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Abstract. Let (A,) be a sequence of bounded linear operators from a separable Banach space X into a
Banach space Y. Suppose that ¢ is a countable fundamental set of X and the ideal .# of subsets of N has
property (AP). The sequence (4,,) is said to be b*#-convergent if it is pointwise .#-convergent and there
exists an index set K such that N\ K € .# and (A;x)iex is bounded for any x € X. We prove that the
sequence (A,) is b*#-convergent if and only if (||4,]|) is #-bounded and (A, ¢) is .#-convergent for any
¢ € &. Applications of this Banach—Steinhaus type theorem are related to some sequence-to-sequence
matrix transformations and to the weak .#-convergence in Banach spaces.
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1. Introduction and Preliminaries

Let N={1,2,...} and let X, Y be two normed spaces over the field K of real numbers R
or complex numbers C. A subset ¢ of X is called fundamental if the linear span of ® is dense
in X. By B(X,Y) we denote the space of all bounded linear operators from X into Y. As usual,
the dual of X is defined by X’ = B(X, K). By w(X) we denote the set of all X-valued sequences.
We write sup,, lim, and ). instead of sup,cy, lim,_, o, and Zsil, respectively. By an index
set we mean any infinite set {k;} C N with k; < k;,; for each i € N.

Let A, € B(X,Y) (n € N). The following theorems of functional analysis are well known

(see, for example, [11] or [17]).

Theorem 1 (Principle of uniform boundedness). Let X be a Banach space. If sup,, ||A,x]|| < o0

for every x € X, then
sup||A,|| < oo. M
n
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Theorem 2 (Banach-Steinhaus). Let X, Y be two Banach spaces and let ® be a fundamental
set of X. The limit lim, A, x exists for any x € X if and only if (1) holds and lim, A, ¢ exists
for every ¢ € ®. Moreover, the limit operator Ay, Agx = lim, A,x is bounded and linear, i.e.,
Ag € B(X,Y), and ||Apl| < sup, |IA,ll. If A€ B(X,Y), then lim,A,x = Ax for any x € X if and
only if (1) holds and lim, A, =A¢p (P € ).

The first idea of statistical convergence appeared, under the name of almost convergence,
in the first edition (Warsaw, 1935) of the monograph [25] of Zygmund. Since 1951 when
Fast [7] (see also [23] and [22]) introduced statistical convergence of number sequences in
terms of asymptotic density of subsets of N, several applications and generalizations of this
notion have been investigated (for references see [4] and [6]). For instance, Maddox [20]
and Kolk [13] considered the statistical convergence of sequences taking values in a locally
convex space or a normed space, respectively. An another extension of statistical convergence
is related to generalized densities.

Let T = (t,%) be a non-negative regular matrix of scalars (i.e., t, = 0 (n,k € N) and
lim,, >, tuy = limy uy for any convergent scalar sequence (uy)). A set K C N is said to have
T-density 6(K) if the limit

5T(K) =lim thk
exists (cf. [9]).

A sequence ¢ = (x;) € w(X) is called T-statistically convergent to a point [ € X, briefly

stp-limxg =1, if
Sr({k:llxx—ll=¢€})=0

for every £ > 0 (see [3, Definition 7] and [14, p. 44]).

If T is the identity matrix I, then T -statistical convergence is just the ordinary convergence
in X and if T is the Cesaro matrix C;, then T-statistical convergence is statistical convergence
as defined by Fast [7].

A further extension of statistical convergence was given in [16] by means of ideals. Recall
that a subfamily .# of the family 2N of all subsets of N is called an ideal if for each K,L € .
we have K| JL € # and for each K € .# and each L C K we have L € .#. An ideal .# is called
non-trivial if .# # () and N ¢ .#. A non-trivial ideal .# is called admissible if .# contains all finite
subsets of N. Any non-trivial ideal .# defines a filter

F(#)={KCcN:N\K e .#}.

For example,
yT:{KCN:(ST(K):O}

is an admissible ideal and the .#;-convergence coincides with the T-statistical convergence.

An admissible ideal .# c 2V is said to have property (AP) if for every countable family
of mutually disjoint sets K;,K, ... from .# there exist sets Ly, L,,... from 2~ such that the
symmetric differences K;AL; (i €N) are finite and L = J; L; € .#.
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Remark 1 ([1], Proposition 1). The property (AP) is equivalent to the property (P): for every
countable family of sets K;,Ks, ... from & there exist a set K € .# such that the differences K; \ K
(i € N) are finite.

A sequence ¢ = (x;) € w(X) is said to be .#-convergent to | € X, briefly £-lim; x; = [,
if for each € > 0 the set {k € N : ||x; — || = ¢} belongs to .# [16, Definition 3.1]. With the
#-convergence are closely related the following two notions. A sequence ¢ = (x;) € w(X) is
said to be #*-convergent to | € X, briefly #*-lim x; = [, if there exists an index set K = (k;)
such that K € #(#) and lim; x;, = [ in X [16, Definition 3.2]). A sequence ¢ = (x;) € w(X)
is said to be .#-bounded, briefly x; = O4(1), if there exists an index set K = (k;) such that
K € Z(#) and the sequence (k;) is bounded in X (cf. [10]). In the special case . = .4, we
write Oy, (1) instead of O 4(1).

