Characterization of Prime Ideals in ($\mathscr{Z}^{+}, \leq_{\mathscr{D}}$)

Sankar Sagi
College of Applied Sciences, Sohar, Ministry of Higher Education, Sultanate of Oman

Abstract

A convolution is a mapping \mathscr{C} of the set \mathscr{Z}^{+}of positive integers into the set $\mathscr{P}\left(\mathscr{Z}^{+}\right)$of all subsets of \mathscr{Z}^{+}such that, for any $n \in \mathscr{Z}^{+}$, each member of $\mathscr{C}(n)$ is a divisor of n. If $\mathscr{D}(n)$ is the set of all divisors of n, for any n, then \mathscr{D} is called the Dirichlet's convolution. Corresponding to any general convolution \mathscr{C}, we can define a binary relation $\leq_{\mathscr{C}}$ on \mathscr{Z}^{+}by " $m \leq_{\mathscr{C}} n$ if and only if $m \in \mathscr{C}(n)$ ". It is well known that \mathscr{Z}^{+}has the structure of a distributive lattice with respect to the division order. The division ordering is precisely the partial ordering $\leq_{\mathscr{D}}$ induced by the Dirichlet's convolution \mathscr{D}. In this paper, we present a characterization for the prime ideals in $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$, where \mathscr{D} is the Dirichlet's convolution.

2010 Mathematics Subject Classifications: 06B10,11A99
Key Words and Phrases: Poset, Lattice, semi lattice, Convolution, ideal

1. Introduction

A Convolution is a mapping $\mathscr{C}: \mathscr{Z}^{+} \longrightarrow \mathscr{P}\left(\mathscr{Z}^{+}\right)$such that $\mathscr{C}(n)$ is a set of positive divisors on $n, n \in \mathscr{C}(n)$ and $\mathscr{C}(n)=\bigcup_{m \in \mathscr{C}(n)} \mathscr{C}(m)$, for any $n \in \mathscr{Z}^{+}$. Popular examples are the Dirichlet's convolution \mathscr{D} and the Unitary convolution \mathscr{U} defined respectively by

$$
\mathscr{D}(n)=\text { The set of all positive divisors of } n
$$

and

$$
\mathscr{U}(n)=\text { The set of Unitary divisors of } n
$$

for any $n \in \mathscr{Z}^{+}$. If \mathscr{C} is a convolution, then the binary relation $\leq_{\mathscr{C}}$ on \mathscr{Z}^{+}, defined by,

$$
m \leq_{\mathscr{C}} n \text { if and only if } m \in \mathscr{C}(n)
$$

is a partial order on \mathscr{Z}^{+}and is called the partial order induced by \mathscr{C} [2]. It is well known that the Dirichlet's convolution induces the division order on \mathscr{Z}^{+}with respect to which \mathscr{Z}^{+}becomes a distributive lattice, where, for any $a, b \in \mathscr{Z}+$, the greatest common divisor(GCD) and the

[^0]least common multiple(LCM) of a and b are respectively the greatest lower bound(glb) and the least upper bound(lub) of a and b. In fact, with respect to the division order, the lattice \mathscr{Z}^{+}satisfies the infinite join distributive law given by
$$
\left(a \vee\left(\bigwedge_{i \in I} b_{i}\right)=\bigwedge_{i \in I}\left(a \vee b_{i}\right)\right)
$$
for any $a \in \mathscr{Z}^{+}$and $\left\{b_{i}\right\}_{i \in I} \subseteq \mathscr{Z}^{+}$. In this paper, we discuss various aspects of ideals and filters in $\left(\mathscr{Z}^{+}, \leq_{C}\right)$ and eventually present a characterization of prime ideals in ($\mathscr{Z}^{+}, \leq_{\mathscr{O}}$) where \mathscr{D} is the Dirichlet's convolution Actually a general convolution may not induce a lattice structure on \mathscr{Z}^{+}. However, most of the convolutions we are considering induce a meet semi lattice structure on \mathscr{Z}^{+}. For this reason, we first consider a general semi lattice and study it's ideals and later extend these to ($\mathscr{Z}^{+}, \leq_{D}$).

