

Finiteness Conditions for Unions of Two Semigroups and Ranks of *B*(*G*, *n*)

Melis Minisker

Mustafa Kemal University, Faculty of Education, Antakya-Hatay

Abstract. In this paper we try to find the finiteness conditions for union of two finite semigroups with a specially defined binary equation. Moreover we find the ranks of the semigroup B(G, n).

2010 Mathematics Subject Classifications: 20M05

Key Words and Phrases: finiteness conditions, ranks, union

1. Introduction

Finiteness conditions of semigroups (the properties of semigroups which all finite semigroups have) have been considered for certain classes of semigroup constructions. (for examples see [1, 2]). In this paper periodicity, residual finiteness and solvability of word problem of union of two finite semigroups are determined.

Let *S* and *T* be two finite semigroups with empty intersection. We define a binary equation on $S \cup T$ as follows:

If $s_1 \in S$ and $s_2 \in S$ then $s_1 \cdot s_2$ is considered as the same operation defined on S. If $t_1 \in T$ and $t_2 \in T$ then $t_1 \cdot t_2$ is considered as the same operation defined on T. If $s \in S$ and $t \in T$ then st = ts = t. In [3] it is shown that any finitely presented semigroup S is embedded into an inefficient semigroup, namely, the semigroup $S \cup SL_n$ where SL_n is the free semilattice of rank n.

Let *S* be a finite semigroup. A subset *U* of *S* is called *independent* if, for every *u* in *U*, the element *u* does not belong to the semigroup $\langle U \setminus \{u\} \rangle$ generated by the remaining elements of *U* (see [4]). In [5] Howie and Ribeiro introduced $r_1(S)$, $r_2(S)$, $r_3(S)$, $r_4(S)$ and $r_5(S)$ defined as follows:

- $r_1(S) = max\{k : \text{ every subset } U \text{ of } S \text{ of cardinality } k \text{ is independent}\}$
- $r_2(S) = min\{k : \text{ there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ which generates } S\}$

http://www.ejpam.com

© 2013 EJPAM All rights reserved.

Email addresses: melisminisker@hotmail.com

M. Minisker / Eur. J. Pure Appl. Math, 6 (2013), 335-339

- r₃(S) = max{k: there exists a subset U of S of cardinality k which is independent and which generates S}
- $r_4(S) = max\{k : \text{ there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ which is independent}\}$
- $r_5(S) = min\{k : \text{ every subset } U \text{ of } S \text{ of cardinality } k \text{ generates } S\}$

Generally in [5], $r_1(S)$ is small rank, $r_2(S)$ is lower rank, $r_3(S)$ is intermediate rank, $r_4(S)$ is upper rank and $r_5(S)$ is large rank. In [5] $r_5(C_n)$, $r_5(T_n)$ and $r_5(B(G, n))$ are given. Here C_n is the cyclic group of order n, T_n is the full transformation semigroup and B(G, n) is a Brandt semigroup. In [5] it is also shown that all five ranks of the aperiodic Brandt semigroup B_n are different. In this paper we examine $r_1(B(G, n))$, $r_2(B(G, n))$, $r_3(B(G, n))$ and $r_4(B(G, n))$.

2. Periodicity

Recall that a semigroup *S* is periodic if, for each $s \in S$ the monogenic semigroup generated by *s* is finite, or equivalently there exists positive integers *m* and *n* (depending on *S*) such that $s^m = s^n$.

Theorem 1. Let *S* and *T* be finite semigroups. Then *S* and *T* are periodic if and only if $S \cup T$ is periodic.

Proof. (\Rightarrow) Let *S* and *T* be periodic. Let $x \in S \cup T$. Then $x \in S$ or $x \in T$. If $x \in S$, since *S* is periodic there exists $\exists m, n \in N$ such that $x^m = x^n$. If $x \in T$, since *T* is periodic there exists $\exists k, l \in N$ such that $x^k = x^l$. So $S \cup T$ is periodic.

