Nil(n)-Modules Bifibred over Groups

Hasan Atik
Department of Mathematics, Science Faculty, İstanbul Medeniyet University, İstanbul, Turkey

Abstract

In this work, we defined a functor from category of nil(n)-modules to that of groups. Then we showed by direct calculation that the functor is both fibration and cofibration of categories.

2010 Mathematics Subject Classifications: 18D30,18A40,18A30
Key Words and Phrases: Crossed modules, Nil(n)-Modules, Pullback Crossed Modules

1. Introduction

Crossed modules were defined by Whitehead [12] as a model for homotopy connected 2types. Some universal constructions for crossed modules, for example, the notions of pullback and induced crossed modules have been worked in [4-6]. Furthermore, for Lie algebra cases of these constructions see [8], and for commutative algebras see [10]. Induced crossed modules allow detailed computations of non-abelian information on second relative homotopy calculations. By extending these constructions for two dimensional case of crossed modules, Arslan, Arvasi and Onarli in [1], have defined the notions of pullback and induced 2 -crossed module.

Baues [3] defined nil(n)-modules as a model for homotopy 2-types and studied some properties of nil(2)-modules which forms a base for his homotopy connected 3-types "quadratic module". Atik has constructed pullback and induced nil(2)- modules in his thesis [2]. In this work, by using a similar way given in these cited works, we have shown that the category of nil(n)-modules is bifibred over groups in the sense of A. Grothendieck [9].

2. Nil(n)-Modules

A pre-crossed module is a group homomorphism $\partial: M \rightarrow Q$ together with an action of Q on M, written m^{q} for $q \in Q$ and $m \in M$, satisfying the condition $\partial\left(m^{q}\right)=q^{-1} \partial(m) q$ for all $m \in M$ and $q \in Q$. This is a crossed module if in addition

$$
x^{-1} y^{-1} x=(y)^{\partial x}
$$

Email addresses: hasan.atik@medeniyet.edu.tr, hasanatik@yahoo.com

We define Peiffer commutator in a pre-crossed module

$$
\langle x, y\rangle=x^{-1} y^{-1} x(y)^{\partial_{1} x}
$$

Thus ∂ is a crossed module if and only if $\langle x, y\rangle=1$ for all $x, y \in M$.
In a group G we have the lower central series

$$
\Gamma_{n+1} \subset \Gamma_{n} \subset \ldots \subset \Gamma_{1}=G
$$

where $\Gamma_{n}=\Gamma_{n}(G)$ is the subgroup of G generated by all iterated commutators ($x_{1}, x_{2}, \ldots, x_{n}$) of length n. Here $\Gamma_{2}(G)$ is the commutator subgroup of G. Similarly we obtain the lower Peiffer central series

$$
P_{n+1} \subset P_{n} \subset \ldots \subset P_{1}=M
$$

in a pre-crossed module $\partial: M \rightarrow N$. Where $P_{n}=P_{n}(\partial)$ is the subgroup of M generated by all iterated Peiffer commutators $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ of length n. The group $P_{n}(\partial)$ is the Peiffer subgroup of M, this generalizes the commutator subgroup in a group. The following definition is given by Baues [3].

Definition 1. A pre-crossed module $\partial: M \rightarrow N$ is a Peiffer nilpotent of class n if $P_{n+1}(\partial)=1$, in this case we call ∂ is a nil(n)-module. That is

$$
\left\langle x_{1}, x_{2}, x_{3} \cdots, x_{n}\right\rangle=1
$$

A morphism between two nil(n)-modules $\partial: M \rightarrow Q$ and $\partial^{\prime}: M^{\prime} \rightarrow Q^{\prime}$ is a pair (g, f) of homomorphisms of groups $g: M \rightarrow M^{\prime}$ and $f: Q \rightarrow Q^{\prime}$ such that $f \partial=\partial^{\prime} g$ and the actions preserved, i.e. $g\left(m^{q}\right)=g(m)^{f(q)}$ for any $m \in M, q \in Q$. We shall denote the category of nil(n)-modules by $\operatorname{Nil}(n)$.