We remark that the .#*-convergence of number sequences was introduced already by Freed-
man [8] as .£-near convergence.

It is easy to see that .#*-convergence implies .#-convergence and every .#*-convergent
sequence is .#-bounded.

The following characterization of .#-convergence is important for us.

Proposition 1 ([16, Theorem 3.2]). If the ideal ¢ has property (AP), then #-limx;, =1l in a
Banach space X if and only if #*-limx; = L.

By c 4(X) we denote the set of all .#-convergent X-valued sequences. Let £, (X), c¢(X) and
co(X) be the sets of all bounded, convergent and convergent to zero X-valued sequences,
respectively. For 1 < p < oo let £,(X) be the set of sequences (x;) € w(X) such that
S llxllP < 0.

Using Proposition 1 and Theorem 2, we proved in [15] the following Banach-Steinhaus
type theorem for .#-convergence.

Theorem 3 ([15, Theorem 3]). Let X and Y be two Banach spaces, where X has a countable
fundamental set ®. If the ideal .¢ has property (AP), then the sequence (A,) is b.#-convergent
(ice., (Apx) €cy(Y)NL o (Y) for any x € X) if and only if (1) holds and (A, ¢) is #-convergent
for every ¢ € ®. Thereby, the limit operator A, Ax = #-limA,x, is bounded and linear, and
Al < sup,, [I4,l-

In this paper we introduce the notion of b*#-convergence of sequences of bounded lin-
ear operators (A,) and give an analogue of Theorem 3 by finding necessary and sufficient
conditions for b*#-convergence of such sequences (4,,). As applications of this result we char-

b*
acterize infinite summability matrices 2 = (A,;) of type 2 : A(X) LA c(Y) with A, € B(X,Y)
(n,keN)and A € {c, cy, £;}, also consider the weak b*¢#-convergence in Banach spaces.

2. Main Theorems

In the following let X, Y be two Banach spaces, A, € B(X,Y) (n € N) and let .# c 2" be a
non-trivial admissible ideal.
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Recall that a sequence (x,) € w(X) is said to be weakly .#-convergent (weakly T-statistically
convergent) to a point | € X if #-limx’(x,) = x'(1) (stp-limx’(x,) = x’(1)) for any x’ € X’
[2, 21]. We know that every weakly convergent sequence in a Banach space X is bounded. But
a weakly .#-convergent sequence is not necessary .#-bounded (cf. [5, Theorem 1]). Example 2
from [5] shows that the Banach sequence space ¢, contains a weakly statistically null sequence
(zi) with no bounded subsequences. Thus some results of Bhardwaj and Bala [2, Theorem 3.1
and Lemma 3.2] are incorrect. At it, defining F,x" = x'(z,) (x’ € £}, n € N), we get the
sequence (F,) of bounded linear functionals F,, : £, — R. Since ||F,|| = ||z,|| by the classical
Hahn-Banach theorem, the sequence of functionals (F,) converges statistically to zero for any
x’ € £}, but the sequence of norms (||F,||) contains no bounded subsequences. This example
justifies the following definition.

Definition 1. A sequence (A,,) of operators A,, € B(X,Y) (n € N) is said to be b*#-convergent (to
A€ B(X,Y)) if £-lim, A, x exists (£-limA,x = Ax) for any x € X and there is a set K € F (%)
such that (Apx)xex is bounded for every x € X. In the special case .$ = % we get the notion
of b*T-statistical convergence. The b*#-limit and the b*T-statistical limit of (A,) are denoted,
respectively, by b*#-lim, A, and b*st-1im, A,,.

In view of Theorem 1 we can say that a sequence (A,) is b*.#-convergent if and only if
#-limA,x exists for any x € X and

sup ||A|]) < oo for some K € Z(.#). 2)
kek

Theorem 3 shows that b.#-convergence implies b*.#-convergence by the suppositions that X
is separable and .# satisfies the condition (AP).
To prove our main theorem we need the following lemma.

Lemma 1. Suppose that the ideal .# has property (AP) and let z;; € X (k, j € N).
If #-limy z; = 2; for any j €N, then there exists an index set N = (n;) such that N € #(#) and
lim; z, ; =z; forany j €N

Proof. Assume that .#-lim; z;; = z; (j € N). Since .# has property (AP), by Proposition 1
there exist index sets K; = {k;(j)} (j € N) such that

and Kjf = N\K; € # for any j € N. Because of Remark 1 we can find the set N’ € # such
that the differences K]’. \ N’ (j € N) are finite. Now, for N = N\ N’ we have that N € Z(.¥)
and the differences N \ K; are finite. Consequently, denoting N = (n;), from (3) it follows that
lim; z, ; =z; for any j € N. O
Theorem 4. Let X and Y be two Banach spaces, where X has a countable fundamental set ®. If
the ideal .# has property (AP). A sequence (A,,) of operators A,, € B(X,Y) is b*#-convergent if and
only if (||A,l]) is £-bounded, i.e., (2) holds, and (A, ¢ ) is #-convergent for every ¢ € ®. Thereby,
the limit operator Ay, Apx = £-limA,x, is bounded and linear, and ||Ag|| < suprex llAkll- If
A€ B(X,Y), then b*#-1im, A, = A if and only if (||A,|]) is £-bounded and £-1im,A,¢ = A¢p
(p € ).
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Proof. If (A,) is b*#-convergent (b*#-lim,A, = A), then (2) is satisfied and .£-limA, ¢
exists (£-limA, ¢ = Ag¢) for every ¢ € ®.