(⇐) Let $S \cup T$ be periodic. Let $x \in S$. Since $S \subseteq S \cup T$ we have $x \in S \cup T$. Since $S \cup T$ is periodic there exists $\exists k_1, k_2 \in N$ such that $x^{k_1} = x^{k_2}$. We obtain S is periodic. Let $y \in T$. Since $T \subseteq S \cup T$ we have $y \in S \cup T$. Since $S \cup T$ is periodic there exists $\exists k_3, k_4 \in N$ such that $y^{k_3} = y^{k_4}$. Thus T is also periodic.

3. Residual Finiteness

We call a semigroup residually finite if, for each pair $s \neq t \in S$ there exists a homomorphism ϕ from S onto a finite semigroup such that $\phi(s) \neq \phi(t)$, or equivalently, there exists a congruance ρ with finite index (that is ρ has finitely many equivalence classes) such that $(s,t) \notin \rho$. (Residual finiteness of completely (0)-simple semigroups, which are Rees matrix semigroups M[G; I, J, P] over groups was investigated in [2].)

Theorem 2. $S \cup T$ is residually finite if and only if *S* and *T* are residually finite.

Proof. (\Rightarrow) Assume that $S \cup T$ is residually finite. Since *S* and *T* are subsemigroups of $S \cup T$ then *S* and *T* are residually finite.

(⇐) Assume that *S* and *T* are residually finite semigroups. We will show that $S \cup T$ is residually finite. Let $s_1, s_2 \in S \cup T$ and $s_1 \neq s_2$. Since *S* is residually finite there is a finite semigroup *K* and an onto homomorphism $\phi : S \to K$ such that $\phi(s_1) \neq \phi(s_2)$. Let $\Psi : S \cup T \to K \cup \{0\}$. If $x \in S$

M. Minisker / Eur. J. Pure Appl. Math, 6 (2013), 335-339

let $\Psi(x) = \phi(x)$ and if $x \in T$ let $\Psi(x) = 0$. Then $\Psi(s_1) = \phi(s_1) \neq \phi(s_2) = \Psi(s_2)$. If $s_1, s_2 \in S$ then $\Psi(s_1s_2) = \phi(s_1s_2) = \phi(s_1).\phi(s_2)$. If $t_1, t_2 \in T$ then $\Psi(t_1t_2) = 0 = \psi(t_1).\psi(t_2) = 0.0$. If $s \in S$ and $t \in T$ then $\Psi(st) = \Psi(t) = 0 = \Psi(s)\Psi(t)$. So Ψ is an onto homomorphism.

Let $t_1, t_2 \in S \cup T$ and $t_1 \neq t_2$. Since *T* is residually finite there is a finite semigroup *L* and an onto homomorphism $\theta : T \to L$ such that $\theta(t_1) \neq \theta(t_2)$. We define $\alpha : S \cup T \to L \cup \{1\}$ as follows. If $x \in S$ let $\alpha(x) = 1$ and if $x \in T$ let $\alpha(x) = \theta(x)$. It is clear that $\alpha(t_1) = \theta(t_1) \neq \theta(t_2) = \alpha(t_2)$. If $s_1, s_2 \in S$ then $\alpha(s_1s_2) = \alpha(s_1).\alpha(s_2) = 1.1 = 1$. If $t_1, t_2 \in T$ then $\alpha(t_1t_2) = \theta(t_1t_2) = \theta(t_1).\theta(t_2)$. If $s \in S$ and $t \in T$ then $\alpha(st) = \alpha(t) = \theta(t) = \alpha(s).\alpha(t) = 1.\theta(t)$. So α is an onto homomorphism.

Let $s, t \in S \cup T$ and $s \neq t$. We define $\mu : S \cup T \to R_2 = \{a, b\}$. Here $R_2 = \{a, b\}$ is the right zero semigroup with 2 elements and ab = b, ba = a. If $s \in S$ let $\mu(s) = a$ and if $t \in T$ let $\mu(t) = b$. We have $\mu(s) = a \neq \mu(t) = b$. If $s_1, s_2 \in S$ then $\mu(s_1s_2) = a = \mu(s_1).\mu(s_2) = a.a = a$. If $t_1, t_2 \in T$ then $\mu(t_1t_2) = b = \mu(t_1).\mu(t_2) = b.b = b$. If $s \in S$ and $t \in T$ then $\mu(st) = \mu(t) = b = \mu(s)\mu(t) = a.b = b$. Thus μ is an onto homomorphism.