3. Bifibration of Categories

We recall the definition of fibration of categories from [7].
Definition 2. Let $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ be a functor. A morphism $\varphi: Y \rightarrow X$ in \mathbf{X} over $u:=\Phi(\varphi)$ is called Cartesian if and only if for all $v: K \rightarrow J$ in \mathbf{B} and $\theta: Z \rightarrow X$ with $\Phi(\theta)=u v$ there is a unique morphism $\psi: Z \rightarrow Y$ with $\Phi(\psi)=v$ and $\theta=\varphi \psi$.

A morphism $\alpha: Z \rightarrow Y$ is called vertical (with respect to Φ) if and only if $\Phi(\alpha)$ is an identity isomorphism in \mathbf{B}. In particular, for $I \in \mathbf{B}$ we write X_{I}, called the fibre over I, for the subcategory of \mathbf{X} consisting of those morphisms α with $\Phi(\alpha)=i d_{I}$,

Definition 3. The functor $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ is fibration or category fibred over \mathbf{B} if and only if for all $u: J \rightarrow I$ in \mathbf{B} and $X \in \mathbf{X}_{\mathbf{I}}$ there is a Cartesian morphism $\varphi: Y \rightarrow X$ over $u:$ such $a \varphi$ is called a Cartesian lifting of X along u.

We now give the duals of the above definition.
Definition 4. Let $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ be a functor. A morphism $\psi: Z \rightarrow Y$ in \mathbf{X} over $v:=\Phi(\psi)$ is called cocartesian if and only if for all $u: J \rightarrow I$ in \mathbf{B} and $\theta: Z \rightarrow X$ with $\Phi(\theta)=u v$ there is a unique morphism $\varphi: Y \rightarrow X$ with $\Phi(\varphi)=u$ and $\theta=\varphi \psi$.

Definition 5. The functor $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ is cofibration or category cofibred over \mathbf{B} if and only if for all $v: K \rightarrow J$ in \mathbf{B} and $Z \in \mathbf{X}_{\mathbf{K}}$ there is a Cartesian morphism $\psi: Z \rightarrow Z^{\prime}$ over $v:$ such $a \psi$ is called a cocartesian lifting of X along v.

Proposition 1. Let $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ be a fibration of categories. Then $\psi: Z \rightarrow Y$ in \mathbf{X} over $v: K \rightarrow J$ in \mathbf{B} is cocartesian if and only if for all $\theta^{\prime}: Z \rightarrow X^{\prime}$ over v there is a unique morphism $\psi^{\prime}: Y \rightarrow X^{\prime}$ in X_{J} with $\theta^{\prime}=\psi^{\prime} \psi$.
Corollary 1. Let $\Phi: \mathbf{X} \rightarrow \mathbf{B}$ be a fibration of categories which has a left adjoint and suppose that X admits pushouts. Then Φ is also a cofibration.

For detailed information about bifibration categories we advise carefull reading of T.Streicher [11].

4. Nil(n)-Modules Bifibred over Groups

Proposition 2. We have a forgetful functor $\Phi_{N}: \operatorname{Nil}(\mathbf{n}) \rightarrow \mathbf{G r p}$ in which $(M \rightarrow N) \longrightarrow N$. This forgetful functor is fibred.