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive ($a \leq a$), transitive ($a \leq b, b \leq c \Longrightarrow a \leq c$) and antisymmetric ($a \leq b, b \leq a \Longrightarrow a=b$) and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and \leq is a partial order on X. For any $A \subseteq X$ and $x \in X, x$ is called a lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound (glb) and least upper bound(lub) of A in X. If A is a finite subset $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, the glb of $A($ lub of $A)$ is denoted by $a_{1} \wedge a_{2} \wedge \cdots \wedge a_{n}$ or $\bigwedge_{i=1}^{n} a_{i}$ (respectively by $a_{1} \vee a_{2} \vee \cdots \vee a_{n}$ or $\bigvee_{i=1}^{n} a_{i}$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b(=\operatorname{glb}\{a, b\})$ exists for all a and $b \in X .(X, \leq)$ is called a join semi lattice if $a \vee b$ ($=\operatorname{lub}\{a, b\}$) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee), where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge(a \vee b)=a=a \vee(a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$
(a=a \wedge b \Longleftrightarrow a \leq b \Longleftrightarrow a \vee b=b) .
$$

Throughout the paper, \mathscr{Z}^{+}and \mathscr{N} denote the set of positive integers and the set of nonnegative integers respectively.

Definition 1. A mapping $\mathscr{C}: \mathscr{Z}^{+} \longrightarrow \mathscr{P}\left(\mathscr{Z}^{+}\right)$is called a convolution if the following are satisfied for any $n \in \mathscr{Z}^{+}$.
(1). $\mathscr{C}(n)$ is a set of positive divisors of n
(2). $n \in \mathscr{C}(n)$
(3). $\mathscr{C}(n)=\bigcup_{m \in \mathscr{C}(n)} \mathscr{C}(m)$.

Definition 2. For any convolution \mathscr{C} and m and $n \in \mathscr{Z}^{+}$, we define

$$
(m \leq n \text { if and only if } m \in \mathscr{C}(n))
$$

Then $\leq_{\mathscr{C}}$ is a partial order on \mathscr{Z}^{+}and is called the partial order induced by \mathscr{C} on \mathscr{Z}^{+}.
In fact, for any mapping $\mathscr{C}: \mathscr{Z}^{+} \longrightarrow \mathscr{P}\left(\mathscr{Z}^{+}\right)$such that each member of $\mathscr{C}(n)$ is a divisor of $n, \leq_{\mathscr{C}}$ is a partial order on \mathscr{Z}^{+}if and only if \mathscr{C} is a convolution, as defined above [1, 4].

Definition 3. Let \mathscr{C} be a convolution and p a prime number. Define a relation $\leq_{\mathscr{C}}^{p}$ on the set \mathscr{N} of non-negative integers by

$$
\left(a \leq_{\mathscr{C}}^{p} b \text { if and only if } p^{a} \in \mathscr{C}\left(p^{b}\right)\right)
$$

for any a and $b \in \mathscr{N}$.
It can be easily verified that $\leq_{\mathscr{C}}^{p}$ is a partial order on \mathscr{N}, for each prime p. The following is a direct verification.

Theorem 1. Let \mathscr{C} be a convolution.
(1). If $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a meet(join) semilattice, then so is $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ for each prime p.
(2). If $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a lattice, then so is $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ for each prime p.

3. Ideals in $\left(\mathscr{Z}^{+}, \leq_{D}\right)$

Recall that most of the convolutions like Dirichlet's convolution, Unitary convolution and k-free convolution induce meet semi lattice structure on \mathscr{Z}^{+}[3]. For this reason we study ideals in a general meet semi lattice and later study ideals in the lattice structure \mathscr{Z}^{+}induced by the division ordering /. The division ordering / is precisely the partial ordering \leq_{D} induced by the Dirichlet's convolution D. Throughout this section, unless otherwise stated, by a semi lattice we mean a meet semi lattice only.

Definition 4. Let (X, \leq) be a poset. A non-empty subset I of X is called an initial segment if

$$
a \in I, x \in X \text { and } x \leq a \Longrightarrow x \in I
$$

Definition 5. Let (S, \wedge) be a semi lattice. A non-empty subset I of S is called an ideal of S if the following are satisfied
(1). $x \in S$ and $x \leq a \in I \Longrightarrow x \in I$
(2). For any a and $b \in I$, there exists $c \in I$ such that $a \leq c$ and $b \leq c$

Definition 6. Let (S, \wedge) be a semi lattice and $a \in S$. Then the set

$$
(a]:=\{x \in S \mid x \leq a\}=\{y \wedge a \mid y \in S\}
$$

is an ideal of S and is called the Principal ideal generated by a in S. Note that (a] is the smallest ideal of S containing a.

Now, we present the following
Theorem 2. Let a and b be elements of a meet semi lattice (S, \wedge). Then the following are equivalent to each other.
(1). There exists smallest ideal of S containing a and b.
(2). The intersection of all ideals of S containing a and b is again an ideal of S.
(3). a and b have least upper bound in S.

