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Abstract. Vector autoregressive (VAR) models are important and useful for modelling multivariate
time series. An appropriate VAR model is often required for such modelling for given data, for which
several model selection criteria such as AIC, AICc, BIC and HQ are available. However, when the
number of candidate models available for selection is extremely large, which is not uncommon in
practice, performing an exhaustive VAR model selection using any of the above criteria would become
computationally infeasible. To overcome this difficulty, we have developed a Markov chain Monte
Carlo method based on Gibbs sampler. It is shown that the developed method identifies the optimal
VAR model with high probability and efficiency. To illustrate and verify the method, we also present a
simulation study and an example on modelling the data of China’s money supply and consumer price
index (CPI).
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1. Introduction

VAR modelling is a major area of interest in multivariate time series analysis. Once the
approach of VAR modelling is adopted for a data set given, choosing an appropriate VAR
model for best modelling would become the next important task. Information-theoretic cri-
teria such as AIC and BIC are general and effective model selection methods for measuring
the “goodness” of the candidate models. As shown in [8], the information-theoretic crite-
ria provide better model selection performance than many other model selection methods.
Moreover, Granger, King and White [15] noted that the information-theoretic criteria involve
fewer limitations than hypothesis test-based methods, and hence have become popular with
model selection practitioners. By comparing every possible candidate model with each other
in terms of their respective criterion values, the model with the lowest criterion value can be
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considered as the best estimate of the unknown true model. However, difficulty may arise in
VAR model selection when the number of the candidate models is extremely large. Specifi-
cally, assuming that some of the coefficients in the VAR system are actually equal zero (i.e.
zero restricted) in the true model, then there would be 2pq2+q candidate VAR models for us
to decide which of them is the true one. Here p is the order of autoregression and q is the
dimension of data at each time point. Even when p or q is small, say p = 3 and q = 3, which
is very possible for multivariate time series, there would be as many as 230 candidate models.
Clearly, it is computationally infeasible to conduct model selection by comparing every pos-
sible candidate model with each other in terms of their respective model selection criterion
values.

Fortunately, with the availability of powerful computers and recently developed intensive
statistical computing technology we are able to develop an efficient model selection proce-
dure in this paper, by which we can find the best model estimate with high probability and
efficiency, and without a need to compare all candidate models one by one. The key idea in
our procedure is to first establish a probability distribution induced from the criterion values
of all candidate models, and then generate samples of candidate models from this distribution
using Gibbs sampler, a special algorithm of the Markov chain Monte Carlo method (MCMC).
By our procedure, the model that has the lowest criterion value will tend to appear among
the earliest and the most frequent in the sample if the number of the models being generated
is large enough. Since the generated sample usually has a size of only a small fraction of that
of all candidate models, the proposed algorithm is computationally feasible and efficient.

The aim of this paper is not to propose another VAR model selection criterion. Rather we
focus on the aforementioned computing issue of VAR model selection that is largely ignored
in literature but needs to be addressed when there are very many candidate models available
for selection. We still need to employ an existent criterion such as AIC and BIC in our model
selection procedure.

The paper is organized as follows. Section 2 introduces the basics of VAR modelling. Sec-
tion 3 describes several commonly used model selection criteria and the computing difficulty
in VAR model selection. Section 4 provides details of the proposed model selection procedure
and empirical rules on how to perform model selection in practice. Then in section 5 we
provide a simulation study and complete the analysis of model selection for China’s money
supply and CPI data. The paper ends with a conclusion given in section 6.

2. Basics of VAR Modelling

Let Yt denote a q× 1 vector containing the measurements of q time series at time t. The
dynamics of Yt are presumed to be governed by a pth-order Gaussian vector autoregressive
process,

Yt = Φ0+Φ1Yt−1+Φ2Yt−2+ . . .+ΦpYt−p + Et , (1)

which comprises q equations and is called a VAR system. Here Φ0 denotes a q × 1 vector of
intercept constants and Φ j a q× q matrix of autoregressive coefficients for j = 1, 2, . . . , p. All
of Φ0 and Φ j are unknown and to be estimated from the observed data. The q × 1 vector
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Et = (ε1t ,ε2t , . . . ,εqt)′ is a vector of innovations that satisfies:

E(Et) = 0 and E(Et E
′
s) =

(

Σ for t = s

0 otherwise

with Σ being an unknown q × q symmetric positive definite matrix to be estimated. Here
the components of Et may be contemporaneously correlated with each other but are uncorre-
lated with their own lagged values and uncorrelated with all other variables involved in the
righthand side of (1).

Thus, a VAR model of order p, denoted as VAR(p), is a system in which each outcome
variable is regressed on a constant and p of its own lagged values as well as on p lagged
values of each of the other q− 1 outcome variables.

A VAR(p) is covariance-stationary as long as all solutions of the characteristic equation

|Iq −Φ1z−Φ2z2− . . .−Φpzp|= 0

lie outside the unit circle, i.e., |z|> 1.
Apart from stationary VAR processes there are also non-stationary VAR processes. If each

variable in a multi-dimensional process is integrated of order d (I(d)), and the variables are
cointegrated, we can still establish a VAR model for this multi-dimensional process. The VAR
processes consisting of cointegrated variables were introduced by Granger [14] and Engle
and Grange [12]. Estimation of the cointegrated VAR differs from that of the stationary VAR.
In this paper, we will focus on the stationary VAR processes only. If in a VAR system each
equation has the same explanatory variables, namely, a constant term and the same lags of
all the variables, then the system is called the unrestricted VAR. The maximum likelihood
estimation (MLE) of the unrestricted VAR can be found by q ordinary least squares (OLS)
estimation for each equation in the system. Namely, for the unrestricted VAR model the MLE
and the OLS estimation have the same result [11, p270].

