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Abstract. A signed graph (or sigraph in short) is an ordered pair S = (Su,σ), where Su is a graph

G = (V, E) and σ : E→ {+,−} is a function from the edge set E of Su into the set {+,−}. For a positive

integer n, the unitary addition Cayley graph Gn is the graph whose vertex set is Zn, the ring of integers

modulo n and if Un denotes set of all units of the ring, then two vertices a and b are adjacent if and

only if a+ b ∈ Un. For a positive integer n, the unitary addition Cayley sigraph Σn = (Σ
u
n
,σ) is defined

as the sigraph, where Σu
n

is the unitary addition Cayley graph and for an edge ab of Σn,

σ(ab) =

¨

+ if a ∈ Un or b ∈ Un,

− otherwise.

In this paper, we have obtained a characterization of balanced and clusterable unitary addition Cayley

sigraphs. Further, we have established a characterization of canonically consistent unitary addition

Cayley sigraphs Σn, where n has at most two distinct odd prime factors.
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1. Introduction

For standard terminology and notation in graph theory, we refer the reader to Harary [30]

and West [45] and to Zaslavsky [46, 47] for sigraphs. Throughout the text, we consider finite,

undirected graphs with no loops or multiple edges.
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1.1. Sigraphs and Some Basic Notions and Notations

A signed graph (or, sigraph in short; see [29]) is an ordered pair S = (Su,σ), where Su is a

graph G = (V, E), called the underlying graph of S and σ : E → {+,−} is a function from the

edge set E of Su into the set {+,−}, called the signature of S. Let

E+(S) = {e ∈ E(G) : σ(e) = +}

and

E−(S) = {e ∈ E(G) : σ(e) =−}.

The elements of E+(S) and E−(S) are called positive and negative edges of S, respectively. A

sigraph is all-positive (all-negative) if all its edges are positive (negative); further, it is said to

be homogeneous if it is either all-positive or all-negative and heterogeneous otherwise.

The positive (negative) degree of a vertex v ∈ V (S) denoted by d+(v)(d−(v)) is the number

of positive (negative) edges incident on the vertex v and d(v) = d+(v)+ d−(v). The negation

η(S) of a sigraph S is a sigraph obtained from S by negating the sign of every edge of S, in

the sense that to find η(S) we change the sign of every edge to its opposite in S.

A positive (negative) section of a subsigraph S′ of a sigraph S is a maximal edge-induced

connected subsigraph in S consisting of only the positive (negative) edges of S; in particular,

a positive (negative) section in a heterogeneous cycle of S is essentially a maximal all-positive

(all-negative) path in the cycle.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijective function

f : V1 → V2 such that for all v1, v2 ∈ V : v1v2 ∈ E1⇔ f (v1) f (v2) ∈ E2. Two sigraphs S1 and

S2 are isomorphic if there is an isomorphism between their underlying graphs that preserves

edge signs.

A cycle in a sigraph S is said to be positive if it contains an even number of negative edges.

A given sigraph S is said to be balanced if every cycle in S is positive (see [29]); balanced

sigraphs were first defined and characterized by Harary [29]. A spectral characterization of

balanced sigraphs was given by Acharya [1]. Harary and Kabell [31, 32] developed a simple

algorithm to detect balanced sigraphs and also enumerated them.

1.2. The Notion of Balance in a Sigraph

Harary [29] derived the following structural criterion called partition criterion for balance

in sigraphs.

Theorem 1 ([29]). A sigraph S is balanced if and only if its vertex set V (S) can be partitioned

into two subsets V1 and V2, one of them possibly empty, such that every positive edge joins two

vertices in the same subset and every negative edge joins two vertices from different subsets.

The following important lemma on balanced sigraphs is given by Zaslavsky:
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Lemma 1 ([48]). A sigraph in which every chordless cycle is positive, is balanced.

1.3. The Notion of Clustering in a Sigraph

A signed graph is said to be clusterable if its vertex set can be partitioned into pairwise

disjoint subsets, called clusters, such that every negative edge joins vertices in different clusters

and every positive edge joins vertices in the same cluster; we shall call such a partition a Davis

partition, after its originator [19], or a clustering [16]. Clearly, every graph, treated as an all-

positive sigraph, is clusterable with its entire vertex set forming a single cluster. Next, every

heterogeneous sigraph is balanced if and only if it is clusterable with exactly two clusters [29];

this particular Davis partition is known as Harary bipartition [46]. Davis [19] characterized

clusterable signed graphs as precisely those in which no cycle has exactly one negative edge

(also, see [16]).

Theorem 2 ([19]). A siraph S is clusterable if and only if S contains no cycle with exactly one

negative edge.

1.4. The Notions of Consistency and Sign-Compatibility in a Sigraph

A marked sigraph is an ordered pair Sµ = (S,µ) where S = (Su,σ) is a sigraph and

µ : V (Su)→ {+,−}

is a function from the vertex set V (Su) of Su into the set {+,−}, called a marking of S. A

cycle Z in Sµ is said to be consistent if it contains an even number of negative vertices. A

given sigraph S is said to be consistent if every cycle in it is consistent [2]; for digraphs, the

notion was due to Beineke and Harary [11, 12]. In particular, σ induces a unique marking

µσ defined by

µσ(v) =
∏

e j∈Ev

σ(e j), v ∈ V (S),

is called the canonical marking (or, C -marking in short) of S, where Ev is the set of edges e j

incident at v in S [40].

