciences Society, 23 (2000), 25-32.
- [3] Y. Gribanov, On the theory of ℓ_M -spaces(Russian), Uc. Zap. Kazansk un-ta, 117(1957), 62-65.
- [4] G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier coefficients, Math. Zeift., 118(1970), 93-102.
- [5] E. Kreyszig, Introductory Functional Analysis with Applications, Jhon Wiley and Sons (1978).
- [6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24:2(1981), 169-176.
- [7] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York (1981).
- [8] M.A. Krasnoselskii and Y.B. Rutitsky, Convex functions and Orlicz spaces, Groningen, Netherlands, 1961.
- [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math.,10(1971), 379-390.
- [10] I.J. Maddox, Elements of Functional Analysis, Universal Book Stall (1989).
- [11] E. Malkowsky and S.D. Parasar, Matrix transformation in spaces of bounded and convergent difference sequences of order m, Analysis, 17(1997), 87-97.
- [12] M.M. Rao and Z.D. Ren, Theory on Orlicz spaces, Marcel Dekker, New York, 1991.