Suppose that $\partial: M \rightarrow Q$ is a nil(n)-module and $\sigma: P \rightarrow Q$ is a homomorphism of groups. Take $\sigma^{*}(M)=\{(p, m): \partial(m)=\sigma(p)\}$ as the fiber product of ∂ and σ. Thus we have the following pullback diagram

where $\sigma_{1}: \sigma^{*}(M) \rightarrow P$ is given by $\sigma_{1}(p, m)=m$ and $\beta_{1}: \sigma^{*}(M) \rightarrow P$ is given by $\beta_{1}(p, m)=p$ for all $(p, m) \in \sigma^{*}(M)$. The action of $p^{\prime} \in P$ on $(p, m) \in \sigma^{*}(M)$ can be given by

$$
(p, m)^{p^{\prime}}=\left(p^{\prime-1} p p^{\prime}, m^{\sigma\left(p^{\prime}\right)}\right) .
$$

This action obviously is a group action of P on $\sigma^{*}(M)$ and according to this action, β_{1} becomes a nil(n)-module. Indeed, β_{1} is a pre-crossed module since for all $(p, m) \in \sigma^{*}(M)$,

$$
\beta_{1}\left((p, m)^{p^{\prime}}\right)=\beta_{1}\left(p^{\prime-1} p p^{\prime}, m^{\sigma\left(p^{\prime}\right)}\right)=p^{\prime-1} p p^{\prime}=p^{-1} \beta_{1}(p, m) p^{\prime}
$$

Moreover,for $\left(p_{1}, m_{1}\right),\left(p_{2}, m_{2}\right), \ldots,\left(p_{n}, m_{n}\right) \in \sigma^{*}(M)$, we have

$$
\begin{aligned}
& \left.\left\langle\ldots\left\langle\left\langle\left(p_{1}, m_{1}\right),\left(p_{2}, m_{2}\right)\right\rangle,\left(p_{3}, m_{3}\right)\right\rangle, \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left\langle\left(p_{1}, m_{1}\right)^{-1}\left(p_{2}, m_{2}\right)^{-1}\left(p_{1}, m_{1}\right)\left(p_{2}, m_{2}\right)^{\beta_{1}\left(p_{1}, m_{1}\right)},\left(p_{3}, m_{3}\right)\right\rangle,\left(p_{4}, m_{4}\right)\right\rangle, \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left\langle\left(p_{1}^{-1}, m_{1}^{-1}\right)\left(p_{2}^{-1}, m_{2}^{-1}\right)\left(p_{1}, m_{1}\right)\left(p_{2}, m_{2}\right)^{p_{1}},\left(p_{3}, m_{3}\right)\right\rangle,\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left\langle\left(1, m_{1}^{-1} m_{2}^{-1} m_{1} m_{2}{ }^{\sigma\left(p_{1}\right)}\right),\left(p_{3}, m_{3}\right)\right\rangle,\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left\langle\left(1, m_{1}{ }^{-1} m_{2}^{-1} m_{1} m_{2}{ }^{\partial\left(m_{1}\right)}\right),\left(p_{3}, m_{3}\right)\right\rangle,\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& =\left\langle\ldots \left\langle\left(1, m_{1}^{-1} m_{2}^{-1} m_{1} m_{2}{ }^{\partial\left(m_{1}\right)}\right)^{-1}\left(p_{3}^{-1}, m_{3}{ }^{-1}\right)\right.\right. \text {, } \\
& \left.\left.\left.\left(1, m_{1}^{-1} m_{2}^{-1} m_{1} m_{2}{ }^{\partial\left(m_{1}\right)}\right)\left(p_{3}, m_{3}\right)^{\beta_{1}\left(1, m_{1}^{-1} m_{2}{ }^{-1} m_{1} m_{2}{ }^{\partial\left(m_{1}\right)}\right)},\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& =\left\langle\ldots \left\langle\left(1, m_{2}^{\left.\partial\left(m_{1}\right)^{-1} m_{1}^{-1} m_{2} m_{1}\right)\left(p_{3}^{-1}, m_{3}^{-1}\right)\left(1, m_{1}^{-1} m_{2}^{-1} m_{1} m_{2}{ }^{\partial\left(m_{1}\right)}\right), ~\left(p_{1}\right)}\right.\right.\right. \\
& \left.\left.\left.\left(p_{3}, m_{3}\right),\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left(1,\left\langle m_{1}, m_{2}\right\rangle^{-1}\right)\left(p_{3}{ }^{-1}, m_{3}{ }^{-1}\right)\left(1,\left\langle m_{1}, m_{2}\right\rangle\right)\left(p_{3}, m_{3}\right),\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left(1,\left\langle m_{1}, m_{2}\right\rangle^{-1} m_{3}^{-1}\left\langle m_{1}, m_{2}\right\rangle m_{3}\right),\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left(1,\left\langle m_{1}, m_{2}\right\rangle^{-1} m_{3}{ }^{-1}\left\langle m_{1}, m_{2}\right\rangle m_{3}{ }^{\partial_{1}\left(\left\langle m_{1}, m_{2}\right\rangle\right)}\right),\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle \\
& \left.=\left\langle\ldots\left\langle\left(1,\left\langle\left\langle m_{1}, m_{2}\right\rangle, m_{3}\right\rangle\right),\left(p_{4}, m_{4}\right)\right\rangle \ldots\right\rangle,\left(p_{n}, m_{n}\right)\right\rangle .
\end{aligned}
$$