As there are pq2+q coefficients plus Σ needing to be estimated in the unrestricted system,
it follows that unrestricted VAR models tend to suffer from “overfitting” in that too many free
insignificant parameters are involved. Consequently, these models may provide poor out-
of-sample forecasts, even though the within-sample fitting is good [22]. Thus, one should
think about better ways to fit the system and make forecasting. It is reasonable to assume
that some of the coefficients in the VAR system actually equal zero or be zero restricted as
estimates of many of them are insignificant. The zero restriction of some of the coefficients
reduces the number of coefficients to be estimated and improves the estimation precision. A
zero restricted VAR model is also called a subset VAR model. For subset VAR models, the
OLS estimates are no longer consistent and efficient as the dependence structure in each of
the q equations is not the same any more [10, p301]. Parameter estimation was considered
for a model similar to subset VAR model by Zellner [33], who referred to it as the model of
seemingly unrelated regression (SUR) equations. The MLE of SUR are efficient and can be
adapted for estimating the restricted VAR [11, section 5.6].
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3. VAR Model Selection

Since the original proposal of Sims [32], VAR models have achieved widespread successes
and have proved to be very useful and flexible for statistical analysis. In the process of apply-
ing VAR models, one is faced with the task of model identification — searching for good and
ultimately the best VAR model for characterizing the multivariate time series under investiga-
tion. This task is the so-called model selection.

Two approaches are available for VAR model selection: one is based on the likelihood ratio
(LR) tests, and the other is based on information-theoretic criteria.

3.1. LR Test for Order Determination of VAR

Suppose we want to test the null hypothesis that the observed data are generated from
a VAR model with order p0 against the alternative hypothesis that the order is p1 > p0.
Let Σ̂0 and Σ̂1 be the variance-covariance matrix under the null and alternative hypotheses
respectively. The following test statistic can be formed from the likelihood ratio:

2(log L∗1− log L∗0) = n{log |Σ̂−1
1 | − log |Σ̂−1

0 |}.

Under the null hypothesis, this statistic has asymptotically a χ2 distribution with degrees of
freedom equal to the number of restrictions imposed under H0 [16, p297].

Lütkepohl [23, pp143-144] proposed a scheme for determining the order of VAR model
based on the above LR test statistic. Assume that M is known to be an upper bound for the VAR
order, the following sequence of null and alternative hypotheses may be tested sequentially
using the LR test:

H(1)0 :ΦM = 0 against H(1)1 : ΦM 6= 0

H(2)0 :ΦM−1 = 0 against H(2)1 : ΦM−1 6= 0|ΦM = 0
...

H(i)0 :ΦM−i+1 = 0 against H(i)1 : ΦM−i+1 6= 0|ΦM = . . .= ΦM−i+2 = 0
...

H(M)0 :Φ1 = 0 against H(M)1 : Φ1 6= 0|ΦM = . . .= Φ2 = 0

In this scheme each null hypothesis is tested conditional on the previous ones being ac-
cepted to be true. The procedure terminates and the VAR order is chosen accordingly once a
null hypothesis is firstly rejected. That is, if H(i)0 is rejected for the first time, p̂ = M − i + 1
will be chosen as the estimate of the autoregressive order.

3.2. VAR Model Selection Criteria

The scheme proposed by Lütkepohl can only be used to determine an upper bound of the
order for the VAR model selected, but is not able to identify all the zero restricted coefficients
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involved. Further, conducting a sequence of hypothesis tests runs the risk of high type I error
[23, p144]. Therefore, in subset VAR modelling it is common to employ a model selection
criterion to conduct model identification. Some general criteria for subset VAR model selec-
tion, which can be used for coefficients selection, are the information criterion of Akaike [1],
known as AIC; Hurvich and Tsai’s AICc [20]; Bayesian information criterion by Akaike [2]
and Schwarz [31], known as BIC; Hannan and Quinn’s HQ [18]; and Bearse and Bozdogan’s
ICOMP [4]. Generally speaking, in any such approach the optimum subset VAR model is cho-
sen as the one minimizing the corresponding criterion. These criteria for subset VAR model
selection are shown to be

AIC= log |Σ̂|+ 2N/n,

AICc= log |Σ̂|+ 2N/(n− q− Nq− 1),

BIC= log |Σ̂|+ N log n/n

HQ= log |Σ̂|+ N log log n/n,

where |Σ̂| = det((1/n)
∑n

t=1 Êt Ê
′
t) is the determinant of the residual covariance, N is the

total number of coefficients estimated in all equations, and n is the length of the time series
involved in the estimation. Detailed formulas of ICOMP for VAR model selection can be found
in Howe and Bozdogan [19, section 4].

The different criteria mentioned above may have their own specific characteristics. The
differences among these criteria are not the focus and will not be investigated in this paper.
What we will do is to utilize one such criterion to form a VAR model selection procedure so
as to find the model having the lowest criterion value among potentially very many candidate
models.

3.3. A Difficulty in VAR Model Selection

As the subset VAR models can reduce the number of coefficients to be estimated and
improve the estimation precision, in this paper, we will focus on the model selection of the
subset VAR models. Suppose it is known a priori that the order of the process is not greater
than some number P, and we want to know what coefficients involved in VAR(P) are actually
equal to zero. Ideally we should fit all possible subset VAR models and select the one that
optimizes the criterion chosen. With regard to this approach, model selection of subset VAR
models is much more complicated than order selection of unrestricted VAR models, because
for subset selection one selects not only an appropriate value for the autoregressive order but
also a subset of the coefficients deemed not equal zero. For a VAR model with q outcome
variables, if the maximum possible order is P, then in total Pq2 + q coefficients including
the intercept constant terms need to be decided on whether they equal zero or not; in other
words, there are 2Pq2+q candidate subset VAR models available for selection. By comparison,
there are only P unrestricted candidate models for selection. Furthermore, the number of
coefficients involved in the subset VAR models increases very rapidly with the autoregressive
order. That is, if the order increases by one, the number of coefficients in the model will
increase by q2, which means the number of candidate models will be 2q2

times as before. As
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an example, when q = 3 and P = 3, there would be 3× 32 + 3 = 30 coefficients which need
to be determined as equal zero or not, and the number of candidate models would be 230. In
such a situation, computing and comparing all the candidate models by their criterion values
are computationally not feasible.