Proof. (1) $\Longleftrightarrow(2)$: is trivial.
$(1) \Longrightarrow(3)$: Let I be the smallest ideal of S containing a and b. Then, there exists $x \in I$ such that

$$
a \leq x \text { and } b \leq x
$$

Therefore x is an upper bound of a and b. If y is any other upper bound of a and b, then (y] is an ideal of S containing a and b and hence $I \subseteq(y]$. Since $x \in I$, we get that $x \in(y]$ and therefore $x \leq y$. Thus x is the least upper bound of a and b.
$(3) \Longrightarrow(1)$: Let $a \vee b$ be the least upper bound of a and b. Then $a \leq a \vee b$ and $b \leq a \vee b$ and hence $(a \vee b]$ is an ideal containing a and b. If I is any ideal containing a and b, then there exists $x \in I$ such that

$$
a \leq x \text { and } b \leq x \text { and hence } a \vee b \leq x
$$

so that $a \vee b \in I$ and $(a \vee b] \subseteq I$. Thus $(a \vee b]$ is the smallest ideal of S containing a and b.
Although the intersection of an arbitrary class of ideals need not be an ideal, a finite intersection is always an ideal.

Theorem 3. Let (S, \wedge) be a semi lattice and $\mathscr{I}(S)$ the set of all ideals of S. Then $(\mathscr{I}(S), \cap)$ is a semilattice and $a \mapsto(a]$ is an embedding of (S, \wedge) onto $(\mathscr{I}(S), \cap)$.

Proof. By the above theorem, it follows that $(\mathscr{I}(S), \cap)$ is a semi lattice.Also, for any a and b in S, we have

$$
(a] \cap(b]=(a \wedge b]
$$

and

$$
(a] \subseteq(b] \Longleftrightarrow a \in(b] \Longleftrightarrow a \leq b
$$

Therefore $a \mapsto(a]$ is an embedding of S into $\mathscr{I}(S)$.
Theorem 4. A semi lattice (S, \wedge) is a lattice if and only if $\mathscr{I}(S)$ is a lattice and, in this case, $a \mapsto(a]$ is an embedding of the lattice S into the lattice $\mathscr{I}(S)$.

Proof. It is well known that the set $\mathscr{I}(S)$ of ideals of a lattice (S, \wedge, \vee) is again a lattice in which,

$$
I \wedge J=I \cap J
$$

and

$$
I \vee J=\{x \in S \mid x \leq a \wedge b, \text { for some } a \in I \text { and } b \in J\}
$$

for any ideals I and J, in this case,

$$
(a] \vee(b]=(a \vee b]
$$

for any a and b in S, so that $a \mapsto(a]$ is an embedding of lattices.
Conversely, suppose that $\mathscr{I}(S)$ is a lattice. Let a and $b \in S$ and I be the least upper bound of (a] and (b] in $\mathscr{I}(S)$. Then I is the smallest ideal containing a and b and hence by Theorem 2, $a \vee b$ exists in S. Therefore S is a lattice.

For a lattice (L, \wedge, \vee), any ideal of the semi lattice (L, \wedge) turns out to be the usual ideal of the lattice (L, \wedge, \vee).

Definition 7. Let (S, \wedge) be a semi lattice. A non-empty subset F of S is called filter of S if, for any $a, b \in S$,

$$
a \wedge b \in F \Leftrightarrow a \in F \text { and } b \in F
$$

Theorem 5. Let (S, \wedge) be a semi lattice and P a proper ideal of S. Then the following are equivalent to each other
(1). For any elements a and b in $S, a \wedge b \in P \Longrightarrow a \in P$ or $b \in P$
(2). For any ideals I and J of $S, I \cap J \subseteq P \Longrightarrow I \subseteq P$ or $J \subseteq P$
(3). $S-P$ is a filter of S.