Now, if every vertex of a given sigraph S is canonically marked, then a cycle Z in S is said

to be canonically consistent (C -consistent) if it contains an even number of negative vertices

and the given sigraph S is said be C -consistent if every cycle in it is C -consistent. Thus, the

original notion of consistent graphs due to Beineke and Harary [11, 12] reduces to that of

trivial C -consistency, when all the vertices receive ‘+’. Although consistent digraphs were

neatly characterized in [11, 12], the problem of characterizing consistent marked graphs was

declared open by Beineke and Harary [11]; subsequently, it was solved successfully by many

authors (see [46] for a comprehensive appraisal). However, characterization of C -consistent

sigraphs is still an open problem.
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A sigraph S is sign-compatible [40] if there exists a marking µ of its vertices such that the

end vertices of every negative edge receive ‘-1’ marks in µ and no positive edge in S has both of

its ends assigned ‘-1’ marks in µ. sign-incompatible otherwise. The notion of sign-compatibility

arises naturally in the characterization of line sigraphs [5].

1.5. Some Notions of Derived Sigraphs

There are many notions of sigraphs derived from a given sigraph, generically addressed

here as ‘derived sigraphs’. Some of them considered in our investigations include the follow-

ing ones.

For a sigraph S, Behzad and Chartrand [10] defined its line sigraph, L(S) as the sigraph

in which the edges of S are represented as vertices, two of these vertices are defined adjacent

whenever the corresponding edges in S have a vertex in common, any such edge e f is defined

to be negative whenever both e and f are negative edges in S.

For a sigraph S, Gill [24] defined its×-line sigraph L×(S) as follows: the L×(S) is a sigraph

defined on the line graph L(Su) of the graph Su by assigning to each edge e f of L(Su), the

product of signs of the adjacent edges e and f of S.

For a sigraph S, Acharya and Sinha [6] defined its common-edge sigraph CE(S) as the si-

graph whose vertex set is the set of pairs of adjacent edges in S and two vertices of CE(S) are

adjacent if the corresponding pairs of adjacent edges of S have exactly one edge in common,

with the sign same as that of their common edge.

The semi-total line graph T1(G) [38] of a graph G is the graph whose vertex set is

V (G)∪ E(G)

where V (G) and E(G) are vertex set and edge set of G, respectively and in T1(G) two vertices

are adjacent if and only if (i) they are adjacent edges in G, or (ii) one is a vertex and the other

is an edge in G incident to it. Sinha et al. [44] extended this notion of semi-total line graphs

to the theory of sigraphs as follows:

Let S = (V, E,σ) be any sigraph. Its semi-total line sigraph T1(S) has T1(S
u) as its underlying

graph and for any edge uv of T1(S
u),

σT1
(uv) =

(

σ(u)σ(v) if u, v ∈ E,

σ(v) if u ∈ V and v ∈ E.

1.6. Unitary Cayley Graph and its Sigraph Varieties

Let Γ be a group and B be a subset of Γ such that B does not contain the identity of Γ.

Assume B−1 = {b−1 : b ∈ B} = B. The Cayley graph X ′ = Ca y(Γ, B) is an undirected graph
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having vertex set V (X ′) = Γ and edge set E(X ′) = {ab : ab−1 ∈ B}, where a, b ∈ Γ. The Cay-

ley graph X ′ is a regular graph of degree |B|. Its connected components are the right cosets of

the subgroup generated by B. Therefore, if B generates Γ, then X ′ is a connected graph. The

books on algebraic graph theory by Biggs [14] and by Godsil and Royle [25] provide many

information regarding Cayley graphs.

For a positive integer n, the unitary Cayley graph Xn is the graph whose vertex set is Zn,

the ring of integers modulo n and if Un denotes set of all its units then two vertices a and

b are adjacent if and only if (a − b) ∈ Un. The unitary Cayley graph Xn is then the same as

Xn = Ca y(Zn, Un). The structure and various properties of unitary Cayley graphs have been

studied in literature (see [7, 9, 13, 15, 20–23, 34, 37, 39]).

Let Γ be an abelian group and B be a subset of Γ. The addition Cayley graph

G′ = Ca y+(Γ, B)

is the graph having the vertex set V (G′) = Γ and the edge set E(G′) = {ab : a+ b ∈ B}, where

a, b ∈ Γ. Several properties of addition Cayley graphs have been discussed in literature (see

[8, 17, 18, 26–28, 35, 36]).

For a positive integer n, the unitary addition Cayley graph Gn is the graph whose vertex set

is Zn, the integers modulo n and if Un denotes set of all units of the ring Zn, then two vertices

a and b are adjacent if and only if a+ b ∈ Un. The unitary addition Cayley graph Gn may also

be defined as, Gn = Ca y+(Zn, Un). Some properties of unitary addition Cayley graphs have

been studied in literature (see [43]).

Theorem 3 ([43]). The unitary addition Cayley graph Gn is isomorphic to the unitary Cayley

graph Xn if and only if n is even.

Some examples of unitary addition Cayley graphs are displayed in Figure 1.

Our aim in this paper is to introduce an extension of the notion of unitary addition Cayley

graphs in a natural way to the theory of sigraphs and study their fundamental properties.