People have tried several ways to overcome this difficulty. Penm and Terrell [25] consid-
ered subset models where some coefficient matrices Φi rather than individual coefficients are
entirely set to zero. Such a strategy reduces the number of subset VAR models to be compared
with each other to 2P . Deleting some coefficient matrices completely may be reasonable if,
for example, seasonal data with strong seasonal components are considered where only coef-
ficients at seasonal lags are different from zero. In this situation, there may still be potential
for further coefficient restriction. On the other hand, some of the deleted coefficient matri-
ces may contain elements that should not have been deleted. Lütkepohl [23, pp208-211]
proposed the Top-Down strategy, the Bottom-Up strategy and the sequential elimination of re-
gressors. However, all the three methods are based on the deterministic step-wise regression
method which can not ensure finding the best subset VAR model even asymptotically. More
recently, Howe and Bozdogan [19] developed a genetic algorithm for VAR model selection
based on ICOMP. They used simulation and application studies to illustrate how predictive
subset VAR modeling can be done in a computationally feasible way.

In this paper we propose a random model generating procedure using the Gibbs sampler to
overcome the aforementioned difficulty. We first define a particular probability mass function
on the set of the criterion values of all the candidate subset VAR models; and by this definition
the best model that has the lowest criterion value will have the highest probability. Thus if we
can generate from the defined probability mass function a random sample of models together
with their criterion values, the best model will tend to appear among the most frequent and
earliest if the number of the models to be generated is large enough. Therefore we can quickly
identify the best model from the large number of candidate models generated. We will show
how the Gibbs sampler can be used to generate a random sample of subset VAR models.

In the sequel of this paper, for simplicity of presentation, we will call a subset VAR model
simply as a VAR model.

4. VAR Model Selection Using Gibbs Sampler

4.1. A Representation of VAR Model by an Index Matrix

For simplicity of presentation, in this section we introduce our model selection procedure
through the VAR models that have no intercepts. The technique to be developed applies as
well to the situations where the VAR models have intercepts.

From the q time series observed suppose the maximum possible value of the order P of
the VAR models to be considered may be determined by some method such as the Lütkepohl’s
LR testing scheme described in Section 3.1. It is clear that the key point of the VAR model
selection is to determine which subset of the Pq2 coefficients in (Φ1 . . .ΦP) should be taken as
zero. Knowing this a model selection framework is set up as follows.

First we call VAR(P) the full model for the observed series Yt = (Y1t , Y2t . . . Yqt)′. We may
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represent the full model by VAR (VF ) or simply by an index matrix VF knowing that only VAR
models are considered. Here VF = (VF1 . . . VF P), with VF i = {1}q×q being a q× q matrix of 1’s
in correspondence to the coefficient matrix Φi , i = 1, . . . , P. Furthermore, we represent each
subset VAR model by VAR(V ) or an indicator matrix V = (V1 . . . VP), where Vi is a q×q matrix
consisting of only 0 or 1 values, and the ( j, k)-th indicator component of Vi is denoted as
Vi, jk (i = 1, . . . , P; j = 1, . . . , q; and k = 1, . . . , q). We take Vi, jk = 1 if the ( j, k)-th coefficient
in Φi in VAR(V ) does not equal 0 and Vi, jk = 0 otherwise. Note that V only represents the
structure of a candidate subset VAR model. In other words, V only indicates which coefficients
of (Φ1 . . .ΦP) do not take 0 and are included in the VAR(V ) model. Thus, the values of the
coefficients still need to be estimated by some statistical method such as MLE.

Given VF there are in total 2Pq2
candidate models. Now suppose the true model for

Yt = (Y1t , Y2t . . . Yqt)′ exists and is represented by V0, where V0 = (V01 . . . V0P) and
V0i = (V0i, jk). Also the true values of the coefficients in (Φ1 . . .ΦP) corresponding to the non-
zero components of V0 do not equal 0 whereas the other coefficients equal 0. Then all the
2Pq2

candidate models of the form V can be classified into two groups:

M1 ={V ≥ Vo, i.e. Vi, jk ≥ Voi, jk for all i, j, k}
M2 ={(V 6≥ Vo, i.e. Vi, jk < Voi, jk for some i, j, k}

It is easy to see that any model in M1 contains at least all non-zero VAR coefficients of the
true model, whereas any model inM2 misses at least one non-zero VAR coefficient of the true
model. Note that it is reasonable to assume that the true model is unique. Then any candidate
model inM1 shall be a correct model and provides a valid basis for statistical analysis. This
however is not true for any model in M2. On the other hand, a correct model in M1 may
contain redundant coefficients that are not included in the true model. Therefore, with many
candidate models available it is necessary to apply a model selection criterion to find the valid
and simple models.

4.2. Model Selection Based on Random Sampling

Note that for a certain VAR model most of the model selection criteria such as AIC, BIC,
AICc and HQ have the same form

VMSC=−max log(likelihood) + penalty term,

which can be specified as
S(V ) = log |Σ̂V |+ C(NV ),

where NV is the total number of coefficients estimated in all the equations in model V and
C(NV ) denotes the penalty term which varies for different model selection methods; and for
each model selection method the best model V ∗ which minimizes the corresponding selection
criterion should be selected.