Proof. (1) $\Longrightarrow(2)$: Let I and J be ideals of S. Suppose that $I \nsubseteq P$ and $J \nsubseteq P$. Then there exist $a \in I$ and $b \in J$ such that $a \notin P$ and $b \notin P$. Then, by (1), $a \wedge b \notin P$. But $a \wedge b \leq a \in I$ and $a \wedge b \leq b \in J$ and hence $a \wedge b \in I \cap J$. Therefore $I \cap J \nsubseteq P$.
(2) \Longrightarrow (3): If $a \leq b$ and $a \in S-P$, then clearly $b \in S-P$. Also,

$$
\begin{aligned}
a \text { and } b \in S-P & \Longrightarrow a \notin P \text { and } b \notin P \\
& \Longrightarrow(a] \nsubseteq P \text { and }(b] \nsubseteq P \\
& \Longrightarrow(a \wedge b]=(a] \cap(b] \nsubseteq P \\
& \Longrightarrow x \notin P \text { for some } x \leq a \wedge b \\
& \Longrightarrow x \leq a \wedge b \text { and } x \in S-P \\
& \Longrightarrow a \wedge b \in S-P
\end{aligned}
$$

Thus $S-P$ is a filter of S.
$(3) \Longrightarrow(1):$ For any a and $b \in S$,

$$
\begin{aligned}
a \notin P \text { and } b \notin P & \Longrightarrow a \text { and } b \in S-P \\
& \Longrightarrow a \wedge b \in S-P \\
& \Longrightarrow a \wedge b \notin P
\end{aligned}
$$

Definition 8. Any proper ideal P of a semi lattice (S, \wedge) is said to be a prime ideal if any one (and hence all) of the conditions in Theorem 5 is satisfied.

4. Prime Ideals in $\left(\mathscr{Z}^{+}, \leq_{D}\right)$

Now we shall turn our attention to the particular case of the lattice structure on \mathscr{Z}^{+}induced by the division ordering / and study the ideals and prime ideals of \mathscr{Z}^{+}. The division ordering is precisely the partial ordering \leq_{D} induced by the Dirichlet's convolution D.

First we observe that $\left(\theta:\left(\mathscr{Z}^{+}, /\right) \longrightarrow\left(\sum_{P} \mathscr{N}, \leq\right)\right)$ is an order isomorphism where θ is defined by

$$
\left(\theta(a)(p)=\text { The largest } n \in \mathscr{N} \text { such that } p^{n} \text { divides } a, \text { for any } a \in \mathscr{Z}^{+} \text {and } p \in \mathscr{P}\right)
$$

and

$$
\left(\sum_{P} \mathscr{N}\right)=\{f: \mathscr{P} \longrightarrow \mathscr{N} \mid f(p)=0 \text { for all but finite } p\}
$$

Here \mathscr{P} stands for the set of primes and \mathscr{N} stands for the set of non-negative integers.
Definition 9. Adjoin an external element ∞ to \mathscr{N} and extend the usual ordering \leq on \mathscr{N} to $\mathscr{N} \cup\{\infty\}$ by defining $a<\infty$ for all $a \in \mathscr{N}$. We shall denote $\mathscr{N} \cup\{\infty\}$ together with this extended usual order by \mathscr{N}^{∞}.

Theorem 6. Let $\alpha: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ be a mapping and define

$$
I_{\alpha}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p) \leq \alpha(p) \text { for all } p \in \mathscr{P}\right\}
$$

Then I_{α} is an ideal of $\left(\mathscr{Z}^{+}, /\right)$and every ideal of $\left(\mathscr{Z}^{+}, /\right)$is of the form I_{α} for some mapping $\alpha: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$

Proof. Since no prime divides the integer 1 , we get that $\theta(1)(p)=0 \leq \alpha(p)$ for all $p \in \mathscr{P}$ and hence $1 \in I_{\alpha}$. Therefore I_{α} is a non-empty subset of \mathscr{Z}^{+}.

$$
\begin{aligned}
m \text { and } n \in I_{\alpha} & \Longrightarrow \theta(m)(p) \leq \alpha(p) \text { and } \theta(n)(p) \leq \alpha(p) \text { for all } p \in \mathscr{P} \\
& \Longrightarrow \theta(m \vee n)(p)=\operatorname{Max}\{\theta(m)(p), \theta(n)(p)\} \leq \alpha(p) \text { for all } p \in \mathscr{P}
\end{aligned}
$$

$$
\Longrightarrow m \vee n \in I_{\alpha}
$$

and

$$
\begin{aligned}
m \leq_{D} n \in I_{\alpha} & \Longrightarrow \theta(m)(p) \leq \theta(n)(p) \leq \alpha(p) \text { for all } p \in \mathscr{P} \\
& \Longrightarrow \theta(m)(p) \leq \alpha(p) \text { for all } p \in \mathscr{P} \\
& \Longrightarrow m \in I_{\alpha} .
\end{aligned}
$$

Thus I_{α} is an ideal of ($\left.\mathscr{Z}^{+}, /\right)$. Conversely suppose that I is any ideal of $\left(\mathscr{Z}^{+}, /\right)$. Define $\alpha: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ by

$$
\alpha(p)=\operatorname{Sup}\{\theta(n)(p) \mid n \in I\} \text { for any } p \in \mathscr{P}
$$