4. Solvable Word Problem

A semigroup *S* is said to have a solvable word problem with respect to a generating set *A* if there exists a algorithm which, for any two words $u, v \in A^+$, decides whether the relation u = v holds in *S* or not. It is a well-known fact that, for a finitely generated semigroup *S*, the solvability of the word problem does not depend on the choice of the finite generating set for *S*. Thus we say that a semigroup *S* has a solvable word problem with respect to any finite generating set.

Theorem 3. $S \cup T$ has solvable word problem if and only if S and T have solvable word problem.

Proof. (\Rightarrow) Let $S \cup T$ have solvable word problem. Since S and T are finitely generated, let Y_1 be generating set of S and Y_2 be generating set of T. Then $Y_1 \cup Y_2$ is a generating set for $S \cup T$. Let $w_1, w_2 \in Y_1^+$. Since $w_1, w_2 \in Y_1^+ \subseteq (Y_1 \cup Y_2)^+$ and since $S \cup T$ has solvable word problem there exists an algorithm which decides whether $w_1 = w_2$ holds in $S \cup T$. Since $w_1, w_2 \in Y_1^+$ and Y_1 is a generating set for S, the algorithm decides whether $w_1 = w_2$ holds in $S \cup T$. Since $w_1, w_2 \in Y_1^+$ and Y_1 is a generating set for S, the algorithm decides whether $w_1 = w_2$ holds in S. So S has a solvable word problem. Similarly it is shown that T has a solvable word problem.

(⇐) Assume that *S* and *T* have solvable word problem. Let *X* be a finite generating set for $S \cup T$. Then $X_1 = X \cap S$ and $X_2 = X \cap T$ are generating sets for *S* and *T*. The set $Z = \{x_1x_2 = x_2, x_2x_1 = x_2 \mid x_1 \in X_1, x_2 \in X_2\}$ is finite. For $w_1, w_2 \in X^+$, if we apply some necessary relations from *Z* we obtain $w_1, w_2 \in X^+$ such that $w_1 = w'_1$ and $w_2 = w'_2$ holds in *T*. $w'_i \in X_1^+$ (i = 1, 2) or $w'_i \in X_2^+$ (i = 1, 2). If w'_1 and w'_2 are not elements of the same free semigroup X_i^+ (i = 1, 2) there exists an algorithm which decides whether the relation $w'_1 = w'_2$ holds in *S* or *T*. Because *S* and *T* have solvable word problem.

M. Minisker / Eur. J. Pure Appl. Math, 6 (2013), 335-339

5. Ranks of
$$B(G, n)$$

The semigroup $B(G,n) = \{1, 2, ..., n\} \times G \times \{1, 2, ..., n\} \cup \{0\}$ is the Brandt semigroup. The binary operation on B(G, n) is defined as follows

$$(i, a, j).(k, b, l) = (i, ab, l)$$
 if $j = k$
0 if $j \neq k$
0. $(i, a, j) = (i, a, j).0 = 0.0 = 0$

In [5] $r_5(B(G, n))$ is given. Now we define other ranks of B(G, n).

Lemma 1. Let B(G,n) be the Brandt semigroup. Let A be the minimum generating set of G. Then $r_1(B(G,n)) = 1$, $r_2(B(G,n)) = 2n |A|$ and $r_3(B(G,n)) = 2n |A|$.

Proof. Let *A* be the minimum generating set of *G*. We show the set

$$B = \{(1, a, j), (i, a, 1) | a \in A, 1 \le i \le n, 1 \le j \le n\}$$

is the minimum generating set for B(G, n). For $(i, g, j) \in B(G, n)$ we have

$$(i,g,j) = (i,a_1,1).(1,a_2,1).(1,a_3,1)...(1,a_m,j), (a_i \in A, i = 1,2,...m).$$

So *B* is a generating set for B(G, n). Let *C* be a generating set for B(G, n). Since $(i, a, 1) = (i, a, 1) \cdot (1, 1, 1) (a \in A)$ and $(1, 1, j) = (1, 1, 1) \cdot (1, 1, j)$. So we have $B \subseteq C$. Thus *B* is the minimum generating set for B(G, n). We have $r_2(B(G, n)) = 2n \cdot |A|$.