if we continue calculations in this way, we obtain; $\left(1,\left\langle m_{1}, m_{2}, m_{3}, \ldots m_{n}\right\rangle\right)$. Since ∂_{1} is a nil(n)module then $\left(\left\langle m_{1}, m_{2}, m_{3}, \ldots m_{n}\right\rangle\right)=1$, it gives the following result: β_{1} is nil(n)-module.

Thus $\beta_{1}: \sigma^{*}(M) \rightarrow P$ is a nil(n)-module. In the diagram (1), the pair of homomorphisms (σ_{1}, σ) is a nil(n)-module morphism. This diagram is commutative since $\partial \sigma_{1}(p, m)=\partial(m)=\sigma(p)=\sigma \beta_{1}(p, m)$ for $p \in P$ and $m \in M$. We have

$$
\sigma_{1}\left((p, m)^{p^{\prime}}\right)=\sigma_{1}\left(\left(p^{\prime}\right)^{-1} p p^{\prime}, m^{\sigma\left(p^{\prime}\right)}\right)=m^{\sigma\left(p^{\prime}\right)}=\sigma_{1}(p, m)^{\sigma\left(p^{\prime}\right)}
$$

for all $(p, m) \in \sigma^{*}(M)$ and $p \in P$. Therefore we have a pullback nil(n)-module. Further we will show that σ_{1} is a Cartesian morphism over σ. Let $\left(v_{1}, v_{0}\right):\left(K_{1} \rightarrow K_{0}\right) \rightarrow\left(\sigma^{*}(M) \rightarrow P\right)$ be homomorphism of nil(n)-modules and $\theta: K_{1} \rightarrow P$ be a unique nil(n)-module morphism. Then we have the following commutative diagram

where $v_{1}: K_{1} \rightarrow \sigma^{*}(M)$ is given by $v_{1}\left(k_{1}\right)=\left(v_{0} \partial_{1} k_{1}, \theta k_{1}\right)$. Since $\sigma\left(v_{0} \partial_{1} k_{1}\right)=\partial \theta k_{1}=\partial m$ so ψ is a well defined homomorphism.

Proposition 3. The functor $\Phi_{N}: \operatorname{Nil}(\mathbf{n}) \rightarrow \mathbf{G r p}$ is cofibred.
Let $\mu: M \rightarrow P$ be a nil(2)-module and $f: P \rightarrow Q$ be a homomorphism of groups. Let $f_{*}(M)=F(M \times Q)$ be a free group generated by the set $M \times Q$. Let S be a subgroup of $f_{*}(M)$ generated by the following relations: ($m, m^{\prime} \in M, q \in Q$)

1. $(m, q)\left(m^{\prime}, q\right)\left(m m^{\prime}, q\right)^{-1} \in S$
2. $\left(m^{p}, q\right)(m, f(p) q)^{-1} \in S$