Note that $\alpha(p)$ is either a non-negative integer or ∞, for any $p \in \mathscr{P}$. Therefore α is a mapping of \mathscr{P} into \mathscr{N}^{∞}.

$$
\begin{aligned}
n \in I & \Longrightarrow \theta(n)(p) \leq \alpha(p) \text { for all } p \in \mathscr{P} \\
& \Longrightarrow n \in I_{\alpha}
\end{aligned}
$$

Therefore $I \subseteq I_{\alpha}$. On the other hand, suppose $n \in I_{\alpha}$. Then $\theta(n)(p) \leq \alpha(p)$ for all $p \in \mathscr{P}$. Since $\theta(n) \in \sum_{P} \mathscr{N},|\theta(n)|$ is finite. If $|\theta(n)|=\phi$, then $n=1 \in I$. Suppose $|\theta(n)|$ is non-empty. Let $|\theta(n)|=\left\{p_{1}, p_{2} \cdots, p_{r}\right\}$. Then $\theta(n)(p)=0$ for all $p \neq p_{i}, 1 \leq i \leq r$ and $\theta(n)\left(p_{i}\right) \in \mathscr{N}$. Now, for each $1 \leq i \leq r, \theta(n)\left(p_{i}\right) \leq \alpha\left(p_{i}\right)=\operatorname{Sup}\left\{\theta(m)\left(p_{i}\right) \mid m \in I\right\}$ and hence there exists $m_{i} \in I$ such that $\theta(n)\left(p_{i}\right) \leq \theta(m)\left(p_{i}\right)$. Now, put $m=m_{1} \vee m_{2} \vee \cdots \vee m_{r}$, then $m \in I$ and

$$
\theta(n)\left(p_{i}\right) \leq \operatorname{Max}\left\{\theta\left(m_{1}\right)\left(p_{i}\right), \ldots, \theta\left(m_{i}\right)\left(p_{i}\right)\right\}=\theta(m)\left(p_{i}\right)
$$

for all $1 \leq i \leq r$. Also, since $\theta(n)(p)=0$ for all $p \neq p_{i}$, we get that $\theta(n)(p) \leq \theta(m)(p)$ for all $p \in \mathscr{P}$ so that $n \leq_{D} m \in I$ and therefore $n \in I$. Therefore $I_{\alpha} \subseteq I$. Thus $I=I_{\alpha}$.

Note that, if α is the constant map $\overline{0}$ defined by $\alpha(p)=0$ for all $p \in \mathscr{P}$, then $I_{\alpha}=\{1\}$ and that, if α is the constant map $\bar{\infty}$, then $I_{\alpha}=\mathscr{Z}^{+}$.

Definition 10. For any mappings α and β from \mathscr{P} into \mathscr{N}^{∞}, define

$$
\alpha \leq \beta \text { if and only if } \alpha(p) \leq \beta(p) \text { for all } p \in \mathscr{P} .
$$

Thus \leq is a partial order on $\left(\mathscr{N}^{\infty}\right)^{\mathscr{P}}$.
Theorem 7. The map $\alpha \mapsto I_{\alpha}$ is an order isomorphism of the poset $\left(\left(\mathscr{N}^{\infty}\right)^{\mathscr{P}}, \leq\right)$, onto the poset $\left(\mathscr{I}\left(\mathscr{Z}^{+}\right), \subseteq\right)$ of all ideals of $\left(\mathscr{Z}^{+}, /\right)$.

Proof. Let α and $\beta: \mathscr{P} \mapsto \mathscr{N}^{\infty}$ be any mappings. Clearly, $\alpha \leq \beta \Rightarrow I_{\alpha} \subseteq I_{\beta}$. On the other hand, suppose that $I_{\alpha} \subseteq I_{\beta}$. We shall prove that $\alpha(p) \leq \beta(p)$ for all $p \in \mathscr{P}$ so that $\alpha \leq \beta$. To prove this, let us fix $p \in \mathscr{P}$. If $\beta(p)=\infty$ or $\alpha(p)=0$, trivially $\alpha(p) \leq \beta(p)$. Therefore, we can assume that $\beta(p)<\infty$ and $\alpha(p)>0$. Consider $n=p^{\beta(p)+1}$. Then

$$
\theta(n)(p)=\beta(p)+1 \not \leq \beta(p)
$$

and hence $n \notin I_{\beta}$. Since $I_{\alpha} \subseteq I_{\beta}, n \notin I_{\alpha}$ and therefore $\theta(n)(q) \not \leq \alpha(q)$ for some $q \in \mathscr{P}$. But $\theta(n)(q)=0$ for all $q \neq p$. Thus

$$
\begin{aligned}
\beta(p)+1 & =\theta(n)(p) \not \pm \alpha(p) \\
\alpha(p) & <\beta(p)+1 .
\end{aligned}
$$