2. Unitary Addition Cayley Sigraphs

We introduce the definition of a unitary addition Cayley sigraph as follows:

Definition 1. For a positive integer n, the unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is

defined as the sigraph, where Σu
n is the unitary addition Cayley graph and for an edge ab of Σn,

σ(ab) =

(

+ if a ∈ Un or b ∈ Un,

− otherwise.
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Figure 1: Some examples of unitary addition Cayley graphs
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Figure 2: Some examples of unitary addition Cayley sigraphs

Three examples of unitary addition Cayley sigraphs for n = 5,6,10 are displayed as (a),

(b) and (c) respectively in Figure 2. Throughout the text, we consider n≥ 2.
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Theorem 4 ([43]). Let m be any vertex of the unitary addition Cayley graph Gn. Then,

d(m) =

(

φ(n)− 1 if n is odd and (m, n) = 1.

φ(n) otherwise
.

where φ(n) denotes the Euler totient function that gives the number of primes not exceeding n.

Lemma 2. For an integer n, if i ∈ Un then (n− i) ∈ Un and if i 6∈ Un then (n− i) 6∈ Un.

Proof. Suppose n is any integer. Then, i ∈ Un ⇒ (n, i) = 1, where (n, i) is gcd(n, i). We

want to show that (n− i) ∈ Un. Suppose, on the contrary, (n− i) 6∈ Un. Then,

(n, n− i) = k ⇒ k | n and k | (n− i), whence n = αk and (n− i) = βk. But, n = αk gives

αk− i = βk⇒ (α− β)k = i ⇒ k | i. Thus, k | i and k | n imply (n, i) 6= 1, a contradiction to

our hypothesis. Hence, if i ∈ Un then (n− i) ∈ Un.

Next, suppose i 6∈ Un. Then, (n− i) ∈ Un⇒ (n, (n− i)) = 1. As i 6∈ Un⇒ 1 6= (n, i) = l ⇒ l | n
and l | i ⇒ n = αl and i = β l. This shows that n− i = αl − β l ⇒ (α− β)l ⇒ l | (n− i).

Thus, l | n and l | (n− i) imply (n, (n− i)) 6= 1, a contradiction to the hypothesis. Hence, by

contraposition, if i 6∈ Un then (n− i) 6∈ Un. Thus, the result follows.

Theorem 5. The unitary addition Cayley sigraph Σn = (Σ
u
n,σ1) is isomorphic to the unitary

Cayley sigraph Sn = (S
u
n,σ2) if and only if n is even.

Proof. Necessity: Suppose Σn
∼= Sn. Then, Σu

n
∼= Su

n, whence the proof follows by Theo-

rem 3.

Sufficiency: Suppose n is even. Then, by Theorem 3, we get Σu
n
∼= Su

n. Now, consider a

function f : V (Gn)→ V (Xn) such that

f (m) =

(

m if m is even

n−m if m is odd.

Let Un = {a1, a2, . . . , aφ(n)}. Since the vertex m is adjacent to the vertices of type ar − m,

consider a set

A= {a1−m, a2−m, . . . , aφ(n)−m}.

Suppose two vertices i and j are adjacent in Gn, then j is of the form ar − i, where ar ∈ Un.

Case I: If i is even, then j = ar − i is odd. This implies that f (i) = i and

f ( j) = n− j = n− (ar − i). Now, by Theorem 3, we can see that f (i) and f ( j) are adjacent in

Xn. It is clear that i 6∈ Un. Now, either j ∈ Un or j 6∈ Un. If j ∈ Un, then by Lemma 2, n− j ∈ Un.

Then, by the definition of unitary Cayley sigraph σ2(i j) = +. Now, f (i) 6∈ Un as f (i) is even

and f ( j) ∈ Un as f ( j) = n− j ∈ Un. So, by the definition of unitary addition Cayley sigraph

σ1( f (i) f ( j)) = +.
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If j 6∈ Un, then by Lemma 2 n − j 6∈ Un. Then, by the definition of unitary Cayley sigraph

σ2(i j) =− and as in the above argument

σ1( f (i) f ( j)) = −.

Thus, we have

σ1( f (i) f ( j)) = σ2(i j).

Case II: If i is odd, then j = ar − i is even. Thus, j 6∈ Un. Again, either i ∈ Un or i 6∈ Un. If

i ∈ Un, then n− i ∈ Un and σ2(i j) = + and as in the above argument, σ1( f (i) f ( j)) = +. If

i 6∈ Un, then n− i 6∈ Un. Hence, by the same argument, σ2(i j) = − and σ1( f (i) f ( j)) = −.

Now, one can easily verify that f is one-to-one and onto function that preserves adjacency as

well as sign of the edges. Hence, Σn
∼= Sn.

3. Balance in Σn

In this section, we establish a characterization of balanced unitary addition Cayley sigraphs.

We recall a known result first.

Theorem 6 ([43]). The unitary addition Cayley graph Gn, n ≥ 2, is bipartite if and only if

either n= 3 or n is even.

Lemma 3. For the unitary addition Cayley sigraph Σn = (Σ
u
n,σ), if n = pa, where p is a prime

number, then Σn is an all-positive sigraph.

Proof. For the unitary addition Cayley sigraph Σn, if n = pa, then Un consists of all the

numbers less than n, which are not multiples of p. Suppose αp and βp are two numbers less

than n and multiples of p. Then, by the definition of the unitary addition Cayley sigraph, we

have a negative edge only when αp is adjacent to βp. Now, we have three possibilities, viz.,

αp+ βp < n, αp+ βp = n or αp+ βp > n. When, αp+ βp < n, we see that αp+ βp /∈ Un

as it is a number less than n and a multiple of p. Secondly, when αp + βp = n, we get

αp+βp = 0 /∈ Un. When αp+βp > n, there exists an integer k such that αp+βp = n+k = k,

which is again a number less than n and a multiple of p. This implies αp + βp /∈ Un. Thus,

in each case αp is not adjacent with βp since their addition αp + βp /∈ Un. Thus, Σn is an

all-positive sigraph.