In order to find the best model, we define a probability distribution for V onM =M1∪M2
with

PVSCλ(V ) =
exp(−λVMSC(V ))
∑

V∈M exp(−λVMSC(V ))
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where λ > 0 is a tuning parameter. It is easy to see that PVSCλ is a probability mass function
defined on the set of VMSC values of the 2Pq2

candidate models for the given data
Yt = (Y1t , Y2t . . . Yqt)′. Equivalently, PVSCλ can be regarded as the probability mass function
for a q × Pq dimensional discrete random matrix V defined on M1 ∪M2 = {0,1}q×Pq. By
its definition PVSCλ has the highest probability at the best model V ∗. Also those candidate
models that have relatively small VMSC values will have relatively large probabilities. Thus,
when generating a random sample, which is also a sequence of models, from the distribution
determined by PVSCλ, the models having relatively small VMSC values are more likely to be
generated and tend to be among the models generated earlier and more frequently than those
models having relatively high VMSC values. Therefore, if the size of the generated sample is
sufficiently large, the model having the smallest VMSC value in the sample would converge
to the best model V ∗ with probability 1.

The above discussion suggests two ways of performing model selection based on a ran-
dom sample generated from PVSCλ: estimating the best model as the one that has the smallest
VMSC value in the sample, and estimating the best model as the one that appears most fre-
quently in the sample.

We can certainly apply these two ways to perform the model selection, however, in this
paper we will propose another more efficient method. Now consider the marginal distribution
of an individual component of V which clearly is a Bernoulli distribution. The probability of
“success” in this marginal distribution is likely to be small if the corresponding component
of V equals 0 at V ∗, and large otherwise. The sampling marginal distributions based on
the random sample generated from PVSCλ will also have this property, if the number of the
models generated is large enough. This discussion suggests estimating the best model as the
one whose non-zero VAR indicator components are composed by those components that have
large estimates of the probability of “success”.

This model selection procedures will be made clear after we explain how a random sample
from PVSCλ can be generated in the following.

4.3. A Gibbs Sampler for Simulating PVSCλ

In Section 4.1 we denote Vi, jk as the ( j, k)-th indicator component of the i-th sub-matrix
of V . For convenience of presentation, here we denote V−(i, jk) as the set of other components
of V when taking away Vi, jk from V . It is easy to see that the normalization constant
D =
∑

V∈M1∪M2
exp{−λVMSC(V )} in the definition of PVSCλ is difficult to evaluate when

2Pq2
is very large. On the other hand, the conditional distribution of Vi, jk given V−(i, jk) is

Bernoulli and does not involve D. Specifically, for i = 1, . . . , P and j, k = 1, . . . , q

Pr{Vi, jk = 1|V−(i, jk)}=
exp{−λVMSC(V )|Vi, jk=1}

exp{−λVMSC(V )|Vi, jk=1}+ exp{−λVMSC(V )|Vi, jk=0}

=
1

1+ exp{λ(VMSC(V )|Vi, jk=1− VMSC(V )|Vi, jk=0)}
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and
Pr{Vi, jk = 0|V−(i, jk)}= 1− Pr{Vi, jk = 1|V−(i, jk)}

Here we can see Pr{Vi, jk = 1|V−(i, jk)} ≥ 0.5 if VMSC(V )|Vi, jk=1 ≥ VMSC(V )|Vi, jk=0.
Based on the conditional distributions Pr{Vi, jk|V−(i, jk)}, with i = 1, . . . , P; j = 1, . . . , q and

k = 1, . . . , q, we can apply the Gibbs sampler (see e.g. Casella and George [7]) to generate a
random sample of models represented by Vi, jk, i = 1, . . . , P; j = 1, . . . , q; k = 1, . . . , q. Ignoring
an initial part of the model sequence, the remaining sequence can be regarded approximately
as a sample from PVSCλ. The sampling algorithm is detailed below:

i) Arbitrarily take an initial value V (0) = (V (0)1 , . . . , V (0)P ), e.g. V (0)i = {1}q×q for
i = 1, . . . , P.

ii) Given that V (1), . . . , V (h−1) have been generated, do the following to generate V (h) for
h= 1, . . . , H.

• Repeat for i = 1, 2, . . . , P; j = 1, 2, . . . ,q and k = 1,2, . . . , q.

• Generate a random number from the Bernoulli distribution having the probability
of “success’” given by

Pr{V (h)i, jk = 1|V (h−1,h)
−(i, jk) }.

• Deliver the number generated to be V (h)i, jk — the (i, j, k)-th component of V (h).

Here

V (h−1,h)
−(i, jk) =(V

(h)
1 , . . . , V (h)i−1, V (h−1,h)

i , V (h−1)
i+1 , . . . , V (h−1)

P )

=































V (h)1,11 . . . V (h)1,1q . . . V (h)i,11 . . . V (h)i,1(k−1) V (h)i,1k V (h)i,1(k+1) . . . V (h)i,1q . . . V (h−1)
P,11 . . . V (h−1)

P,1q
...

...
...

...
...

...
...

. . . . . . . . . V (h)i,( j−1)k . . . . . . . . .

V (h)1, j1 . . . V (h)1, jq . . . V (h)i, j1 . . . V (h)i, j(k−1) ; V (h−1)
i, j(k+1) . . . V (h−1)

i, jq . . . V (h−1)
P, j1 . . . V (h−1)

P, jq

. . . . . . . . . V (h−1)
i,( j+1)k . . . . . . . . .

...
...

...
...

...
...

...
V (h)1,q1 . . . V (h)1,qq . . . V (h−1)

i,q1 . . . V (h−1)
i,q(k−1) V (h−1)

i,qk V (h−1)
i,q(k+1) . . . V (h−1)

i,qq . . . V (h−1)
P,q1 . . . V (h−1)

P,qq































is a q× Pq matrix removing the ( j, ( j− 1)q+ k)-th component.
Some remarks for the above-described algorithm need to be made here. Firstly, employing

the Gibbs sampler for model selection can be found in different contexts in literature. Madigan
and York [24] and George and McCulloch [13] have used the Gibbs sampler for generating
the posterior distribution of the variable indicators in Bayesian linear regression and graphic
model selection. Qian [27], Qian and Field [28], Qian and Zhao [29] and Cui, Pitt and
Qian [9] have used the Gibbs sampler for robust regression model selection, generalized
linear regression model selection, ARMA model selection and generalized estimating equation
model selection. Brooks, Friel and King [6] have used the Gibbs sampler in the context of
the simulated annealing algorithm for autoregressive time series order selection. However,
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it seems using the Gibbs sampler for VAR model selection has not appeared in literature
before, even though it can provide an effective solution for model selection involving very
large number of candidate models.