Therefore $\alpha(p) \leq \beta(p)$. This is true for all $p \in \mathscr{P}$. Thus $\alpha \leq \beta$. Also $\alpha \mapsto I_{\alpha}$ is a surjection. Thus $\alpha \mapsto I_{\alpha}$ is an order isomorphism of $\left(\left(\mathscr{N}^{\infty}\right)^{\mathscr{P}}, \leq\right)$, onto $\left(\mathscr{I}\left(\mathscr{Z}^{+}\right), \subseteq\right)$.

Corollary 1. For any α and $\beta: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$,

$$
I_{\alpha} \cap I_{\beta}=I_{\alpha \wedge \beta}
$$

and

$$
I_{\alpha} \cup I_{\beta}=I_{\alpha \vee \beta}
$$

where $\alpha \wedge \beta$ and $\alpha \vee \beta$ are point-wise g.l.b and l.u.b of α and β.
First we state the following two theorems from "Lattice Structures on \mathscr{Z}^{+}induced by convolutions" [3].

Theorem 8. Let \mathscr{C} be a convolution which is closed under finite intersections and $\leq_{\mathscr{C}}$ be the partial order on \mathscr{Z}^{+}induced by \mathscr{C}. Then $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a lattice if and only if it is directed above.

Theorem 9. Let \mathscr{C} be a convolution.
(1). If $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a meet(join) semilattice, then so is $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ for each prime p
(2). If $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a lattice, then so is $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ for each prime p.

Theorem 10. Let \mathscr{C} be a multiplicative convolution such that ($\mathscr{Z}^{+}, /$) is a meet semi lattice. For any $\alpha: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$, let

$$
I_{\alpha}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p) \leq_{\mathscr{C}}^{\mathscr{P}} \alpha(p) \text { for all } p \in \mathscr{P}\right\}
$$

Then the following are equivalent to each other.
(1). I_{α} is an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ for any $\alpha: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$.
(2). $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is directed below
(3). $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is a lattice.

Proof. (2) \Leftrightarrow (3) follows from Theorem 8
$(1) \Rightarrow(2):$ Let $\alpha: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$ be defined by $\alpha(p)=\infty$ for all $p \in \mathscr{P}$. Then

$$
I_{\alpha}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p) \leq_{\mathscr{C}}^{\mathscr{P}} \alpha(p)=\infty \text { for all } p \in \mathscr{P}\right\}
$$

and hence, by (1), \mathscr{Z}^{+}is an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ which implies that $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$ is directed above. $(3) \Rightarrow(1)$: From (3) and Theorems 8 and 9 , it follows that $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ is a lattice for each $p \in \mathscr{P}$
and $\theta(m \vee n)(p)=\theta(m)(p) \vee \theta(n)(p)$ in $\left(\mathscr{N}, \leq_{\mathscr{C}}^{p}\right)$ for any m and $n \in \mathscr{Z}^{+}$and $p \in \mathscr{P}$. Let $\alpha: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$ be any mapping. Then, for any m and $n \in \mathscr{Z}^{+}$,

$$
\begin{aligned}
m \leq_{\mathscr{C}} n \in I_{\alpha} & \Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p) \text { for all } p \in \mathscr{P} . \\
& \Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \text { for all } p \in \mathscr{P} . \\
& \Longrightarrow m \in I_{\alpha} .
\end{aligned}
$$

and

$$
\begin{aligned}
m \text { and } n \in I_{\alpha} & \Longrightarrow \theta(m)(p) \leq_{\mathscr{C}}^{p} \alpha(p) \text { and } \theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p) \text { for all } p \in \mathscr{P} . \\
& \Longrightarrow \theta(m)(p) \vee \theta(n)(p) \leq_{\mathscr{C}}^{p} \alpha(p) \text { for all } p \in \mathscr{P} . \\
& \Longrightarrow m \vee n \in I_{\alpha}
\end{aligned}
$$

Therefore I_{α} is an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{C}}\right)$.
Now, we have the following Theorems which characterize the prime ideals of the lattice ($\mathscr{Z}^{+}, \leq_{\mathscr{D}}$) where \mathscr{D} is the Dirichlet's convolution.