Let *D* be a generating set for B(G, n) and assume that *D* is independent. Since *D* is a generating set and *B* is the minimum generating set then $B \subseteq D$. Let $(i', g, j') \in D B$. Let $g = a'_1a'_2 \dots a'_l(a'_i \in A)$. Then $(i', g, j') = (i', a'_1, 1) \cdot (1, a'_2, 1) \cdot (1, a'_3, 1) \dots \cdot (1, a'_l, j')$. This contradicts with the assumption of *D* to be independent. So *B* is the unique independent generating subset of B(G, n). Thus $r_3(B(G, n)) = 2n \cdot |A|$.

Let $(i, g, j) \in B(G, n)$. If i = j then $(i, g, j).(i, g, j) = (i, g^2, j) \neq (i, g, j)$ unless $g^2 = g$. If $i \neq j$ then (i, g, j).(i, g, j) = 0. So B(G, n) is not a band. Since $r_2(B(G, n)) \neq |B(G, n)|$ then B(G, n) is not royal. (see [5]) So $r_1(B(G, n)) = 1$.

In the following theorem we determine $r_4(B(G, n))$.

Theorem 4. Let B(G, n) be a Brandt semigroup. Let $r_4(G) = k$. Then $r_4(B(G, n)) = k + 1$.

Proof. Let *U* be the maximum independent subset of *G*. Since $r_4(G) = k$ then |U| = k. We will show that $U' = \{(1, u, 1) | u \in U\} \cup \{0\}$ is the maximum independent subset of B(G, n). Let $(1, u, 1) = (1, u_1, 1) \cdot (1, u_2, 1) \cdot (u_1, u_2 \in U)$. Then $u = u_1 \cdot u_2$. Since *U* is independent then $u = u_1$ or $u = u_2$. We obtain *U'* is independent. Let $U'' \subseteq B(G, n)$ be another independent set. We have $U' \cup (S \setminus U') = S = B(G, n)$. Let $s \in S \setminus U'$. Let

$$s = (i, g, j)(1 \le i \le n, g \in G \setminus U, 1 \le j \le n).$$

Since $g \in G \setminus U$ then $g = g_1.g_2(g_1, g_2 \in G, g_1 \neq g, g_2 \neq g)$. We have $(i, g, j) = (i, g_1, j).(j, g_2, j)$ and $U'' = ((U' \cup \{0\}) \cap U'') \cup (U'' \cap (S \setminus U'))$. Since the elements of $S \setminus (U' \cup \{0\})$ can be written

REFERENCES

as a product of two elements. So $U'' \cap (S \setminus (U' \cup \{0\}) = \emptyset$. Then $U'' = (U' \cup \{0\}) \cap U''$. So $U'' \subseteq (U' \cup \{0\})$. We obtain $U' \cup \{0\}$ is the maximum independent set. So $r_4(B(G, n)) = k + 1$.

The studies on finiteness conditions of semigroups and ranks of semigroups may be expanded to different classes of semigroups as future work.

References

- [1] H. Ayık. Presentations and Efficiency of Semigroups. PhD thesis, 1998.
- [2] H. Ayık. On Finiteness Conditions for Rees Matrix Semigroups. *Czechoslovak Mathematical Journal*, 55, 2005.
- [3] H. Ayık, M. Minisker, and B. Vatansever. Minimal Presentations and Embedding Into Inefficient Semigroups. *Algebra Colloquium*, 12:59–65, 2005.
- [4] E. Giraldes and J.M. Howie. Semigroups of High Rank. *Proceedings of the Edinburgh Mathematical Society*, 28:13–34, 1985.
- [5] J.M. Howie and M.I.M. Ribeiro. Rank Properties of Semigroups II: the small rank and the large rank. *Southeast Asian Bulletin of Mathematics*, 24:231–237, 2000.