

On Some Properties of Liouville Numbers in the non-Archimedean Case

Hamza Menken^{1,*}, Abdulkadir Aşan²

¹ Mersin University, Science and Arts Faculty, Mathematics Department, Mersin-Turkey

² Mersin University, Institute of Science, Mathematics Graduate Program, Mersin-Turkey

Abstract. We study Liouville numbers in the non-archimedean case. We give the analogues of the Erdös theorem in the non-archimedean case, both in the *p*-adic numbers field \mathbb{Q}_p and the functions field $K \langle x \rangle$.

2010 Mathematics Subject Classifications: 11J61, 12J25, 11R58 Key Words and Phrases: Non-archimedean field, *p*-adic number, *p*-adic Liouville number, functions field.

1. Introduction

The classical Liouville's theorem states that if $\alpha \in \mathbb{R}$ is an algebraic number of degree $n \ge 2$, then there exists a positive constant $C(\alpha)$ depending only on α such that

$$\left|\alpha - \frac{a}{b}\right| \geq \frac{C(\alpha)}{b^n}$$

for all $a, b \in \mathbb{Z}^+$. The existence of transcendental numbers has been usually shown using the Liouville's theorem. For instance, the transcendence of the number $\xi = \sum_{n=1}^{\infty} 10^{-n!}$ can be easily proved from the Liouville's theorem [see 3]. A real number $\xi \in \mathbb{R}$ is called a (real) *Liouville number* if for every positive integer *n*, there exist integer *a* and b(>1) such that

$$0 < \left|\xi - \frac{a}{b}\right| < \frac{1}{b^n}.$$

Real Liouville numbers have many interesting properties and investigated by many authors [see 2, 7, 9, 10, 12, 14]. We note that Liouville numbers are real numbers that can be rapidly approximated by algebraic numbers with degree one. A general theory of approximation by algebraic numbers is given in [5]. Here we mainly focus on the Erdös theorem:

http://www.ejpam.com

© 2013 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: hmenken@mersin.edu.tr (H. Menken), akadirasan@mersin.edu.tr (A. Aşan)

Theorem 1. [P. Erdös, [8]] Let $a_1 < a_2 < a_3 < \dots$ be an infinite sequence of integers satisfying

$$\lim_{n\to\infty}\sup a_n^{\frac{1}{t^n}}=\infty$$

for every t > 0, and

$$a_n > n^{1+\varepsilon}$$

for fixed $\varepsilon > 0$ and $n > n_0(\varepsilon)$. Then

$$\alpha = \sum_{n=1}^{\infty} \frac{1}{a_n}$$

is a Liouville number.

It is well known that real numbers field \mathbb{R} is archimedean. There are interesting nonarchimedean fields as the *p*-adic numbers field \mathbb{Q}_p and the functions field.

Let *p* be a fixed prime number. By \mathbb{Z}_p , \mathbb{Q}_p and \mathbb{C}_p we denote the ring of *p*-adic integers, the field of *p*-adic numbers, and the completion of the algebraic closure of \mathbb{Q}_p , respectively.

In the present work we investigate some properties of Liouville numbers in non-archimedean case. Mainly, we give the analogues of the Erdös theorem in the non-archimedean case, both in *p*-adic numbers field \mathbb{Q}_p and the functions field $K \langle x \rangle$.

Although the classical Liouville numbers are real numbers that can be rapidly approximated by rational numbers, the *p*-adic Liouville numbers are those numbers that can be rapidly approximated by positive integers in the *p*-adic norm. The *p*-adic Liouville numbers are defined as follows:

Definition 1 ([6, 21]). Let α be a *p*-adic integer. If

$$\lim_{n\to\infty}\inf\sqrt[n]{|n-\alpha|_p}=0,$$

then the number α is called *p*-adic Liouville number.

Example 1. Let consider the series $\alpha = \sum_{n=0}^{\infty} p^{n!}$. It is easy to see that the sum is a p-adic Liouville number.