Theorem 11. Let $\alpha: \mathscr{P} \rightarrow \mathscr{N}^{\infty}$ be a mapping and I_{α} is an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$ defined by $I_{\alpha}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p) \leq \alpha(p)\right.$ for all $\left.p \in \mathscr{P}\right\}$. Then the following are equivalent to each other.
(1). I_{α} is a prime ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$.
(2). $\alpha(p) \neq \infty$ for some $p \in \mathscr{P}$ and for any β and $\gamma: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$,

$$
\beta \wedge \gamma \leq \alpha \Longrightarrow \beta \leq \alpha \text { or } \gamma \leq \alpha
$$

(3). There exists unique $p \in \mathscr{P}$ such that

$$
\alpha(p) \neq \infty \text { and } \alpha(q)=\infty \text { for all } q \neq p \in \mathscr{P}
$$

Proof. (1) $\Longrightarrow(2)$ follows from Theorem 7, in which we have proved that $\beta \mapsto I_{\beta}$ is an isomorphism of the lattice $\left(\left(\mathscr{N}^{\infty}\right)^{\mathscr{P}}, \leq\right)$ onto the lattice of ideals of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{O}}\right)$ from the fact that $I_{\beta} \cap I_{\gamma}=I_{\beta \wedge \gamma}$ for any β and $\gamma: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$. If $\alpha(p)=\infty$ for all $p \in \mathscr{P}$, then, since $\theta(n)(p) \in \mathscr{N}$ for all $n \in \mathscr{Z}^{+}$and $p \in \mathscr{P}$,

$$
I_{\alpha}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p)<\infty\right\}=\mathscr{Z}^{+}
$$

which is a contradiction to the fact that every prime ideal is a proper ideal. Thus $\alpha(p) \neq \infty$ for some $p \in \mathscr{P}$.
(2) \Longrightarrow (3): Suppose that α satisfies (2). Fix $p \in \mathscr{P}$ such that $\alpha(p) \neq \infty$. Then $\alpha(p) \in \mathscr{N}$. Now, define β and $\gamma: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ by

$$
\beta(q)= \begin{cases}0 & \text { if } q=p \\ \infty & \text { if } q \neq p\end{cases}
$$

and

$$
\gamma(q)= \begin{cases}\infty & \text { if } q=p \\ 0 & \text { if } q \neq p\end{cases}
$$

for any $q \in \mathscr{P}$. Then,

$$
(\beta \wedge \gamma)(q)=\beta(q) \wedge \gamma(q)=0 \leq \alpha(q)
$$

for all $q \in \mathscr{P}$ and hence $\beta \wedge \gamma \leq \alpha$. Since $\alpha(p) \neq \infty$ and $\gamma(p)=\infty,(\gamma)(p) \nsubseteq \alpha(p)$ and hence $\gamma \not \leq \alpha$. Therefore, by (2), $\beta \leq \alpha$ and hence

$$
\infty=\beta(q) \leq \alpha(q) \text { for all } q \neq p .
$$

Therefore $q(p)=\infty$ for all $q \neq p$ in \mathscr{P}. This also implies the uniqueness of p.
(3) $\Longrightarrow(1)$: Let $p \in \mathscr{P}$ such that

$$
\alpha(p) \neq \infty \text { and } \alpha(q)=\infty \text { for all } q \neq p \in \mathscr{P} .
$$

Then I_{α} is a proper ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$. Let J and K be any ideals of ($\mathscr{Z}^{+}, \leq_{\mathscr{D}}$) such that $J \cap K \subseteq I_{\alpha}$. Then there exists β and $\gamma: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$ such that $J=I_{\beta}$ and $K=I_{\gamma}$. Now, $I_{\beta \wedge \gamma}=I_{\beta} \cap I_{\gamma}=J \cap K \subseteq I_{\alpha}$ and hence $\beta \wedge \gamma \leq \alpha$ so that

$$
\operatorname{Min}\{\beta(p), \gamma(p)\}=(\beta \wedge \gamma)(p) \leq \alpha(p)
$$

Therefore $\beta(p) \leq \alpha(p)$ or $\gamma(p) \leq \alpha(p)$. Since $\alpha(q)=\infty$ for all $q \neq p$, it follows that $\beta \leq \alpha$ or $\gamma \leq \alpha$ and hence $I_{\beta} \subseteq I_{\alpha}$ or $I_{\gamma} \subseteq I_{\alpha}$. Therefore $J \subseteq I_{\alpha}$ or $K \subseteq I_{\alpha}$. Thus I_{α} is a prime ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{T}}\right)$.