Now, consider the following diagram

in which $\bar{\mu}: f_{*}(M) / S \rightarrow Q$ is given by $\bar{\mu}((m, q) S)=q^{-1} f \mu(m) q$ and $\theta: M \rightarrow f_{*}(M) / S$ is given by $\theta(m)=(m, 1) S$ for $m \in M$ and $q \in Q$. This diagram is commutative, since $\bar{\mu} \theta(m)=\bar{\mu}((m, 1) S)=f \mu(m)$ for all $m \in M$. The action of Q on $f^{*}(M) / S$ can be given by $((m, q) S)^{q^{\prime}}=\left(m, q q^{\prime}\right) S$ for $m \in M$ and $q, q^{\prime} \in Q$. By using this action, we have the following result.

Proposition 4. The homomorphism $\bar{\mu}: f_{*}(M) / S \rightarrow Q$ given by $\bar{\mu}((m, q) S)=q^{-1} f \mu(m) q$, as defined above, is an induced nil(n)-module by the homomorphism of groups $f: P \rightarrow Q$ of the nil(n)-module $\mu: M \rightarrow P$.

Proof. Since

$$
\begin{aligned}
\bar{\mu}\left(((m, q) S)^{q^{\prime}}\right) & =\bar{\mu}\left(\left(m, q q^{\prime}\right) S\right) \\
& =\left(q q^{\prime}\right)^{-1} f \mu(m) q q^{\prime}=\left(q^{\prime}\right)^{-1}\left(q^{-1} f \mu(m) q\right) q^{\prime} \\
& =\left(q^{\prime}\right)^{-1} \bar{\mu}((m, q) S) q^{\prime},
\end{aligned}
$$

for all $m \in M$ and $q, q^{\prime} \in Q, \bar{\mu}$ is a pre-crossed module.
Further, for all $(m, q) S,\left(m^{\prime}, q\right) S, \ldots,\left(m^{(n)}, q\right) S \in f_{*}(M) / S$,

$$
\begin{aligned}
& \left.\left\langle\ldots\left\langle\left\langle(m, q) S,\left(m^{\prime}, q\right) S\right\rangle,\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& \left.=\left\langle\ldots\left\langle(m, q) S\left(m^{\prime}, q\right) S(m, q) S^{-1}\left(\left(m^{\prime}, q\right) S^{-1}\right)^{\overline{(m} m, q) S},\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left\langle(m, q) S\left(m^{\prime}, q\right) S\left(m^{-1}, q\right) S\left(\left(m^{\prime-1}, q\right) S\right)^{q^{-1} f \mu(m) q},\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left\langle\left(m m^{\prime} m^{-1}, q\right) S\left(\left(m^{\prime-1}, q q^{-1} f \mu(m) q\right) S,\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle\right. \\
& =\left\langle\ldots\left\langle\left\langle\left(m m^{\prime} m^{-1}, q\right) S\left(\left(m^{\prime-1}\right)^{\mu(m)}, q\right) S,\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left\langle\left(m m^{\prime} m^{-1}\left(m^{\prime-1}\right)^{\mu(m)}, q\right) S,\left(m^{\prime \prime}, q\right) S\right\rangle, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\ldots\left\langle\left\langle\left(\left\langle m, m^{\prime}\right\rangle, q\right) S,\left(m^{\prime \prime}, q\right) S\right\rangle \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle m, m^{\prime}\right\rangle, q\right) S\left(m^{\prime \prime}, q\right) S\left(\left\langle m, m^{\prime}\right\rangle, q\right)^{-1} S\left(\left(m^{\prime \prime}, q\right) S^{-1}\right)^{\bar{\mu}\left(\left\langle m, m^{\prime}\right\rangle, q\right) S}, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle m, m^{\prime}\right\rangle, q\right) S\left(m^{\prime \prime}, q\right) S\left(\left\langle m, m^{\prime}\right\rangle, q\right)^{-1} S\left(\left(m^{\prime \prime}, q\right) S^{-1}\right)^{q^{\prime}-1 f \mu\left(\left\langle m, m^{\prime}\right)\right) q}, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle m, m^{\prime}\right\rangle, q\right) S\left(m^{\prime \prime}, q\right) S\left(\left\langle m, m^{\prime}\right\rangle-1, q\right) S\left(\left(m^{\prime \prime-1}, q\right) S\right), \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle m, m^{\prime}\right\rangle m^{\prime \prime}\left\langle m, m^{\prime}\right\rangle^{-1}\left(m^{\prime \prime-1}, q\right) S\right), \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle m, m^{\prime}\right\rangle m^{\prime \prime}\left\langle m, m^{\prime}\right\rangle^{-1}\left(m^{\prime \prime-1}\right)^{\mu\left(\left\langle m, m^{\prime}\right\rangle\right)}, q\right) S, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\left\langle\left(\left\langle\left\langle m, m^{\prime}\right\rangle, m^{\prime \prime}\right\rangle, q\right) S, \ldots\right\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& =\left\langle\ldots\langle(1, q) S, \ldots\rangle\left(m^{(n)}, q\right) S\right\rangle \\
& \vdots \\
& =\left(\left\langle m_{1}, m_{2}, m_{3}, \ldots m_{n}\right\rangle, q\right) S \cong S
\end{aligned}
$$