The definition above is first introduced by D. Clark [6] and it is better adapted to differential equations. In fact, consider the differential equation

$$xf'(x) - \lambda f(x) = \frac{1}{1 - x}$$

on a neighborhood *D* of 0 in \mathbb{Z}_p where $\lambda \in \mathbb{Z}_p \setminus \{0, 1, 2, ...\}$. This equation has an unique formal solution, namely, $f(x) = \sum_{n=1}^{\infty} \frac{1}{n-\lambda} x^n$. It is clear that this solution divergent if only if λ is a *p*-adic Liouville number (for details see [20]).

It is well known that the set \mathcal{L} of *p*-adic Liouville numbers have the following basic properties:

1. $\mathscr{L} \subset \mathbb{Z}_p$

- H. Menken, A. Aşan / Eur. J. Pure Appl. Math, 6 (2013), 239-246
- 2. \mathscr{L} has measure 0 for the real Haar measure on \mathbb{Z}_p
- 3. If $\alpha \in \mathcal{L}$ and $n, m \in \mathbb{Z}$ with m > 0, the $n + m\alpha \in \mathcal{L}$
- 4. $\mathcal{L} \neq -\mathcal{L}$ and $\mathcal{L} \cap -\mathcal{L} \neq \emptyset$
- 5. \mathscr{L} forms a dense subset of \mathbb{Z}_p
- 6. Every $\alpha \in \mathscr{L}$ is transcendental over \mathbb{Q} .

In general case the *p*-adic transcendental numbers have been studied by K. Mahler [15], W. W. Adams [1], X. X. Long [13], K. Nishioka [19] and others. As a special case the *p*-adic Liouville numbers have been studied in [4, 11, 17, 18] and others.

2. The Erdös Theorem in the *p*-adic Numbers Field \mathbb{Q}_p .

We prove the following result as an analogue of the Erdös theorem in the *p*-adic numbers field \mathbb{Q}_p .

Theorem 2. Let (a_n) be a sequence of p-adic integers such that

$$v_p\left(a_n\right) < v_p\left(a_{n+1}\right) \tag{1}$$

for every n, and

$$v_p\left(a_{n+1}\right) \ge n^{1+\varepsilon} \tag{2}$$

for fixed $\varepsilon > 0$ and $n > n_0(\varepsilon)$. Then

$$\alpha = \sum_{n=1}^{\infty} a_n$$

is a p-adic Liouville number.

Proof. First we show that the series $\sum_{n=1}^{\infty} a_n$ is convergent. It follows from the condition (2) that

$$v_p\left(a_{n+1}\right) \ge n^{1+\varepsilon}$$

for fixed $\varepsilon > 0$ and $n > n_0(\varepsilon)$. Then, we have

$$|a_{n+1}|_p = p^{-\nu_p(a_{n+1})} \leq p^{-n^{1+\varepsilon}} \to 0, (n \to \infty).$$

Hence, $\lim_{n \to 0} a_n = 0$, so the series $\sum_{n=1}^{\infty} a_n$ is convergent. By the property $\left|\sum_{n=1}^{\infty} a_n\right|_p \le \max_{n \in \mathbb{N}} |a_n|_p$, we obtain that $\alpha = \sum_{n=1}^{\infty} a_n \in \mathbb{Z}_p$. Also, by the condition (1) $\alpha \in \mathbb{Z}_p \setminus \mathbb{Z}$.

Let $\varepsilon > 0$ be an arbitrary real number. Then,

$$0 < |\alpha - S_n|_p^{\frac{1}{n}} = \left|\sum_{i=1}^{\infty} a_{n+i}\right|_p^{\frac{1}{n}} = \left[\max\left\{\left|a_{n+1}\right|_p, \left|a_{n+2}\right|_p, \ldots\right\}\right]^{\frac{1}{n}}$$

where $S_n = \sum_{i=1}^n a_i$. Hence, from the condition (1) we obtain

$$0 < \left| \alpha - S_n \right|_p^{\frac{1}{n}} = \left| a_{n+1} \right|_p^{\frac{1}{n}}$$

