
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (554-563)

ISSN 1307-5543 – www.ejpam.com

On Köthe-Toeplitz and Null Duals of Some Differ-

ence Sequence Spaces Defined by Orlicz Functions

Hemen Dutta

Department of Mathematics, A.D.P. College, Nagaon-782002, Assam, India

Abstract. The main aim of this paper is to compute Köthe-Toeplitz and Null duals of some

difference sequence spaces, defined by means of a fixed sequence of multiplier and by an

Orlicz function. Further the coincidence for three pairs of analogous spaces is established.

2000 Mathematics Subject Classifications: 40A05, 40C05, 46A45.

Key Words and Phrases: Difference sequence spaces, Orlicz function, Köthe-Toeplitz dual,

Null dual.

1. Introduction and Preliminaries

Throughout this section w, ℓ∞, ℓ1, c and c0 denote the spaces of all, bounded,

absolutel y summable, conver gent and null sequences x = (xk)with complex terms

respectively.
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An Orlicz function is a function M : [0,∞) −→ [0,∞), which is continuous, non-

decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) → ∞, as

x →∞.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u, if there

exists a constant K > 0, such that

M(2u)≤ KM(u) (u≥ 0).

The above ∆2-condition implies M(lu) ≤ Kl l og2K M(u), for all u> 0, l > 1.

For details on integral representation of Orlicz function as well as on complemen-

tary Orlicz functions one may refer to [7, 12].

For an Orlicz function M , we have the following inequality:

M(λx)< λM(x), for all x ≥ 0 and λ with 0< λ < 1.

Lindenstrauss and Tzafriri [9] used the Orlicz function and introduced the se-

quence space ℓM as follows:

ℓM = {(xk) ∈ w :

∞
∑

k=1

M(
|xk|

ρ
)<∞, for some ρ > 0}.

They proved that ℓM is a Banach space normed by

‖(xk)‖= inf{ρ > 0 :

∞
∑

k=1

M(
|xk|

ρ
) ≤ 1}.

Let Λ = (λk) be a sequence of non-zero scalars. Then for E a sequence space, the

multiplier sequence space E(Λ), associated with the multiplier sequence Λ is defined

as

E(Λ) = {(xk) ∈ w : (λk xk) ∈ E}.

The scope for the studies on sequence spaces was extended by using the notion

of associated multiplier sequences. Goes and Goes [4] defined the differentiated
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sequence space dE and integrated sequence space
∫

E for a given sequence space E,

using the multiplier sequences (k−1) and (k) respectively. A multiplier sequence can

be used to accelerate the convergence of the sequences in some spaces. In some sense,

it can be viewed as a catalyst, which is used to accelerate the process of chemical

reaction.

The notion of difference sequence space was introduced by Kizmaz [6], who stud-

ied the difference sequence spaces Z(∆), for Z = ℓ∞, c, c0 and defined as follows:

Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z},

where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N .

In this paper our aim is to investigate some important structures of some spaces

which are defined using an Orlicz function and a multiplier sequence. These spaces

generalize the spaces Z(∆), for Z = ℓ∞, c, c0 introduced and studied by Kizmaz [6].

Let Λ = (λk) be a non-zero sequence of scalars. Then we define the following

sequence spaces for an Orlicz function M :

c0(M ,Λ,∆) = {x = (xk) : lim
k

M(
|∆λk xk|

ρ
) = 0, for some ρ > 0},

c(M ,Λ,∆) = {x = (xk) : lim
k

M(
|∆λk xk − L|

ρ
) = 0, for some L and ρ > 0},

ℓ∞(M ,Λ,∆) = {x = (xk) : sup
k

M(
|∆λk xk|

ρ
)<∞, for some ρ > 0},

where ∆λk xk = λk xk−λk+1xk+1, for all k ∈ N .

It is obvious that c0(M ,Λ,∆)⊂ c(M ,Λ,∆)⊂ ℓ∞(M ,Λ,∆).

Throughout the paper X will denote one of the sequence spaces c0, c and ℓ∞. The

sequence spaces X (M ,Λ,∆) are Banach spaces normed by

‖x‖∆ = |λ1x1|+ inf{ρ > 0 : sup
k

M(
|∆λk xk|

ρ
)≤ 1}.