We shall now establish the following characterization of balanced unitary addition Cayley

sigraphs.

Theorem 7. The unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is balanced if and only if either

n is even or it does not have more than one distinct prime factors.

Proof. Necessity: Suppose the unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is balanced.

Assume that the conclusion is false. Suppose n is odd and it has at least two distinct prime

factors. So, let n = p
a1

1 p
a2

2 . . . p
am
m , where all p1, p2, . . . , pm are distinct primes, p1 6= 2 and
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p1 < p2 < · · ·< pm.

In the unitary addition Cayley graph Σu
n, p1 is adjacent with 1 as p1 + 1 is not a multiple of

any pi ’s for i = 1,2, . . . , m i.e., p1 + 1 ∈ Un. Now, we claim that p1 and p2 are also adjacent

in Σu
n. If possible, suppose p1 and p2 are not adjacent in Σu

n. This shows, p1 + p2 /∈ Un. Then,

p1+ p2 is a multiple of some pi ’s for i = 1,2, . . . , m. Suppose p1+ p2 is a multiple of p1. Then,

p1+ p2 = αp1

p2 = αp1− p1

= (α− 1)p1

for some positive integer α, which is not possible. Similarly, we can see that p1 + p2 is not a

multiple of p2. Now, the possibilities are i = 3,4, . . . , m. Suppose p1+ p2 = αpi for

i = 3,4, . . . , m. Since p1 + p2 is even, α is even and is at least 2, for any positive integer α.

But as p1 < p2 < pi , p1 + p2 is always less than any multiple of pi for i = 3,4, . . . , m. Thus,

p1 + p2 is not a multiple of any pi ’s for i = 1,2, . . . , m. So p1 + p2 ∈ Un. This shows that p1

and p2 are adjacent in Σu
n. Now, if p2 is adjacent with 1 in Σu

n, then we have a cycle

Z = (p1, p2, 1, p1)

in Σn. Clearly, p1 and p2 do not belong to Un and 1 ∈ Un. Then, by the definition of Σn, Z

has exactly one negative edge p1p2. Thus, Z is a negative cycle in Σn. This implies that Σn is

not balanced. Now, suppose p2 is not adjacent with 1 in Σu
n, i.e., p2+ 1 6 inUn. Then, p2+ 1 is

multiple of one of the pi ’s for i = 1,2, . . . , m. Clearly, i cannot exceed 1, as p2 < p3 · · · < pm.

So, the only possibility is i = 1, whence p2+ 1 is a multiple of p1. Then,

p2+ 1= αp1 (1)

for some positive integer α.

By Lemma 2, it is clear that n − p2 6∈ Un. Now, we claim n − p2 is adjacent with 1 i.e.,

n− p2+1= n−(p2−1) ∈ Un. If p2−1 ∈ Un, then by Lemma 2, n− p2+1= n−(p2+1) ∈ Un.

Suppose p2−1 6∈ Un. Then, p2−1 is a multiple of one of the pi ’s for i = 1,2, . . . , m and by the

same argument as above i = 1, whence p2 − 1 is a multiple of p1. Then, p2 − 1 = βp1. But,

from equation 1, p2 = αp1− 1. This implies,

p2− 1= βp1

αp1− 1− 1= βp1

αp1− 2= βp1

αp1− βp1 = 2

(α− β)p1 = 2.

This is not possible as p1 is at least 3. Thus, p2−1 is not a multiple of any of the pi ’s, whence

p2 − 1 ∈ Un. Hence, n− p2 + 1 = n− (p2 − 1) ∈ Un, whence n− p2 is adjacent with 1 in Σu
n.
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Now, n− p2 + p1 = n− (p2 − p1). Since p1 < p2 < · · · pm, p2 − p1 is not a multiple of any of

the pi ’s for i = 2,3, . . . m. Also, p2 − p1 is not a multiple of p1. This shows that p2 − p1 ∈ Un

and by Lemma 2, n− (p2 − p1) ∈ Un. This shows that n− p2 is adjacent with p1 in Σn. Thus,

we have a cycle

Z ′ = (p1, n− p2, 1, p1)

in Σn. Clearly, p1 and n− p2 do not belong to Un and 1 ∈ Un. Then, by the definition of Σn, Z ′

has exactly one negative edge p1(n− p2). Thus, Z ′ is a negative cycle in Σn. This implies that

Σn is not balanced, a contradiction to the hypothesis. So, by contraposition, the conditions

are satisfied.

Sufficiency: Suppose n is even. Then, Un does not contain any multiple of 2. Then, by

Theorem 6, Σn is bipartite, whence all its cycles are even. Therefore, every cycle inΣn contains

alternately either even-odd or odd-even labeled vertices. Without loss of generality, let

Z ′′ = (e1, o1, e2, o2, . . . , em, om, e1)

be a cycle of even length in Σn. Clearly, ei /∈ Un∀i = 1,2, . . . , m.

Case(i): Suppose o j ∈ Un∀ j = 1,2, . . . , m. Then, all the edges in Z ′′ are positive.

Case(ii): Suppose o j /∈ Un for some j = 1,2, . . . , m. Then, Z ′′ contains two negative edges

e jo j and o je j+1 with respect to each o j /∈ Un. Thus, Z ′′ contains an even number of negative

edges. Since Z ′′ is an arbitrary cycle in Σn, using Lemma 1, we conclude Σn is balanced.