Thus,

$$0 < \left| \alpha - S_n \right|_p^{\frac{1}{n}} = \left[p^{-\nu_p(a_{n+1})} \right]^{\frac{1}{n}}$$

and by the inequality (2) we get

$$0 < \left| \alpha - S_n \right|_p^{\frac{1}{n}} = \left[p^{-\nu_p(a_{n+1})} \right]^{\frac{1}{n}} \le p^{-\frac{n^{1+\varepsilon}}{n}} = p^{-n^{\varepsilon}} \left(n \ge n_0 \right)$$

Thus we have

$$\left| \alpha - S_n \right|_p^{\frac{1}{n}} \to 0 (n \to \infty).$$

Since $S_n \in \mathbb{Z}_p$ for every $n \in \mathbb{N}$, and the set of natural numbers \mathbb{N} is dense in \mathbb{Z}_p , there exists a sequence b_n from \mathbb{N} such that

$$\left|S_n - b_n\right|_p < \left|\alpha - S_n\right|_p$$

for every $n \in \mathbb{N}$. By the ultrametric inequality we can write

$$0 < |\alpha - b_n|_p \le \max\left\{ \left| \alpha - S_n \right|_p, \left| S_n - b_n \right|_p \right\} = |\alpha - S_n|_p$$

for every $n \in \mathbb{N}$. Hence, we can obtain a positive integer sequence b_n such that

$$0 < \left| \alpha - b_n \right|_p^{\frac{1}{n}} \le \left| \alpha - S_n \right|_p^{\frac{1}{n}} = p^{-n^{\varepsilon}} \to 0 \, (n \to \infty) \, .$$

So, the theorem is proved.

Remark 1. Since $v_p(a_n) \in \mathbb{N}$ for all $a_n \in \mathbb{Z}_p$, in Theorem 2, the condition (2) can be replaced by the condition

 $v_p\left(a_{n+1}\right) \ge n^2.$

In similar way, we can give the following result.

Corollary 1. Let (a_n) be a sequence of positive integers such that

$$v_p\left(a_n\right) < v_p\left(a_{n+1}\right) \tag{3}$$

for every n, and

$$v_p\left(a_{n+1}\right) \ge n^2 \tag{4}$$

for $n > n_0$. Then

$$\alpha = \sum_{n=1}^{\infty} a_n$$

is a p-adic Liouville number.

H. Menken, A. Aşan / Eur. J. Pure Appl. Math, 6 (2013), 239-246

Proof. By the relations (3) and (4) we have, $\lim_{n\to\infty} a_n = 0$, and so, the series $\sum_{n=1}^{\infty} a_n$ is convergent and $\alpha \in \mathbb{Z}_p$. Similarly, we can obtain that

$$0 < \left| \alpha - S_n \right|_p^{\frac{1}{n}} = \left[p^{-\nu_p(a_{n+1})} \right]^{\frac{1}{n}} \le p^{-\frac{n^2}{n}} = p^{-n} \to 0 \, (n \to \infty)$$

where $S_n = \sum_{i=1}^n a_i$. Also, since $S_n \in \mathbb{N}$ for all $n \in \mathbb{N}$, the number α is a *p*-adic Liouville number.

3. The Erdös Theorem in the Functions Field $K \langle x \rangle$

Let *K* be an arbitrary field, *x* an indeterminate, *K* [*x*] the ring of all polynomials in *x* with coefficients in *K*, *K*(*x*) the field of all rational functions in *x* with coefficients in *K*, and *K* $\langle x \rangle$ the field of all formal series

$$z = a_k x^k + a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots$$

in *x* where the coefficients $a_k, a_{k-1}, a_{k-2}, \ldots$ are in *K*. Thus K(x) is the quotient field of K[x] and a subfield of $K\langle x \rangle$.

A valuation |z| in $K \langle x \rangle$ is now defined by putting |0| = 0; but $|z| = e^k$ if

$$z = a_k x^k + a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots$$

and $a_k \neq 0$.

If *z* lies in K[x], then $\log |z| = \deg z$.

It is clear that this norm is a non-archimedean and so, $K \langle x \rangle$ is a non-archimedean field with this norm.