Now we shall write∆−1xk = xk− xk−1, for all k ∈ N . It is trivial that (∆λk xk) ∈ X (M)
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if and only if (∆−1λk xk) ∈ X (M). Now for x ∈ X (M ,Λ,∆−1), we define

‖x‖∆−1 = inf{ρ > 0 : sup
k

M(
|∆−1λk xk|

ρ
) ≤ 1}.

It can be shown that X (M ,Λ,∆) is a BK-space under the norms ‖.‖∆ and ‖.‖∆−1

respectively and it is obvious that the norms ‖.‖∆ and ‖.‖∆−1 are equivalent.

Obviously ∆−1 : X (M ,Λ,∆−1) −→ X (M), defined by ∆−1x = y = (∆−1λk xk), is

isometric isomorphism.

Hence c0(M ,Λ,∆−1), c(M ,Λ,∆−1) and ℓ∞(M ,Λ,∆−1) are isometrically isomor-

phic to c0(M), c(M) and ℓ∞(M) respectively. From abstract point of view X (M ,Λ,∆−1)

is identical with X (M), for X = c0, c and ℓ∞.

The results obtained in the next section also hold for the spaces c0(M ,Λ,∆−1),

c(M ,Λ,∆−1) and ℓ∞(M ,Λ,∆−1) as well as for the spaces associated with these three

spaces.

Now we define the spaces c̃0(M ,Λ,∆), c̃(M ,Λ,∆) and ℓ̃∞(M ,Λ,∆) as follows:

c̃0(M ,Λ,∆) is a subspace of c0(M ,Λ,∆) consisting of those x ∈ c0(M ,Λ,∆) such

that

lim
k

M(
|∆λk xk|

d
) = 0 f or each d > 0.

Similarly we can define c̃(M ,Λ,∆) and ℓ̃∞(M ,Λ,∆) as subspace of c(M ,Λ,∆) and

ℓ∞(M ,Λ,∆) respectively.

It is obvious that c̃(M ,Λ,∆) ⊂ c̃(M ,Λ,∆) ⊂ ℓ̃∞(M ,Λ,∆). Also as above we can

show that c̃0(M ,Λ,∆), c̃(M ,Λ,∆) and ℓ̃∞(M ,Λ,∆) are isometrically isomorphic to

c̃0(M), c̃(M) and ℓ̃∞(M) respectively.

Moreover X (M ,Λ) ⊂ X (M ,Λ,∆) and X̃ (M ,Λ) ⊂ X̃ (M ,Λ,∆) which can be shown

by using the following inequality:

M(
|∆λk xk|

2ρ
) ≤

1

2
M(
|λk xk|

ρ
) +

1

2
M(
|λk+1xk+1|

ρ
).
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2. Köthe-Toeplitz and Null Dual Spaces

In this section we compute Köthe-Toeplitz or α-dual and Null or N - dual of some

difference sequence spaces as described in the preceding section.

Let E and F be two sequence spaces. Then the F dual of E is defined as

EF = {(xk) ∈ w : (xk yk) ∈ F for all (yk) ∈ E}.

For F = ℓ1 and c0, the duals are termed as α-(or Köthe-Toeplitz) dual and N -(or

Null) dual of E and denoted by Eα and EN respectively. If X ⊂ Y , then Y z ⊂ X z for

z = α, N .

Lemma 1. x ∈ ℓ∞(M ,Λ,∆) implies sup
k

M(
|k−1λk xk |

ρ
)<∞, for some ρ > 0.

Proof. Let x ∈ ℓ∞(M ,Λ,∆), then

sup
k

M(
|λk xk −λk+1xk+1|

ρ
)<∞, for some ρ > 0.

Then there exists a U > 0 such that

M(
|λk xk−λk+1xk+1|

ρ
) < U , for all k ∈ N .