Secondly, one important issue in generating a sample by the Gibbs sampler method is to
determine from which point on we can say the sequence of the generated models becomes sta-
tionary and can be regarded as a random sample from PVSCλ(V ). Actually the generated se-
quence V (1), . . . , V (H) is a Markov chain as any other sample sequence generated by a Markov
chain Monte Carlo method. Thus, the sequence usually takes a burn-in period to reach the
equilibrium. When a sequence of VAR models V (1), . . . , V (H) are generated, at the same time
we can obtain the associated sequence of the criterion values VMSC(V (1)), . . . , VMSC(V (H)).
Obviously, with probability 1 there is a one-to-one correspondence between V and VMSC(V ).
Determining when the sequence reaches equilibrium can thus be equivalently done by check-
ing whether the corresponding sequence of the VMSC values is stationary from some point on.
So the equilibrium of V (1), . . . , V (H) implies the stationarity of VMSC(V (1)), . . ., VMSC(V (H)),
and vice versa. In this paper, we will apply the χ2 test proposed by Qian and Field [28] to
check the stationarity of the generated models in terms of the associated VMSC values.

Thirdly, another important issue is how to set the starting values in the Gibbs sampler. If
the Markov chain being generated is ergodic, which is the case for the current VAR model
selection problem, the stationary distribution of the Markov chain, i.e. PVSCλ, will be unique,
and be independent of the starting value used. However, the starting value in general affects
the finite-sample speed of mixing. Thus one may need to choose the starting value carefully.
In our simulation study, we find that different starting values have minor effects on the finite-
sample convergence rate. Hence it is safe to use a simple VAR candidate model as the starting
value.

Fourthly, the order of updating the components in V in each iteration could also affect
the finite-sample speed of mixing. From our previous experience, when the order of the true
model is much lower than that of the full model, we should start updating from the high order.
However, in the simulation study of this paper, it does not seem that the order of updating
affects the finite-sample speed of mixing.

Fifthly, some candidate VAR models may be numerically not stable. This happens when
we calculate the OLS estimate of (Φ0,Φ1 . . .ΦP) to form an initial estimate of the coefficients.
If this is the case, we will simply not have these models to be included in the model sequence
generated by the Gibbs sampler. Namely, a Vi, jk will stay at its current value if updating
it to the other value will cause the corresponding model to be instable; and the procedure
will proceed to update the next Vi, jk. An instable model is definitely not competitive. Thus
excluding such a model in Gibbs sampling will not affect the selection of the competitive
models.

Finally, the tuning parameter λ plays an important role in our simulation. When there are
several competitive candidate models whose criterion values are very close to that of the best
model, the distribution of PVSC is likely to be multimodal. In the simulation if a competitive
model considered as a local optimizer is first reached, the model generating process will try to
jump from this competitive model to the best model noted as the global optimizer. Sometimes
such a jump has to be done by passing through a “troubling” model having very high criterion
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value in comparison to the local optimizer. Without tuning λ the probability of transition
from a local optimizer model to the “troubling” model will be 1/{1+ exp(∆VMSC)}, which
can be extremely small. So it is very likely that the models generated would be trapped in
a neighborhood of the local optimizer. In this situation, setting λ to be between 0 and 1
would increase the chance of getting out of the trap. On the other hand, ∆VMSC could be
negatively very small. Then the model generation process would move to different models
more frequently than necessary. If this the case, setting λ larger than 1 would help slow down
the movement. From our experience, it is often beneficial to try different λ values to form
several short chains, then compare their performances and eventually make a proper choice
of the value of λ.

4.4. Estimate Marginal Distributions of the Candidate Models

When a sample of VAR models V (1), . . . , V (H) is generated by the Gibbs sampler, the VMSC
value of every VAR model is accordingly obtained. Therefore, we can directly find the model
that has the smallest VMSC value in the sample. This model can be regarded as an estimate
of the best model. The effectiveness of this procedure depends on how likely the sample of
the models generated contains the best model V ∗ and/or the true model Vo.

It is deemed that the best model V ∗ would converge to the true model Vo under some
general conditions. This convergence was considered by Hannan [17] for univariate ARMA
models. We will assume this convergence to be true but will not pursue a rigorous justification
of it here. Keeping this in mind we now present some asymptotic results about the probability
of selecting Vo, or in asymptotic equivalence, that of selecting V ∗. First of all, we need the
following assumptions for presenting our results:

(C.1) For any model V inM1,

0< log L(Φ̂V , Σ̂V )− log L(Φ̂Vo
, Σ̂Vo
) = O(log log n) a.s.

where log L(Φ̂V , Σ̂V ) is the maximum log-likelihood for the model VAR(V ) and
log L(Φ̂Vo

, Σ̂Vo
) is the maximum log-likelihood of the true model. Here and in the sequel

“a.s.” means “almost surely” with respect to the probability space determined by the
multiple time series (Y1t , . . . , Yqt)′.

(C.2) For any model V inM2,

0> log L(Φ̂V , Σ̂V )− log L(Φ̂Vo
, Σ̂Vo
) = O(n) a.s.

Then we have the following results for PVSCλ(V ).

Proposition 1. Suppose C(NV ) = o(n) in the definition of VMSC(V ). Let Pr(·) be a probability
with respect to the probability distribution PVSCλ(V ). Then under conditions (C.1) and (C.2)
we have

(R.1) Pr(M1) = {1 + (2No − 1)e−|O(n)|}−1 a.s. where No is the total number of parameters
estimated in the true model.
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(R.2) Pr(M1)/Pr(M2) = (2No − 1)−1e|O(n)| a.s..