The analogue of Liouville's theorem states that if $\alpha \in K \langle x \rangle$ is an algebraic number of degree $n \ge 2$ over K(x), then there exists a positive constant $C(\alpha)$ depending only on α such that

$$\left|\alpha - \frac{a}{b}\right| \ge \frac{C(\alpha)}{b^n}$$

for all $a, b \in K[x]$ ($b \neq 0$) [see 16]. Some investigations involve the Liouville numbers in the functions field was done in [11]. Now we recall the definition of Liouville numbers in this field.

Definition 2. An element $\xi \in K \langle x \rangle$ is called a Liouville number if for every $\omega \in \mathbb{R}^+$, there exist integer $a, b \in K[x] \setminus \{0\}$ with |b| > 1 such that

$$0 < \left| \xi - \frac{a}{b} \right| < \frac{1}{b^{\omega}}.$$

We can give an analogue of the Erdös theorem in the functions field as follows

H. Menken, A. Aşan / Eur. J. Pure Appl. Math, 6 (2013), 239-246

Theorem 3. Let (z_n) be a sequence of formal series in $K \langle x \rangle$ such that

$$\deg\left(z_{n+1}\right) < \deg\left(z_n\right) < 0 \tag{5}$$

for every n and

$$\deg\left(z_{n+1}\right) \le -n^{1+\varepsilon} \tag{6}$$

for fixed $\varepsilon > 0$ and $n > n_0(\varepsilon)$. Then,

$$\alpha = \sum_{n=1}^{\infty} z_n$$

is a Liouville number in $K \langle x \rangle$.

Proof. First we show that the series $\sum_{n=1}^{\infty} z_n$ is convergent. It follows from the condition (6) that

$$|z_{n+1}| = e^{\deg(z_{n+1})} \le e^{-n^{1+\epsilon}}$$

for fixed $\varepsilon > 0$ and $n > n_0(\varepsilon)$. Then, we get

$$\lim_{n\to\infty} z_n = 0.$$

Thus, the series $\sum_{n=1}^{\infty} z_n$ is convergent. Let $\varepsilon > 0$ be an arbitrary real number. Then,

$$0 < |\alpha - S_n|^{\frac{1}{n}} = \left|\sum_{i=1}^{\infty} z_{n+i}\right|^{\frac{1}{n}} = \left[\max\left\{|z_{n+1}|, |a_{n+2}|, \ldots\right\}\right]^{\frac{1}{n}}$$

where $S_n = \sum_{i=1}^n a_i$. Hence, from the condition (5) we obtain

$$0 < \left|\alpha - S_n\right|^{\frac{1}{n}} = \left|z_{n+1}\right|^{\frac{1}{n}}.$$

Thus,

$$0 < \left| \alpha - S_n \right|^{\frac{1}{n}} = \left[e^{\deg(z_{n+1})} \right]^{\frac{1}{n}}$$

and by the inequality (6) we get

$$0 < \left| \alpha - S_n \right|^{\frac{1}{n}} = \left[e^{\operatorname{deg}(z_{n+1})} \right]^{\frac{1}{n}} \le e^{-\frac{n^{1+\varepsilon}}{n}} = e^{-n^{\varepsilon}}$$

for $n > n_0(\varepsilon)$. Thus, we have

$$\left|\alpha-S_{n}\right|^{\frac{1}{n}}\to 0(n\to\infty).$$

Since $S_n \in K \langle x \rangle$ for every $n \in \mathbb{N}$, and the rational polynomials field set K(x) is dense in $K \langle x \rangle$ with respect the non-archimedean norm, there exists a sequence $\frac{a_n}{b_n} \in K(x)$ $(a_n, b_n \in K[x])$ such that

$$\left|S_n - \frac{a_n}{b_n}\right| < \left|\alpha - S_n\right|$$

244

REFERENCES

for every $n \in \mathbb{N}$. By the ultrametric inequality we can write

$$\left| \alpha - \frac{a_n}{b_n} \right| \le \max\left\{ \left| \alpha - S_n \right|, \left| S_n - b_n \right| \right\} = \left| \alpha - S_n \right|$$

for every $n \in \mathbb{N}$. Hence, we can obtain $\frac{a_n}{b_n} \in K(x)$ such that

$$\left|\alpha-\frac{a_n}{b_n}\right|^{\frac{1}{n}} \leq \left|\alpha-S_n\right|^{\frac{1}{n}} = e^{-n^{\varepsilon}} \to 0 \ (n \to \infty).$$

So, $\alpha \in K \langle x \rangle$ is a Liouville number.