Thus we have that $\bar{\mu}$ is a nil(n)-module. Now, we will show that (θ, f) is a nil(n)-module morphism. We have

$$
\left.\theta\left(m^{p}\right)=\left(m^{p}, 1\right) S=m, f(p) 1\right) S=((m, 1) S)^{f(p)}=\theta(m)^{f(p)}
$$

and $\bar{\mu} \theta(m)=\bar{\mu}((m, 1) S)=f \mu(m)$ for all $m \in M$ and $p \in P$. Then one can easily show that θ is a cocartesian morphism over f.

References

[1] U. E. Arslan, Z. Arvasi, and G. Onarli. Induced two-crossed modules, arXiv:1107.4291v1 [math.AT] 21 Jul 2011.
[2] H. Atik. Categorical Structures of Quadratic Modules of Commutative Algebras, Ph.D. Thesis, Osmangazi Universitesi. 2012.
[3] H.J. Baues. Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter, 15, 380 pages, (1991).
[4] R. Brown and P. J. Higgins. Colimit-theorems for relative homotopy groups, Journal of Pure and Applied Algebra, Vol. 22, 11-41, (1981).
[5] R. Brown and P. J. Higgins. On the connection between the second relative homotopy groups of some related spaces, Procedings of the London Mathematical Society, (3) 36 (2) (1978)193-212.
[6] R. Brown, P. J. Higgins, and R. Sivera. Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical higher homotopy groupoids, http://www.bangor.ac.uk/ ~mas010/pdffiles/rbrsbookb-e231109.pdf.
[7] R. Brown and R. Sivera. Algebraic colimit calculations in homotopy theory using fibred and cofibred categories, Theory and Applications of Categories, 22 (2009) 222-251.
[8] J.M. Casas and M. Ladra. Colimits in the crossed modules category in Lie algebras, Georgian Mathematical Journal, V7 N3, 461-474, 2000.
[9] A. Grothendieck. Catégories cofibrées additives et complexe cotangent relatif, Lecture Notes in Mathematics, Volume 79. Springer-Verlag, Berlin (1968).
[10] T. Porter. Some categorical results in the theory of crossed modules in commutative algebras, Journal of Algebra, 109, pp 415-429, (1987).
[11] T. Streicher. Fibred categories à la Bénabou, http://www.mathematik. tu-darmstadt.de/~streicher/FIBR/FibLec.pdf, pp 1-85, (1999).
[12] J.H.C. Whitehead. Combinatorial homotopy II, Bulletin of the American Mathematical Society, 55, pp 453-496, (1949).