Next, suppose n is odd and it does not have more than one distinct prime factors. That means,

n = pa. Now, using Lemma 3, Σn is an all-positive sigraph which is trivially balanced. Hence

the theorem.
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Figure 3: Smallest unbalanced unitary addition Cayley sigraph
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The smallest heterogeneous unbalanced unitary addition sigraph is Σ15, which is shown

in Figure 3.

4. Clusterability of Σn

In this section, we discuss clusterability of unitary addition Cayley sigraphs and obtain the

following somewhat surprising result.

Theorem 8. A unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is clusterable if and only if it is

balanced.

Proof. Sufficiency: Suppose the unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is balanced.

Then, by the definition of clusterability, Σn is clusterable with two clusters.

Necessity: Suppose unitary addition Cayley sigraph Σn = (Σ
u
n,σ) is clusterable. If possible,

suppose Σn is not balanced. Then, by Theorem 7, n is odd with at least two distinct prime

factors. So, let n = p
a1

1 p
a2

2 . . . p
am
m , where all of p1, p2, . . . , pm are distinct primes, p1 6= 2 and

p1 < p2 < · · · < pm. Now, as in the proof of Theorem 7, we have at least one of the cycles

Z = (p1, p2, 1, p1) and Z ′ = (p1, n− p2, 1, p1) in Σn. Clearly, p1 and p2 do not belong to Un

and 1 ∈ Un. Then, by the definition of Σn, Z has exactly one negative edge p1p2. Also, p1 and

n− p2 do not belong to Un and 1 ∈ Un. Then, again by the definition of Σn, Z ′ has exactly one

negative edge p1(n− p2). Thus, in each case we have a cycle with exactly one negative edge.

This shows that Σn is not clusterable, a contradiction to the hypothesis. Thus, Σn is balanced.

Hence, the theorem.

5. Sign-compatibility of Σn

Theorem 9 ([41]). A sigraph S is sign-compatible if and only if S does not contain a subsigraph

isomorphic to either of the two sigraphs, S1 formed by taking the path P4 = (x ,u, v, y) with both

the edges xu and v y negative and the edge uv positive and S2 formed by taking S1 and identifying

the vertices x and y (Figure 4).

x u v y

(a) S1

x = y

u v

(b) S2

Figure 4: Two forbidden subsigraphs for a sign-compatible sigraph [40]
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Theorem 10. Every unitary addition Cayley sigraph Σn is sign-compatible.

Proof. Suppose that the unitary addition Cayley sigraph Σn is not sign-compatible. Then,

by Theorem 9, there is at least one positive edge, say vi v j in Σn such that there are negative

edges on both the vertices, vi and v j in. Since vi v j is a positive edge in Σn, by the definition

of Σn, at least one of vi , v j ∈ Un. As at least one of vi , v j ∈ Un, again by the definition of Σn,

there is no negative edge on at least one vertex, a contradiction to the hypothesis. Hence, Σn

is sign-compatible.

It has been shown elsewhere that all line sigraphs are sign-compatible [5]. Hence, in

view of Theorem 10 the question arises whether any unitary addition Cayley sigraph is a line

sigraph. The answer of this question is given in Theorem 12.

Theorem 11. Unitary addition Cayley graph Gn is a line graph if and only if n ∈ {2,3,4,6}.

Proof. Necessity: Suppose unitary addition Cayley graph Gn is a line graph. If possible,

suppose n /∈ {2,3,4,6}.

Case I: Suppose n is a prime number. Clearly, in this case n≥ 5. Since n is prime, Un contains

all numbers from 1 to (n− 1). Now, 0 is adjacent with all the vertices of Gn. Also, for any

other vertex i in Gn, i is not adjacent only with (n− i) as i + (n− i) = n = 0 6= Un. Thus, for

any two vertices i and j in Gn such that i 6= j 6= 0, we have an induced subgraph in Gn, which

is shown in Figure 5.

0 i

j

n-i

n-j

Figure 5: Showing an induced subgraph of Gn, which is forbidden for Gn to be a line graph.

This is one of the Beineke’s nine forbidden subgraphs for line graph [30]. This shows that Gn

is not a line graph, a contradiction to the hypothesis.

Case II: Suppose n is not a prime number. Clearly, 1 is (always) adjacent with 0 in Gn. Also, 1

is adjacent with p1, as p1 + 1 ∈ Un, where p1 is the smallest multiple of n. Suppose a is some

number such that ap1 = n. Now,

1+ (a− 1)p1 = 1+ ap1− p1

= 1+ n− p1

= n− (p1− 1).
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Since p1 − 1 ∈ Un, by Lemma 2, n− (p1 − 1) ∈ Un. Thus, 1 and (a− 1)p1 are adjacent in Gn.

Also, 0 is not adjacent with p1 and (a−1)p1 as their addition is a multiple of p1. Similarly, p1

and (a− 1)p1 are not adjacent in Gn as their addition is a multiple of p1. Thus, we have an

induced subgraph in Gn, which is shown in Figure 6. Again, we have a forbidden subgraph

K1,3 for a line graph showing that Gn is not a line graph, a contradiction to the hypothesis.

Hence, the condition is satisfied.

 
 

0

1

p1 (a-1)p1 

Figure 6: Showing K1,3 as an induced subgraph of Gn, which is forbidden for Gn to be a line

graph.

Sufficiency: Suppose n= 2,3,4 or 6. The corresponding graphs are shown in Figure 7, which

are line graphs of P3, P4, C4 and C6, respectively. Hence, the result.

