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1. Introduction

The classical Liouville’s theorem states that if α ∈ R is an algebraic number of degree
n≥ 2, then there exists a positive constant C(α) depending only on α such that

�

�

�α−
a

b

�

�

�≥
C(α)

bn

for all a, b ∈ Z+. The existence of transcendental numbers has been usually shown using the
Liouville’s theorem. For instance, the transcendence of the number ξ =

∑∞
n=1 10−n! can be

easily proved from the Liouville’s theorem [see 3]. A real number ξ ∈ R is called a (real)
Liouville number if for every positive integer n, there exist integer a and b(> 1) such that

0<
�

�

�ξ−
a

b

�

�

�<
1

bn .

Real Liouville numbers have many interesting properties and investigated by many authors
[see 2, 7, 9, 10, 12, 14]. We note that Liouville numbers are real numbers that can be rapidly
approximated by algebraic numbers with degree one. A general theory of approximation by
algebraic numbers is given in [5]. Here we mainly focus on the Erdös theorem:
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Theorem 1. [P. Erdös, [8]] Let a1 < a2 < a3 < . . . be an infinite sequence of integers satisfying

lim
n→∞

sup a
1
tn
n =∞

for every t > 0, and
an > n1+ε

for fixed ε > 0 and n> n0 (ε). Then

α=
∞
∑

n=1

1

an

is a Liouville number.

It is well known that real numbers field R is archimedean. There are interesting non-
archimedean fields as the p-adic numbers field Qp and the functions field.

Let p be a fixed prime number. By Zp,Qp and Cp we denote the ring of p-adic integers,
the field of p-adic numbers, and the completion of the algebraic closure of Qp, respectively.

In the present work we investigate some properties of Liouville numbers in non-archimedean
case. Mainly, we give the analogues of the Erdös theorem in the non-archimedean case, both
in p-adic numbers field Qp and the functions field K 〈x〉.

Although the classical Liouville numbers are real numbers that can be rapidly approx-
imated by rational numbers, the p-adic Liouville numbers are those numbers that can be
rapidly approximated by positive integers in the p-adic norm. The p-adic Liouville numbers
are defined as follows:

Definition 1 ([6, 21]). Let α be a p-adic integer. If

lim
n→∞

inf n
p

|n−α|p = 0,

then the number α is called p-adic Liouville number.

Example 1. Let consider the series α =
∑∞

n=0 pn!. It is easy to see that the sum is a p-adic
Liouville number.

The definition above is first introduced by D. Clark [6] and it is better adapted to differ-
ential equations. In fact, consider the differential equation

x f ′(x)−λ f (x) =
1

1− x

on a neighborhood D of 0 in Zp where λ ∈ Zp\{0,1, 2, . . .}. This equation has an unique
formal solution, namely, f (x) =

∑∞
n=1

1
n−λ xn. It is clear that this solution divergent if only if

λ is a p-adic Liouville number (for details see [20]).
It is well known that the set L of p-adic Liouville numbers have the following basic

properties:

1. L ⊂ Zp
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2. L has measure 0 for the real Haar measure on Zp

3. If α ∈ L and n, m ∈ Z with m> 0, the n+mα ∈ L

4. L 6=−L and L ∩−L 6= ;

5. L forms a dense subset of Zp

6. Every α ∈ L is transcendental over Q.

In general case the p-adic transcendental numbers have been studied by K. Mahler [15],
W. W. Adams [1], X. X. Long [13], K. Nishioka [19] and others. As a special case the p-adic
Liouville numbers have been studied in [4, 11, 17, 18] and others.

2. The Erdös Theorem in the p-adic Numbers Field Qp.

We prove the following result as an analogue of the Erdös theorem in the p-adic numbers
field Qp.

Theorem 2. Let
�

an
�

be a sequence of p-adic integers such that

νp
�

an
�

< νp
�

an+1
�

(1)

for every n, and
νp
�

an+1
�

≥ n1+ε (2)

for fixed ε > 0 and n> n0 (ε). Then

α=
∞
∑

n=1

an

is a p-adic Liouville number.