Taking η = kρ, for an arbitrary fixed positive integer k, by the subadditivity of mod-

ulus, the monotonicity and convexity of M :

M(
|λ1x1−λk+1xk+1|

η
)<

1

k

k
∑

l=1

M(
|λl x l −λl+1x l+1|

ρ
)< U .

Then the above inequality, the inequality

|λk+1xk+1|

(k+ 1)ρ
≤

1

k+ 1
(
|λ1x1|

ρ
+ k
|λ1 x1−λk+1xk+1|

kρ
)

and the convexity of M imply

M(
|λk+1xk+1|

(k+ 1)ρ
) ≤

1

k+ 1
(M(
|λ1 x1|

ρ
) + kM(

|λ1 x1−λk+1xk+1|

kρ
))
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≤ max{M(
|λ1 x1|

ρ
), U}<∞

Hence we have the desired result.

Lemma 2. x ∈ ℓ∞(M ,Λ,∆) implies sup
k

k−1|λk xk| <∞.

Proof. Proof is obvious by using Lemma 1.

Remark 1. Similar results as in Lemma 1 and Lemma 2 hold for ℓ̃∞(M ,Λ,∆) also,

where the statement ’for some ρ > 0’ should be replaced by ’for every ρ > 0’.

For the next theorem, let D1 = {a = (ak) :
∞
∑

k=1

k|λ−1
k

ak| < ∞}, D2 = {b = (bk) :

sup
k

k−1|λk bk| <∞}.

Theorem 1. Let M be an Orlicz function. Then

(i) [c(M ,Λ,∆)]α = [ℓ∞(M ,Λ,∆)]α = D1,

(ii) [c̃(M ,Λ,∆)]α = [ℓ̃∞(M ,Λ,∆)]α = D1,

(iii) Dα
1
= D2.

Proof. (i) Let a ∈ D1, then
∞
∑

k=1

|kλ−1
k

ak| < ∞. Now for any x ∈ ℓ∞(M ,Λ,∆) we

have sup
k

|k−1λk xk|<∞. Then we have

∞
∑

k=1

|ak xk| ≤ sup
k

|k−1λk xk|
∞
∑

k=1

|kλ−1
k

ak|<∞.

Hence a ∈ [ℓ∞(M ,Λ,∆)]α.

Thus

D1 ⊆ [ℓ∞(M ,Λ,∆)]α (1)

Again we know

[ℓ∞(M ,Λ,∆)]α ⊆ [c(M ,Λ,∆)]α ⊆ [c0(M ,Λ,∆)]α (2)
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Conversely suppose that a ∈ [c(M ,Λ,∆)]α. Then
∞
∑

k=1

|ak xk| < ∞, for each x ∈

c(M ,Λ,∆). So we take

xk = λ
−1
k

k, k ≥ 1

then
∞
∑

k=1

|kλ−1
k

ak| =
∞
∑

k=1

|ak xk|<∞.

This implies that a ∈ D1. Thus

[c(M ,Λ,∆)]α ⊆ D1. (3)

Combining (3) with (1), (2) it follows

[c(M ,Λ,∆)]α = [ℓ∞(M ,Λ,∆)]α = D1

This completes the proof of part(i).

(ii) Proof is similar to that of part (i).

(iii) The proof of the inclusion Dα
1
⊇ D2 is similar to that of D1 ⊆ [ℓ∞(M ,Λ,∆)]α.

For the converse part suppose a ∈ Dα
1

and a /∈ D2. Then we have

sup
k

|k−1λkak|=∞

Hence we can find a strictly increasing sequence (k j) of positive integers k j such that

|k−1
j
λk j

ak j
|> j2 for all j ≥ 1

We define the sequence x by

xk =







|a−1
k j
|, if k = k j

0, otherwise
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Then x ∈ D1, because

∞
∑

k=1

|kλ−1
k

xk|=
∞
∑

j=1

|k jλ
−1
k j

a−1
k j
| ≤

∞
∑

j=1

j−2 <∞

Thus x ∈ D1 but
∞
∑

k=1

|ak xk|=
∞
∑

j=1

|ak j
xk j
|=∞. This is a contradiction to a ∈ Dα

1
.

Hence a ∈ D2. This completes the proof.