0 1

(a) G2

0

1 2

(b) G3

0 1

23

(c) G4

0 1

2

4

3

5

(d) G6

Figure 7: Showing G2, G3, G4 and G6

Theorem 12. Unitary addition Cayley sigraph Σn is a line sigraph if and only if n ∈ {2,3,4,6}.

Proof. Necessity: Suppose the unitary addition Cayley sigraph Σn is a line sigraph. If pos-

sible, suppose n /∈ {2,3,4,6}. Then, by Theorem 11, Σu
n is not a line graph, a contradiction to

the hypothesis. Hence, n ∈ {2,3,4,6}.
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Sufficiency: Now, suppose n ∈ {2,3,4,6}. The corresponding sigraphs Σ2,Σ3,Σ4 and Σ6 and

the sigraphs whose line sigraphs are these sigraphs are shown in Figure 8. Hence, Σn is a line

sigraph for n ∈ {2,3,4,6}.

0 1

(a) Σ2

0

1 2

(b) Σ3

0 1

23

(c) Σ4

0 1

2

4

3

5

(d) Σ6

(e) (f) (g) (h)

Figure 8: Showing Σ2, Σ3, Σ4 and Σ6 and the sigraphs whose line sigraphs are these sigraphs

Remark 1. Unitary addition Cayley sigraph Σn is a product line sigraph if and only if

n ∈ {2,3,4,6}.

Proof. Suppose the unitary addition Cayley sigraph Σn is a product line sigraph. Since,

for any given sigraph S, the underlying graphs of the line sigraph L(S) and the product line

sigraph L×(S) are the same, the condition follows from Theorem 11.

Conversely, suppose n ∈ {2,3,4,6}. By Theorem 7 for these values of n, Σn is balanced. Since

the product line sigraph of any sigraph is always balanced and its underlying structure is the

line graph (see [3]), the result follows from Theorem 7 and Theorem 11.

Unitary addition Cayley sigraphs Σ2,Σ3,Σ4 and Σ6 and the sigraphs whose product line

sigraphs are these sigraph are shown in Figure 9.

6. C -consistency of Σn

Now, we present a characterization of C -consistent unitary addition Cayley sigraphs.

Theorem 13 ([33]). Let G be a marked graph and T be a spanning tree of G. Then, G is

consistent if and only if G satisfies the following two conditions:

(i) each fundamental cycle relative to T is positive, and
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(ii) the two end vertices of any common path between each pair of fundamental cycles relative

to T have the same mark.

0 1

(a) Σ2

0

1 2

(b) Σ3

0 1

23

(c) Σ4

0 1

2

4

3

5

(d) Σ6

(e) (f) (g) (h)

Figure 9: Showing Σ2, Σ3, Σ4 and Σ6 and the sigraphs whose product line sigraphs are these

sigraphs

Theorem 14 ([42]). The unitary Cayley sigraph Sn = (S
u
n,σ), where n has at most two distinct

odd prime factors, is C -consistent if and only if n is either odd or n is 2, 6 or a multiple of 4.

Lemma 4. In the unitary addition Cayley sigraph Σn, if n = 2p
a1

1 , where p1 is an odd prime,

then the negative degree of the vertex 2 of Σn is odd.

Proof. Suppose n = 2p
a1

1 in Σn, where p1 is an odd prime. By the definition of Σn,

negative edges are incident at the vertex 2 of Σn only when 2 is adjacent to multiples of p1.

Since addition of 2 and any even multiple of p1 is an even number and Un does not contain

an even number, the vertex 2 is not adjacent to any even multiple of p1. Now, the number

of odd multiples of p1 are p
a1−1

1 . Now, 2 is adjacent with all the odd multiples of p1 as their

addition with 2 is neither a multiple of 2 nor a multiple of p1. 2 is negatively adjacent with

p
a1−1

1 . Since p1 is an odd prime, d−(2) is odd.

Lemma 5 ([42]). In the unitary Cayley sigraph Sn, if n= 2p
a1

1 p
a2

2 , where p1 and p2 are distinct

odd primes, then the negative degree of the vertex 2 of Sn is odd.

Lemma 6. In the unitary addition Cayley sigraph Σn, if n = 2p
a1

1 p
a2

2 , where p1 and p2 are

distinct odd primes, then the negative degree of the vertex 2 of Σn is odd.

Proof. Given that n = 2p
a1

1 p
a2

2 , where p1 and p2 are distinct odd primes, since n is even,

Σn
∼= Sn by Theorem 5. Since 2 is an even number, by the consideration of mapping in

Theorem 5, vertex 2 of Sn is mapped to the vertex 2 in Σn and by Lemma 5, negative degree

of the vertex 2 in Σn is odd.
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Lemma 7. In the unitary addition Cayley sigraph Σn, if n = p
a1

1 p
a2

2 , where n is odd, then the

negative degree of the vertices of Σn that are multiples of p1 or p2 is even.

Proof. Given that n = p
a1

1 p
a2

2 , where n is odd, and p1 and p2 are distinct odd primes it

follows from the definition of Σn, that the negative edges are incident at the vertex p1 when

p1 is adjacent to multiples of p2 which do not have p1 as the factor. Every multiple of p2,

which does not contain any multiple of p1, is adjacent with p1 as its addition is neither a

multiple of p1 nor a multiple of p2. Thus,

d−(p1) = p
a1

1 p
a2−1

2 − p
a1−1

1 p
a2−1

2

= p
a1−1

1 p
a2−1

2 (p1− 1).