Definition 11. For any prime number p and $a \in \mathscr{N}$, define

$$
I_{p, a}=\left\{n \in \mathscr{Z}^{+} \mid \theta(n)(p) \leq a\right\} .
$$

Then $I_{p, a}$ is an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{P}}\right)$. In fact $I_{p, a}=I_{\alpha}$, where $\alpha: \mathscr{P} \longrightarrow \mathcal{N}^{\infty}$ is defined by

$$
\alpha(q)= \begin{cases}a & \text { if } q=p \\ \infty & \text { if } q \neq p\end{cases}
$$

Note that $I_{p, a}=\left\{n \in \mathscr{Z}^{+} \mid p^{a+1}\right.$ does not divide $\left.n\right\}$.
Theorem 12. An ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$ is prime if and only if it is of the form $I_{p, a}$ for some $p \in \mathscr{P}$ and $a \in \mathscr{N}$.

Proof. Let I be an ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{A}}\right)$. Then $I=I_{\alpha}$ for some mapping $\alpha: \mathscr{P} \longrightarrow \mathscr{N}^{\infty}$. Now, by Theorem $11, I$ is prime \Longleftrightarrow there exists $p \in \mathscr{P}$ such that $\alpha(p) \neq \infty$ and $\alpha(q)=\infty$ for all $q \neq p$ and $I=I_{\alpha} \Longleftrightarrow I=I_{p, a}$, where $a=\alpha(p)$.

Theorem 13. For any p and $q \in \mathscr{P}$ and a and $b \in \mathscr{N}$,

$$
I_{p, a} \subseteq I_{q, b} \Longleftrightarrow p=q \text { and } a \leq b
$$

Proof. If $p=q$ and $a \leq b$, then

$$
\begin{aligned}
n \in I_{p, q} & \Longrightarrow \theta(n)(p) \leq a \leq b \\
& \Longrightarrow \theta(n)(q) \leq b \\
& \Longrightarrow n \in I_{q, b}
\end{aligned}
$$

and hence $I_{p, a} \subseteq I_{q, b}$. Conversely suppose that $I_{p, a} \subseteq I_{q, b}$. If $p \neq q$, then

$$
\theta\left(q^{b+1}\right)(p)=0 \leq a
$$

and hence $q^{b+1} \in I_{p, a} \subseteq I_{q, b}$ so that $\theta\left(q^{b+1}\right)(b) \leq b$, which is a contradiction. Therefore $p=q$. Now, since $\theta\left(p^{a}\right)(p)=a, p^{a} \in I_{p, a} \subseteq I_{q, b}$ and hence $a=\theta\left(p^{a}\right)(q) \leq b$. Thus $p=q$ and $a \leq b$.

The following are immediate consequences of Theorems 11,12 and 13.
Corollary 2. For each $p \in \mathscr{P}$, let $\mathscr{P}_{p}=\left\{I_{p, a} \mid a \in \mathscr{N}\right\}$. Then the following hold.
(1). \mathscr{P}_{p} is a chain of prime ideals of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$ for each $p \in \mathscr{P}$.
(2). $\mathscr{P}_{p} \cap \mathscr{P}_{q}=\phi$ for all $p \neq q \in \mathscr{P}$.
(3). $\bigcup_{p \in \mathscr{P}} \mathscr{P}_{p}$ is the set of all prime ideals of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$.

Corollary 3. I is a minimal prime ideal of $\left(\mathscr{Z}^{+}, \leq_{\mathscr{D}}\right)$ if and only if

$$
I=I_{p, 0}=\left\{n \in \mathscr{Z}^{+} \mid p \text { does not divide } n\right\}
$$

for some $p \in \mathscr{P}$.

References

[1] S. Sagi. Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010.
[2] U.M. Swamy, G.C. Rao, V. S. Ramaiah. On a conjecture in a ring of arithmetic functions. Indian Journal of Pure and Applied Mathematics, 14(12), 1519-1530. 1983.
[3] U.M. Swamy, S. Sagi. Lattice Structures on \mathscr{Z}^{+}induced by convolutions. European Jounal of Pure and Applied Mathematics,4(4), 424-434. 2011.
[4] U.M. Swamy, S. Sagi. Partial Orders induced by Convolutions. International Journal of Mathematics and Soft Computing, 2(1), 2011, 25-33.

[^0]: (c) 2015 EJPAM All rights reserved.