Proof. First we show that the series
∑∞

n=1 an is convergent. It follows from the condition
(2) that

νp
�

an+1
�

≥ n1+ε

for fixed ε > 0 and n> n0 (ε). Then, we have
�

�an+1

�

�

p = p−νp(an+1) ≤ p−n1+ε
→ 0, (n→∞) .

Hence, lim
n→0

an = 0, so the series
∑∞

n=1 an is convergent. By the property
�

�

∑∞
n=1 an

�

�

p ≤max
n∈N

�

�an

�

�

p, we obtain that α=
∑∞

n=1 an ∈ Zp. Also, by the condition (1)

α ∈ Zp\Z.
Let ε > 0 be an arbitrary real number. Then,

0<
�

�α− Sn

�

�

1
n
p =

�

�

�

�

�

∞
∑

i=1

an+i

�

�

�

�

�

1
n

p

=
h

max
n

�

�an+1

�

�

p ,
�

�an+2

�

�

p , . . .
oi

1
n
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where Sn =
∑n

i=1 ai . Hence, from the condition (1) we obtain

0<
�

�α− Sn

�

�

1
n
p =

�

�an+1

�

�

1
n
p .

Thus,

0<
�

�α− Sn

�

�

1
n
p =

h

p−νp(an+1)
i

1
n

and by the inequality (2) we get

0<
�

�α− Sn

�

�

1
n
p =

h

p−νp(an+1)
i

1
n ≤ p−

n1+ε

n = p−nε �n≥ n0
�

.

Thus we have
�

�α− Sn

�

�

1
n
p → 0(n→∞).

Since Sn ∈ Zp for every n ∈ N, and the set of natural numbers N is dense in Zp, there exists a
sequence bn from N such that

�

�Sn− bn

�

�

p <
�

�α− Sn

�

�

p

for every n ∈ N. By the ultrametric inequality we can write

0<
�

�α− bn

�

�

p ≤max
n

�

�α− Sn

�

�

p ,
�

�Sn− bn

�

�

p

o

=
�

�α− Sn

�

�

p

for every n ∈ N. Hence, we can obtain a positive integer sequence bn such that

0<
�

�α− bn

�

�

1
n
p ≤

�

�α− Sn

�

�

1
n
p = p−nε → 0 (n→∞) .

So, the theorem is proved.

Remark 1. Since νp
�

an
�

∈ N for all an ∈ Zp, in Theorem 2, the condition (2) can be replaced
by the condition

νp
�

an+1
�

≥ n2.

In similar way, we can give the following result.

Corollary 1. Let
�

an
�

be a sequence of positive integers such that

νp
�

an
�

< νp
�

an+1
�

(3)

for every n, and
νp
�

an+1
�

≥ n2 (4)

for n> n0. Then

α=
∞
∑

n=1

an

is a p-adic Liouville number.
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Proof. By the relations (3) and (4) we have, l im
n→∞

an = 0, and so, the series
∑∞

n=1 an is

convergent and α ∈ Zp. Similarly, we can obtain that

0<
�

�α− Sn

�

�

1
n
p =

h

p−νp(an+1)
i

1
n ≤ p−

n2

n = p−n→ 0 (n→∞)

where Sn =
∑n

i=1 ai . Also, since Sn ∈ N for all n ∈ N, the number α is a p-adic Liouville
number.

3. The Erdös Theorem in the Functions Field K 〈x〉

Let K be an arbitrary field, x an indeterminate, K [x] the ring of all polynomials in x with
coefficients in K , K (x) the field of all rational functions in x with coefficients in K , and K 〈x〉
the field of all formal series

z = ak xk + ak−1 xk−1+ ak−2 xk−2+ . . .

in x where the coefficients ak, ak−1, ak−2, . . . are in K . Thus K (x) is the quotient field of K [x]
and a subfield of K 〈x〉.