Since p1 and p2 are odd, d−(p1) is even. This formula works for any multiple of p1 except

those which have p2 as a factor. Similarly,

d−(p2) = p
a1−1

1 p
a2

2 − p
a1−1

1 p
a2−1

2 .

= p
a1−1

1 p
a2−1

2 (p2− 1).

Since p1 and p2 are odd, d−(p2) is even. This formula works for any multiple of p2 except

those which have p1 as a factor. And the negative degree of the vertices of Σn that are

multiples of p1p2 is zero. Thus, the negative degree of the vertices of Σn that are multiples of

p1 or p2 is even.

Theorem 15. The unitary addition Cayley sigraph Σn = (Σ
u
n,σ), where n has at most two

distinct odd prime factors, is C -consistent if and only if n is either odd, or n is 2, 6 or a multiple

of 4.

Proof. Necessity: Suppose the unitary addition Cayley sigraphΣn = (Σ
u
n,σ) isC -consistent.

Let, on contrary, n ≡ 2 (mod 4) with n 6= 2 and n 6= 6. Then, either n = 2p
a1

1 or n = 2p
a1

1 p
a2

2 ,

where p1 and p2 are distinct odd primes.

Case(i): Suppose n≡ 0 (mod 3). Then, either n= 2×3a1 or n= 2×3a1 × p
a2

2 . First, suppose

p2 6= 5 and p2 6= 7. Then, due to Lemma 4 and Lemma 6,

µσ(2) = −.

Since the vertex 5 ∈ Un, by the definition of Σn, d−(5) = 0. It follows,

µσ(5) = +.

Now, the vertex 5 is adjacent to the vertex 2 since 5+ 2= 7 ∈ Un. Since

(n − 4) + (n − 3) = n + (n− 7) = n − 7 ∈ Un as 7 ∈ Un, (n − 4) and (n − 3) are adjacent

in Σu
n and (n − 3) + 2 = n − 1 ∈ Un. This implies (n − 3) and 2 are also adjacent in Σu

n.

Similarly, (n−4)+5= n+1= 1 ∈ Un. This implies 5 and (n−4) are adjacent in Σu
n. Consider

the two cycles, Z1 = (2,5,0,1,4,3,2) and Z2 = (2,5, (n− 4), (n− 3), 2) in Σn. Clearly, the



D. Sinha, A. Dhama, B. Acharya / Eur. J. Pure Appl. Math, 6 (2013), 189-210 205

cycles Z1 and Z2 share the chord whose end vertices are 2 and 5. Now, if either Z1 or Z2 is

C -inconsistent cycle, then we have a contradiction to the hypothesis. Therefore, Z1 and Z2

are both C -consistent cycles. However, the end vertices 2 and 5 of their common chord are

marked oppositely under the canonical marking and this contradicts Theorem 13.

Now, if n= 2×3a1 × p
a2

2 , where either p2 = 5 or p2 = 7, then since the vertex 11 ∈ Un, by the

definition of Σn, d−(11) = 0. It follows,

µσ(11) = +.

Now, the vertex 11 is adjacent to the vertex 2 since 11+ 2= 13 ∈ Un. Since

(n−12)+(n−1) = n+(n−13) ∈ Un as 13 ∈ Un, (n−12) and (n−1) are adjacent in Σu
n and

(n− 1) + 2 = n+ 1 = 1 ∈ Un. This implies, (n− 1) and 2 are also adjacent in Σu
n. Similarly,

(n− 12) + 11= n− 1 ∈ Un, which implies 11 and (n− 12) are adjacent in Σu
n. Now, consider

the two cycles, Z3 = (11,2,9,4,7,6,11) and Z4 = (2,11, (n− 12), (n− 1), 2) in Σn. Clearly,

the cycles Z3 and Z4 share the chord whose end vertices are 2 and 11. As argued above, Z3

and Z4 are both C -consistent cycles. However, the end vertices 2 and 11 of their common

chord are marked oppositely under the canonical marking, a contradiction to Theorem 13.

Case(ii): Suppose either n ≡ 1 (mod 3) or n ≡ 2 (mod 3). That means, 3 does not divide

n, which implies that the vertex 3 ∈ Un. Now, consider a cycle Z = (0,1,2, (n− 1), 0) in Σn.

Since 1 ∈ Un and (n− 1) ∈ Un, by the definition of Σn, d−(1) = d−(n− 1) = 0. It follows that

in the cycle Z ,

µσ(1) = µσ(n− 1) = +.

Since the vertex 0 is adjacent to those vertices which belong to Un, d−(0) = 0. That means,

µσ(0) = +.

Now, due to Lemma 4 and Lemma 6,

µσ(2) = −.

Thus, the cycle Z is C -inconsistent, whence Σn is not C -consistent, a contradiction to the

hypothesis. Thus, this part of the proof is complete.

Sufficiency: Next, suppose n is odd, 2, 6 or a multiple of 4.

Case(i): Let n be odd, and n = p
a1

1 p
a2

2 , where p1 and p2 are distinct odd primes. Using

Lemma 7 one can easily see that all the vertices in Σn which are multiples of p1 and p2 are

even and all other vertices belong to Un. So, their negative degrees are zero. Hence, all the

vertices of Σn are marked positively under the canonical marking. Hence, Σn is C -consistent.

Case(ii): Suppose n= 2,6 in Σn. Then, we can easily verify that Σ2 and Σ6 are C -consistent.