(R.3) In addition, if O(log n) ≤ |C(NV )| ≤ O(n) and C(NV ) is an increasing function with
respect to NV =

∑P
i=1

∑q
j=1

∑q
k=1 Vi, jk, then

Pr(Vo) = PVSCλ(Vo) = {1+ (2Pq2−No − 1)O(n−1)}−1Pr(M1) a.s..

The proof of the proposition is straightforward knowing that there are 2Pq2−No models in
M1, 2Pq2−No(2No−1)models inM2, and PVSCλ(V1)/PVSCλ(V2) = e|O(n)| a.s. under conditions
(C.1) and (C.2) for V1 ∈M1 and V2 ∈M2.

Note that a VAR candidate model can be represented by a q× Pq matrix V = (V1, . . . , VP)
in the latticework {0,1}q×Pq =M1 ∪M2. From the joint distribution PVSCλ(V ) it is easy to
find the marginal distribution for each component of V . Namely, for each i = 1, . . . , P and
j, k = 1, . . . , q,

Pr(Vi, jk = 1) =
∑

Vi, jk=1

PVSCλ(V ) = D−1
∑

Vi, jk=1

exp{−λVMSC(V )}

Pr(Vi, jk = 0) =
∑

Vi, jk=0

PVSCλ(V ) = D−1
∑

Vi, jk=0

exp{−λVMSC(V )}

In the index matrix of the true model V0 there are N0 components which are equal to 1, and
the position of each none-zero component in the matrix corresponds to an index (i, jk). Let
βo be the set of all the indices of the none-zero components in V0 and write

β0 =
�

(i, jk)(1), . . . , (i, jk)(N0)
�

.

Under conditions (C.1) and (C.2) and from Proposition 1 it is not difficult to derive the fol-
lowing results:

Proposition 2. Under the same conditions and notations as in Proposition 1, we have for any
(i, jk) ∈ βo

(R.4) Pr((V )i, jk = 1)≥ Pr(M1) = [1+ (2No − 1)e−|O(n)|]−1 a.s.;

(R.5) Pr((V )i, jk = 0)≤ Pr(M2) = (2No − 1)e−|O(n)|[1+ (2No − 1)e−|O(n)|]−1 a.s.;

(R.6)
Pr((V )i, jk=1)
Pr((V )i, jk=0) ≥ (2

No − 1)−1e|O(n)| a.s..

Proposition 2 essentially says that the marginal distributions of V corresponding to those
non-zero components of Vo have their probabilities of “success” significantly larger than their
respective probabilities of “failure”, provided that the sample size n is large enough. More-
over, this property is not affected by P or q and accordingly not by whether the number
of candidate models 2Pq2

is too large or not. Therefore, for a sufficiently long sample of
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models generated from PVSCλ — V (1), . . . , V (H), we estimate the marginal probability of “suc-
cess” for each component of V by its sample proportion, i.e., bPr(Vi, jk = 1) = H−1

∑H
h=1 V (h)i, jk,

i = 1, . . . , P, j, k = 1, . . . , q. The standard error of bPr(Vi, jk = 1) has an upper bound 0.5H−1/2.
We then propose to ignore those components of V where, say, bPr(Vi, jk = 1)< 0.5, and use

the other components of V to form an estimate —denoted as eV— of the true model Vo or the
best VAR model V ∗ for modelling Yt = (Y1t , Y2t . . . Yqt)′, i.e.,

eV = {Vi, jk | i = 1, . . . , P; j, k = 1, . . . , q; bPr(Vi, jk = 1)≥ 0.5.}

By Proposition 2 we know eV will asymptotically at least include those VAR coefficients indexed
by βo, i.e. identified by the true model Vo. So eV will at least be a correct model in M1
asymptotically. Following the argument of [30, p2] the preceding discussion can be extended
to the situation where {V (1), . . . , V (H)} is only an ergodic and reversible Markov chain with the
stationary distribution PVSCλ (or the modification), i.e., a sequence generated by our Gibbs
sampler algorithm after reaching equilibrium.

An advantage of the method that is based on estimating the marginal distributions is that
the model sample size H does not need to be very large and is unlikely to depend on whether
the number of candidate models 2Pq2

is too large or not. As a rule of thumb, H can be
determined from a pre-specified desired standard error δ for bPr(Vi, jk = 1), i.e. H = (2δ)−2.
Of course, it is possible that eV still has not removed all the redundant VAR coefficients in
comparison to the true model Vo. But it is highly likely that eV is a correct model simpler than
the full model. Regarding eV as a new full model, it is possible to generate another random
sample of models and conduct a second round of search which may return a better estimate
of the best model than eV .

Finally, based on the generated Markov chain {V (1), . . . , V (H)} the marginal probability
Pr(Vi, jk = 1) may be more precisely estimated by the Rao-Blackwellized estimate:

ePr((Vi, jk = 1) =
1

H

H
∑

h=1

Pr{Vi, jk = 1 | V (h)−i, jk}

=
1

H

H
∑

h=1

exp{−λVMSC(V )} |Vi, jk=1,V−i, jk=V (h)−i, jk
∑

Vi, jk=0,1 exp{−λVMSC(V )} |V−i, jk=V (h)−i, jk

.

However, the estimate ePr(Vi, jk = 1) involves more computation, and since we only use an
estimate of Pr(Vi, jk = 1) for deciding whether it is greater than 0.5 or not, we do not employ
this Rao-Blackwellized estimate in our method.

5. Numerical Studies

In this section we will assess the performance of the proposed Gibbs sampler model selec-
tion method using two examples.

We have used BIC in implementing our model selection procedure in Example 1 and have
used AIC in Example 2. Implementation using the other criteria such as AICc and HQ would
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be the same but may produce somewhat different finite sample results due to their respective
different asymptotic properties.