A valuation |z| in K 〈x〉 is now defined by putting |0|= 0; but |z|= ek if

z = ak xk + ak−1 xk−1+ ak−2 xk−2+ . . .

and ak 6= 0.
If z lies in K [x], then log |z|= deg z.
It is clear that this norm is a non-archimedean and so, K 〈x〉 is a non-archimedean field

with this norm.
The analogue of Liouville’s theorem states that if α ∈ K 〈x〉 is an algebraic number of

degree n ≥ 2 over K(x), then there exists a positive constant C(α) depending only on α such
that

�

�

�α−
a

b

�

�

�≥
C(α)

bn

for all a, b ∈ K [x] (b 6= 0) [see 16]. Some investigations involve the Liouville numbers in the
functions field was done in [11]. Now we recall the definition of Liouville numbers in this
field.

Definition 2. An element ξ ∈ K 〈x〉 is called a Liouville number if for every ω ∈ R+, there exist
integer a, b ∈ K [x]\{0} with |b|> 1 such that

0<
�

�

�ξ−
a

b

�

�

�<
1

bω
.

We can give an analogue of the Erdös theorem in the functions field as follows
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Theorem 3. Let
�

zn
�

be a sequence of formal series in K 〈x〉 such that

deg
�

zn+1
�

< deg
�

zn
�

< 0 (5)

for every n and
deg
�

zn+1
�

≤−n1+ε (6)

for fixed ε > 0 and n> n0 (ε). Then,

α=
∞
∑

n=1

zn

is a Liouville number in K 〈x〉.

Proof. First we show that the series
∑∞

n=1 zn is convergent. It follows from the condition
(6) that

�

�zn+1

�

�= edeg(zn+1) ≤ e−n1+ε

for fixed ε > 0 and n> n0 (ε). Then, we get

l im
n→∞

zn = 0.

Thus, the series
∑∞

n=1 zn is convergent.
Let ε > 0 be an arbitrary real number. Then,

0<
�

�α− Sn

�

�

1
n =

�

�

�

�

�

∞
∑

i=1

zn+i

�

�

�

�

�

1
n

=
�

max
¦�

�zn+1

�

� ,
�

�an+2

�

� , . . .
©�

1
n

where Sn =
∑n

i=1 ai . Hence, from the condition (5) we obtain

0<
�

�α− Sn

�

�

1
n =
�

�zn+1

�

�

1
n .

Thus,

0<
�

�α− Sn

�

�

1
n =
h

edeg(zn+1)
i

1
n

and by the inequality (6) we get

0<
�

�α− Sn

�

�

1
n =
h

edeg(zn+1)
i

1
n ≤ e−

n1+ε

n = e−nε

for n> n0 (ε). Thus, we have
�

�α− Sn

�

�

1
n → 0(n→∞).

Since Sn ∈ K 〈x〉 for every n ∈ N, and the rational polynomials field set K(x) is dense in K 〈x〉
with respect the non-archimedean norm, there exists a sequence an

bn
∈ K(x) (an, bn ∈ K[x])

such that
�

�

�

�

Sn−
an

bn

�

�

�

�

<
�

�α− Sn

�

�
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for every n ∈ N. By the ultrametric inequality we can write
�

�

�

�

α−
an

bn

�

�

�

�

≤max
¦�

�α− Sn

�

� ,
�

�Sn− bn

�

�

©

=
�

�α− Sn

�

�

for every n ∈ N. Hence, we can obtain an
bn
∈ K(x) such that

�

�

�

�

α−
an

bn

�

�

�

�

1
n

≤
�

�α− Sn

�

�

1
n = e−nε → 0 (n→∞) .

So, α ∈ K 〈x〉 is a Liouville number.

Example 2. Consider the element ξ =
∑∞

n=1 x−n! in K 〈x〉. Let zn = x−n!. It is clear that zn
satisfy the conditions (5) and (6). By Theorem 3, ξ is a Liouville number in the functions field.
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