If we take λk = 1, for all k ∈ N in Theorem 1, then we obtain the following

corollary.

Corollary 1. For X = c and ℓ∞,

(i) [X (M ,∆)]α = [X̃ (M ,∆)]α = H1,

(ii) Hα
1
= H2,

where

H1 = {a = (ak) :
∞
∑

k=1

|kak|<∞}

and

H2 = {b = (bk) : sup
k

|k−1 bk|<∞}.

For the next theorem, let G1 = {a = (ak) : lim
k

kλ−1
k

ak = 0}.

Theorem 2. Let M be an Orlicz function. Then

(i) [c(M ,Λ,∆)]N = [ℓ∞(M ,Λ,∆)]N = G1,

(ii) [c̃(M ,Λ,∆)]N = [ℓ̃∞(M ,Λ,∆)]N = G1.

Proof. (i) Proof is immediate using Lemma 2.

(ii) Proof is similar to that of part (i).

If we take λk = 1, for all k ∈ N in Theorem 2, then we obtain the following

corollary.
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Corollary 2. For X = c and ℓ∞,

(i) [X (M ,∆)]N = [X̃ (M ,∆)]N = L1,

where L1 = {a = (ak) : lim
k

kak = 0}.

Theorem 3. If M satisfies the ∆2-condition, then we have X (M ,Λ,∆) = X̃ (M ,Λ,∆),

for every X = c0, c and ℓ∞.

Proof. We give the proof for X = ℓ∞ and for other spaces it will follow on applying

similar arguments.

To prove the theorem, it is enough to show that ℓ∞(M ,Λ,∆) is a subspace of

ℓ̃∞(M ,Λ,∆).

Let x ∈ ℓ∞(M ,Λ,∆), then for some ρ > 0,

sup
k

M(
|∆λk xk|

ρ
) <∞

Therefore

M(
|∆λk xk|

ρ
)<∞, for every k ∈ N .

Choose an arbitrary η > 0. If ρ ≤ η then M(
|∆λk xk |

η
) < ∞ for every k ∈ N . Let now

η < ρ and put l =
ρ

η
> 1.

Since M satisfies the ∆2-condition, there exists a constant K such that

M(
|∆λk xk|

η
)≤ K(

ρ

η
)log2 K M(

|∆λk xk|

ρ
) <∞ for every k ∈ N .

Now let us denote

S = sup
k

M(
|∆λk xk|

ρ
)<∞, for the fixed ρ > 0.

Then it follows that for every η > 0, we have

sup
k

M(
|∆λk xk|

η
)≤ K(

ρ

η
)log2 K .S <∞.



REFERENCES 563

ACKNOWLEDGEMENTS The author is very grateful to the anonymous referee for

the constructive comments and helpful suggestions which have improved the presen-

tation of this paper.

References

[1] R.S. Alsaedi and A.H.A. Bataineh, On a generalized difference sequence spaces defined

by a sequence of Orlicz functions, International Mathematical Forum, 2:4 (2007), 167-

177.

[2] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces,

Bulletin of the Malaysian Mathematical Sciences Society, 23 (2000), 25-32.

[3] Y. Gribanov, On the theory of ℓM -spaces(Russian), Uc. Zap. Kazansk un-ta, 117(1957),

62-65.

[4] G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier coeffi-

cients, Math. Zeift., 118(1970), 93-102.

[5] E. Kreyszig, Introductory Functional Analysis with Applications, Jhon Wiley and Sons

(1978).

[6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24:2(1981), 169-176.

[7] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York

(1981).

[8] M.A. Krasnoselskii and Y.B. Rutitsky, Convex functions and Orlicz spaces, Groningen,

Netherlands, 1961.

[9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math.,10(1971),

379-390.

[10] I.J. Maddox, Elements of Functional Analysis, Universal Book Stall (1989).

[11] E. Malkowsky and S.D. Parasar, Matrix transformation in spaces of bounded and con-

vergent difference sequences of order m, Analysis, 17(1997), 87-97.

[12] M.M. Rao and Z.D. Ren, Theory on Orlicz spaces, Marcel Dekker, New York,1991.