Example 1: Simulated Data

To show the strong efficiency of our model selection method we have generated a three-
variable time series Yt = (Y1,t , Y2,t , Y3,t)

′ of 300 observations from the following stationary
VAR process
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Y2,t
Y3,t
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0.6 0.3 0
0 0.8 0
0 0 0.3













Y1,t−1
Y2,t−1
Y3,t−1
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0.5 0 0
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+







−0.3 0 0
0 −0.4 0
0 0 0













Y1,t−3
Y2,t−3
Y3,t−3






+







ε1,t
ε2,t
ε3,t







where (ε1,t ,ε2,t ,ε3,t)′ is a standard normal random vector. Now we pretend that this true
model is unknown to us. Our purpose is to find a VAR model that has the smallest BIC value
among all the candidate models. Then we can consider this model as an estimate of the true
model.

The results of using Lütkepohl’s LR testing scheme, presented in Table 1, show that
H(4)0 : Φ3 = 0 is the first null hypothesis that is rejected. Thus, the estimated order from the
test is P̂ = 3, and the full model can be represented as the index matrix VF = {1}3×9. Then
there are 227 = 134,217, 728 candidate models in total for selection.

Table 1: Results of Lütkepohl’s LR test in Example 1 (Note χ2
9 (0.95) = 16.92)

i H(i)o VAR order under H(i)0 λLR

1 Φ6 = 0 5 9.10
2 Φ5 = 0 4 6.16
3 Φ4 = 0 3 4.73
4 Φ3 = 0 2 274.05
5 Φ2 = 0 1 414.33

We chose λ = 0.3 and generate 105 segments of VAR models. In each segment there are
27 models generated corresponding to the 27 progressive updates to the 27 coefficients. To
reduce the initialization effect of the Gibbs sampler we ignore the first 5 segments from H0.
Rather than take the last model of each segment to form an initial sample of size 100, we
use all the 2700 models as the initial sample. Then following the method of Qian and Field
[28] we apply the Pearson’s χ2 test of independence to check whether the generated models
have reached the equilibrium, or in other words, whether the effect of starting value on model
generation has diminished. We divide the range of BIC values into r = 8 sub-intervals; then
cut the chain of BIC values into q = 10 subsequent sub-chains each of size 270. From this
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we obtained a 10× 8 contingency table. Pearson’s χ2 test gives a p-value greater than 0.5.
Therefore the null hypothesis of the independence of row and column factors can not be
rejected. This means there is no significant evidence of the association; in another words, the
generated VMSC series has reached its equilibrium.

We continue and have totally generated 300 × 27 = 8100 models including the initial
sample (not including the ignored 5 × 27 = 135 models). Denote the generated models
as M1, . . . , M8100 for convenience of presentation. We find there are 1189 different models
among M1 to M8100. We list in Table 2 the sample marginal probabilities of every component
of V in between M1 and M2700, in between M1 and M5400 and in between M1 and M8100
respectively. We can see in any of the three classes the sample marginal probabilities corre-
sponding to the non-zero components of Vo, which are

(V1,11, V1,12, V1,22, V1,33, V2,11, V2,22, V2,23, V2,33, V3,11, V3,22),

are all greater than 0.5 and even greater than 0.95, and those corresponding to the zero
components of Vo are all less than 0.5. Moreover there is no obvious difference among the
marginal probabilities in the three classes. Therefore, based on the sample marginal probabil-
ities of each component of V , the true model Vo is selected as the best model. The simulation
study shows that it is sufficient to estimate 27× 2× 100 = 5400 models to identify the best
model from the 227 candidate models.

Table 2: Sample marginal probabilities of V in Example 1 among M1 to M2700 (Mar.Prob1), M1 to M5400
(Mar.Prob2) and M1 to M8100(Mar.Prob3).

Mar.Prob1
(V )1, jk (V )2, jk (V )3, jk

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
j = 1 1.000 1.000 0.231 1.000 0.170 0.200 1.000 0.350 0.250
j = 2 0.130 1.000 0.206 0.170 1.000 0.970 0.194 1.000 0.264
j = 3 0.220 0.143 1.000 0.150 0.190 1.000 0.150 0.159 0.140

Mar.Prob2
(V )1, jk (V )2, jk (V )3, jk

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
j = 1 1.000 1.000 0.200 1.000 0.169 0.190 1.000 0.351 0.215
j = 2 0.160 1.000 0.190 0.195 1.000 0.980 0.190 1.000 0.240
j = 3 0.165 0.161 1.000 0.191 0.181 1.000 0.155 0.169 0.190

Mar.Prob3
(V )1, jk (V )2, jk (V )3, jk

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
j = 1 1.000 1.000 0.210 1.000 0.187 0.193 1.000 0.341 0.200
j = 2 0.160 1.000 0.202 0.210 1.000 0.983 0.199 1.000 0.243
j = 3 0.143 0.157 1.000 0.210 0.164 1.000 0.163 0.186 0.183

In this example it would take too long computing time to calculate the BIC values of all the
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227 candidate models to confirm our method’s effectiveness, but the result that the selected
model is exactly the same as the true model simulating the observed series demonstrates the
effectiveness and efficiency of this method.

Finally, the MLE of the best model Vo is estimated to be
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with the standard errors for the corresponding coefficients of V1,11, V1,12, V1,22, V1,33, V2,11,
V2,22, V2,23, V2,33, V3,11, V3,22 being 0.051, 0.027, 0.049, 0.053, 0.058, 0.060, 0.050, 0.055,
0.048 and 0.049.

Example 2: Chinese Money Supply

In this example, we illustrate the application of the Gibbs sampler model selection method
on the real data. We establish a VAR model using two time series between the first quarter
of 1993 and the first quarter of 2007. The two series are the growth rate of China’s quarterly
nominal M2 money supply and China’s quarterly Consumer Price Index (CPI). The data of
nominal M2 supply and CPI are published on the website of the National Bureau of Statistics
of China†.

M2 money supply is a measure of the amount of money in the economy, and is constructed
as the sum of currency, current deposit accounts, savings and other term deposits. The amount
of M2 money supply is controlled by a country’s central bank as the monetary policy. CPI,
which can also be called the inflation rate, is the increase rate of price of goods purchased
by average households. From a macroeconomic perspective, a major reason that the money
supply is important is that, in the long run, the amount of money circulating in an economy
and the general level of prices are closely linked. To explain this relationship, let us have a
look at the famous “quantity equation”.