Example 2. Consider the element $\xi = \sum_{n=1}^{\infty} x^{-n!}$ in $K \langle x \rangle$. Let $z_n = x^{-n!}$. It is clear that z_n satisfy the conditions (5) and (6). By Theorem 3, ξ is a Liouville number in the functions field.

ACKNOWLEDGEMENTS This work is supported by Mersin University and the Scientific and Technological Research Council of Turkey (TÜBİTAK). The authors would like to thank the reviewers for their useful suggestions.

References

- [1] W.W. Adams. Transcendental numbers in the *p*-adic domain, American Journal of Mathematics. 88, 279-308. 1966.
- [2] K. Alniaçik. On U_m -numbers, Proceedings of the American Mathematical Society. 85, No. 4, 499-505. 1982.
- [3] A. Baker. Transcendental Number Theory, Cambridge University Press, Cambridge, 1975.
- [4] V.V. Beresnevich, V.I. Bernik, and E.I. Kovalevskaya. On approximation of *p*-adic numbers by *p*-adic algebraic numbers, Journal of Number Theory. 111 33 56. 2005.
- [5] Y. Bugeaud. Approximation by algebraic numbers, Cambridge University Press, Cambridge. 2007.
- [6] D.N. Clark. A note on the *p*-adic convergence of the solutions of linear differential equations, Proceedings of the American Mathematical Society. 17, 262-269. 1966.
- [7] P. Erdös. Representation of real numbers as sums and products of Liouville numbers, Michigan Mathematical Journal. 9, 59-60. 1962.
- [8] P. Erdös. Some problems and results on the irrationality of the sum of infinite series, Journal of Mathematical Sciences. 10, 1-7. 1975.
- [9] J. Hancl. Liouville sequences, Nagoya Mathematical Journal. J. 172, 173-187. 2003.

- [10] J.F. Koksma. Uber die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer durch algebraische Zahlen. Monatshefte für Mathematik und Physik. 48, 176- I 89. 1939.
- [11] T. Chaichana, T. Komatsu, and V. Laohakosol. Liouville numbers in the non-archimedean case, Publicationes Mathematicae Debrecen. 77/1-2, 39-63. 2010.
- [12] W.J. Leveque. On Mahler's U- Numbers. London Mathematical Society. 220 -229. 1953.
- [13] X.X. Long. Mahler's Classification of *p*-Adic Numbers Pure and Applied Mathematics. 5, 73 80. 1989.
- [14] K. Mahler. Zur Approximation der Exponential funktion und des Logarithmus I, II, Die Journal f
 ür die Riene und Angewandte Mathematik. 166, 118- 150. 1932.
- [15] K. Mahler. Uber eine Klassen-Einteilung der *p*-adischen Zahlen, Mathematica Leiden. 3, 177-185. 1935.
- [16] K. Mahler. On a theorem of Liouville in fields of positive characteristic. Canadian Journal of Mathematics. 1, 397-400. 1949.
- [17] H. Menken. An investigation on *p*-adic *U* numbers, University of Istanbul Faculty of Science Journal of Mathematics. 59, 111-143. 2000.
- [18] H. Menken, and K.R. Mamedov. Point on curves whose coordinates are *p*-adic *U*numbers, *p*-Adic Mathematical Physics, 267-273, AIP Conference Proceedings 826, American Institute of Physics, Melville, NY. 2006.
- [19] K. Nishioka. *p*-adic transcendental numbers, Proceedings of the American Mathematical Society 108, No.1, 39-41. 1990.
- [20] M. van der Put and L. Taelman. Local *p*-adic differential equations, *p*-Adic Mathematical Physics, 291-297, AIP Conference Proceedings 826, American Institute of Physics, Melville, NY. 2006.
- [21] W.H. Schikhof. Ultrametric Calculus, Cambridge University press, Cambridge. 2006.