Case(iii): Suppose n is a multiple of 4. Here n is even and by Theorem 5 Σn
∼= Sn and by

Theorem 14, Σn is C−consistent.
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7. Balance in Certain Derived Sigraphs

In this section, we consider the conditions that a given sigraph must satisfy in order that

its certain derived sigraphs are balanced.

Corollary 1. For the unitary addition Cayley sigraph Σn = (Σ
u
n,σ), its negation sigraph η(Σn)

is balanced if and only if either n= 3 or n is even.

Proof. First, suppose η(Σn) is balanced. Assume that the conclusion is false. Suppose n

is odd and not equal to 3. Then, 2 ∈ Un. Since 0+ 2 = 2 ∈ Un, 0 and 2 are adjacent in Σu
n

and 2+ (n− 1) = n+ 1 = 1 ∈ Un. This implies, 2 and n− 1 are adjacent in Σu
n. Thus, we

can consider a triangle T : (0,2, n−1,0) in Σn. Since 2, n−1 ∈ Un, by the definition of Σn all

the edges of T are positive. That means, all the edges of the triangle T are negative in η(Σn).

Thus, η(Σn) is unbalanced, which contradicts the hypothesis.

Conversely, suppose n is even or n = 3. Now, due to Theorem 6, Su
n is bipartite and due to

Theorem 7, Σn is balanced. Thus, η(Σn) is balanced.

Theorem 16 ([4]). For a sigraph S, its line sigraph L(S) is balanced if and only if the following

conditions hold:

(i) for any cycle Z in S,

(a) if Z is all-negative, then Z has even length,

(b) if Z is heterogeneous, then Z has an even number of negative sections with even length,

and

(ii) for v ∈ S, if d(v)> 2, then there is at most one negative edge incident at v in S.

Corollary 2. For the unitary addition Cayley sigraph Σn, its line sigraph L(Σn) is balanced if

and only if n= pa, where p is a prime number.

Proof. Suppose L(Σn) is balanced for the unitary addition Cayley sigraph Σn. Assume that

the conclusion is false. Let n have at least two distinct prime factors. Suppose p1 and p2 are

two smallest prime factors of n such that p1 < p2. It is shown in the proof of Theorem 7, p1 is

adjacent with 1 and p2. Suppose αp2 = n for any positive integer α. Now,

(α− 1)p2+ p1 = αp2− p2+ p1

= n− p2+ p1

= n− (p2− p1)

Since p2− p1 ∈ Un, by Lemma 2 n− (p2− p1) ∈ Un, whence (α− 1)p2+ p1 ∈ Un. This shows

that (α− 1)p2 is adjacent with p1. Clearly, the vertex p2 and (α− 1)p2 are adjacent to the

vertex p1 with negative edges in Σn. That means, d−(p1) ≥ 2 and clearly d(p1) > 2 except

n = 6 in Σn. Thus, condition (ii) of Theorem 16 does not hold for Σn and when n = 6 it

is easy to see that condition (i)(b) does not hold, which implies that L(Σn) is unbalanced, a

contradiction to the hypothesis. Hence n= pa, where p is a prime number. Converse part can

be proved easily by using Lemma 3.
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Theorem 17 ([6]). For any sigraph S, CE(S) is balanced if and only if S is a balanced sigraph

such that for every vertex v ∈ V (S) with d(v)≥ 3

(i) if d(v)> 3 then d−(v) = 0

(ii) if d(v) = 3 then d−(v) = 0 or d−(v) = 2

(iii) for every x-y path P4 = (x , v, w, y) of length three, vw is a positive edge in S.

Theorem 18. For the unitary addition Cayley sigraph Σn = (Σ
u
n,σ), its CE(Σn) is balanced if

and only if n= pa or n= 6, where p is a prime number.

Proof. Suppose CE(Σn) is balanced for the unitary addition Cayley sigraph Σn. Assume

that the conclusion is false. Let n 6= 6 and have at least two distinct prime factors. So, let

n= p
a1

1 p
a2

2 . . . p
am
m , where all of p1, p2, . . . , pm are distinct primes and p1 < p2 < · · ·< pm.

Case I: Suppose n is even. Clearly, p1 = 2 /∈ Un. p2 can never be adjacent with any number

in Un because Un contains only odd numbers as n is even and then sum of these two ele-

ments will be always even and does not belong to Un. Since p2 /∈ Un, by Theorem 4, we have

d(p2) = φ(n). So all the degrees of p2 are negative and greater than 3. Thus, the condition (i)

of Theorem 17 does not hold for Σn, which implies that CE(Σ) is unbalanced, a contradiction

to the hypothesis.

Case II: Now, suppose n is odd. We have already shown that p1 is adjacent p2. Clearly,

d(p1) > 3 and d−(p1) ≥ 1. Thus, condition (i) of Theorem 17 does not hold for Σn, which

implies that CE(Σ) is unbalanced, a contradiction to the hypothesis. Hence n = pa or n = 6,

where p is a prime number. Converse part can be proved easily by using Lemma 3.

Theorem 19 ([3]). The ×-line sigraph L×(S) of a sigraph S is a balanced sigraph.

Theorem 20. For the unitary addition Cayley sigraph Σn, its ×-line sigraph L×(Σn) is balanced.

Proof. Result follows from Theorem 19.

Theorem 21 ([44]). The semi-total line sigraph T1(S) of a sigraph S is a balanced sigraph.

Theorem 22. For the unitary addition Cayley sigraph Σn, its semi-total line sigraph T1(Σn) is

balanced.

Proof. Result follows from Theorem 21.
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