MV= PY

where M is money supply, V is a measure of the speed at which money circulates, P is the price
level and Y is the real output. V is determined by current payments technologies and thus is
approximately constant. Likewise, one can assume that the real output Y is approximately
constant. If we use a bar over a variable to indicate that the variable is constant, we can
rewrite the quantity equation as

MV̄= PȲ

Then we see that the quantity equation can hold only if M and P rise at the same growth rate.

†http://www.stats.gov.cn
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However, there are two explanations of the relationship between the two variables (see
Bernanke, Olekalns and Frank [5, Chapter 8]). One is that a rapidly growing supply of money
will lead to quickly rising prices, that is, inflation. Another explanation of the relationship is
that some other reasons cause the inflation, then the central bank has to increase the money
supply to accommodate to the increased money demand caused by the increased prices.

Both explanations agree that there is a close relationship between the growth rate of
money supply and the growth rate of price (inflation rate). In fact, there is an extensive
literature on VAR modelling of money supply and inflation. For example, Anderson, Hoffman
and Rasche [3], Juselius and Toro [21], and Zhao, Chen and Gao [34] studied the relation
between money supply and other economic variables including CPI of U.S., Spain and China
respectively using VAR models. However, all the established VAR models are unrestricted
ones. The subset VAR model has not been found in use.

To investigate the relationship between the two variables in more detail we establish a
subset VAR modelling frame. First of all, for a specification of VAR model it requires to
examine the stationarity of the observed time series for the variables. We choose to use the
Phillips-Perron unit root test [26] to examine this. Listed in Table 3 are the results for the
growth rate of China’s M2 (denoted as M2r), the first order difference of the growth rate of
the M2 (denoted as DM2r), CPI and the first order difference of the CPI (denoted as DCPI).
From the table we see that the test rejects the null hypothesis of a unit root in DM2r and DCPI,
but fails to reject the null hypothesis of a unit root in M2r and CPI at any of the reported
significance levels. The tests strongly support that both growth rates of M2 and CPI are I(1).
Thus, we are to establish a VAR model using the first order differences of both DM2r and
DCPI.

Table 3: Results of Phillips-Perron unit root test in Example 2

test statistic 1% critical value 5% critical value
M2r -2.74 -3.55 -2.91

DM2r -5.81 -3.55 -2.91
CPI -1.57 -3.55 -2.91

DCPI -3.63 -3.55 -2.91

The results of Lütkepohl’s order determination scheme, which are in Table 4, show that
H(4)0 : Φ4 = 0 is the first null hypothesis that is rejected. Thus, the estimated order from the
test is P̂ = 4. Then including the intercepts the full model can be represented as an index
matrix VF= {1}2×9, so there are 218 = 262,144 candidate models in total for selection.
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Table 4: Results of Lütkepohl’s LR test in Example 2 (Note χ2
4 (0.95) = 9.49)

i H(i)o VAR order under H(i)0 λLR

1 Φ6 = 0 5 7.32
2 Φ5 = 0 4 8.97
3 Φ4 = 0 3 40.21
4 Φ3 = 0 2 4.58
5 Φ2 = 0 1 19.59

Having done the above preparation, we perform the model selection with λ = 0.8, and
with AIC being used as the selection criterion. We generate 105 segments in each run. Then
we use the method of Qian and Field [28] to test the equilibrium of the generated AIC values.
To reduce the initialization effect of the Gibbs sampler we omit the first 5 segments in each
sequence. Further, rather than take the last model of each segment to form a sample of size
100, we use all the 1800 models as the sample in each sequence. A p-value being greater than
0.5 is obtained, suggesting we have reached the equilibrium.

Applying the model selection methods proposed, we have obtained the results listed in Ta-
ble 5, which are the sample marginal probabilities of the components of V from the 1800 mod-
els generated. The sample marginal probabilities of (V0,1, V1,22, V2,21, V2,22, V4,11, V4,21, V4,22)
are seen to be all greater than 0.5. We can thus identify the best model as

�

1 0 0 0 0 0 0 1 0
0 0 1 1 1 0 0 1 1

�

,

and have an AIC value 307.4237. After estimating the coefficients using the MLE the estimated
VAR model is

DM2r=− 0.505− 0.522×DM2r(−4)

DCPI=0.377×DCPI(−1)− 0.169×DM2r(−2) + 0.476×DCPI(−2)

+ 0.197×DM2r(−4)− 0.507×DCPI(−4)

where DM2r(−4) is the lag 4 observation of DM2r and the other terms are similarly defined.

Table 5: Sample marginal probabilities of V in Example 2 among M1 to M1800

(V )0, j (V )1, jk (V )2, jk (V )3, jk (V )4, jk

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2
j = 1 0.590 0.250 0.259 0.280 0.228 0.440 0.100 1.000 0.326
j = 2 0.315 0.270 1.000 0.980 1.000 0.230 0.378 1.000 1.000

From this subset VAR model we see that the regressors in the DM2r equation consist of
only lags of DM2r; but the regressors in the second equation consist of the lags of both DM2r
and DCPI. This seems to suggest that the fluctuations of the growth rate of money supply
seems lead to the fluctuations of inflation rate, rather than the other way around.
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6. Conclusion

In this paper we propose a Gibbs sampler algorithm for subset VAR model selection involv-
ing a large number of candidate models. This computing method is very useful in subset VAR
model selection but has not been well studied before. The key feature of our proposed method
is that we can generate a series of candidate models from an induced probability distribution
in such a way that the best model will tend to appear among the earliest and the most frequent
if the number of the models generated is large enough. We have developed several empirical
solutions to tackle various complications that may be encountered in practice. It shows that
the method is computationally feasible and effective in dealing with these difficulties.
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