Conversely, assume that (2) holds and .#-limA, ¢; exists (or .#-limA, ¢; = A¢;) for every
j €N, where & = {¢;}. Applying Lemma 1 to z,; = A,¢; (and z; = A¢;), we fix an index
set N = (n;) € ZF(#) such that lim; A, ¢; exists (lim;A,, ¢; = A¢g;) for any j € N. Since the
set M = N NK also belongs to #(.#), denoting M = (m;), we have that lim; A, ¢; exists
(im; A, ¢; = Ag;) for any j € N and sup; ||A,, || < 00. So, by Theorem 2, the limit
Apx =lim; Ay, x exists (lim; A, x = Ax) for any x € X, Ay € B(X,Y) and |[|Aq]| < sup; [|A, |-
The proof is completed if we remark that lim; A, x = .#-limA, x by Proposition 1. O

It is known that the ideal .4 = {K € N : §(K) = 0} defined by a non-negative regular
matrix T has the property (AP) (see [9, Proposition 3.2]). Since .#;-convergence coincides
with T-statistical convergence, from Theorem 4 we immediately get the following Banach-
Steinhaus type theorem for b* T-statistical convergence.

Theorem 5. Suppose that T is a non-negative regular matrix and X has a countable fundamental
set ®. A sequence (A,) of operators A, € B(X,Y) is b*T-statistically convergent if and only if (2)
holds and str-lim A, ¢ exists for any ¢ € ®. In this case the limit operator Ay, Agx = stp-limA,x
(x € X), belongs to B(X,Y) and ||Ayl| < supiek lAkll. IfA € B(X,Y), then b'sty-lim, A, =A if
and only if (||A,l]) is £-bounded and stp-lim, A, ¢ =A¢p (¢ € ®).

3. Some Applications

Let A(X) be a subspace of w(X), u(Y) a subspaces of w(Y) and 2 = (A,;) an infinite
matrix of operators A, € B(X,Y) (n,k € N). We say that 2l maps A(X) into u(Y), and write
2A 1 AX)— u(Y), if for all ¢ = (x;) € A(X) the series A,xr = D, Ayxx (n € N) converge and
the sequence 20y = (2(,,x) belongs to u(Y).

It is well known that c(X), cy(X) and £ ., (X) are Banach spaces with the norm
lltllco = supy ||x«ll, and £,(X) is Banach space with the norm ||¢[|, = (Zk ||xk||P)1/p if
1<p<oo.

For x € X and n € N let ¢(x) = (x,x,...) be constant sequence and ¢“(x) = (e;?(x))
the sequence with e;‘(x) = x if j = k and e;.‘(x) = 0 otherwise. It is not difficult to see
that if  is a (countable) fundamental set in X, then &,(®) = {¢*(¢) : k € N, ¢ € ¥} is
a (countable) fundamental set in Banach spaces cy(X) and ¢,(X), and &(@)|J &1 (@) with
&1(®) ={e(¢p) : ¢ € &} is a (countable) fundamental set in Banach space c(X).

Using Theorem 2, Zeller [24] (see also [19]) and Kangro [12] characterized the matrices
A:c(X)—>c(Y), A:cp(X)—c(Y)and A : £,(X)—c(Y) as follows.

Theorem 6. Let A = (A,) be an infinite matrix with A, € B(X,Y). Then:
(@) A:c(X)—>c(Y)if and only if

-
ZAnkxk

k=1

G,, =sup sup < oo (neN), 4

T lxdll<1
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supG,, < 00, (5)

3 ;irrlnAnkx (keN, x €X), (6)
m

3 hrgn;Ankx (neN, xeX), (7)

3 lirranAnkx (x €X): (8)
k

(i) 2A:co(X)—c(Y) if and only if (4)-(6) hold;
(iii)) A:€,(X)—c(Y)if and only if (6) is satisfied and
H, =sup ||Ank” <oo (neN), 9
k
supH, < 090,
n
Remark 2. It is not difficult to see, using Theorem 2, that in Theorem 6 it suffices to require the

fulfillment of conditions (6)—(8) for all elements ¢ from a fundamental set ® of X.

The notion of b*¢#-convergence of sequences of bounded linear operators leads us to the
definition of new type summability maps.

Definition 2. Let A(X) and u(Y) be two linear subspaces of w(X) and w(Y), respectively, and
let .# C 2N be a non-trivial admissible ideal. We say that a matrix 2 maps A(X) in the sense of

b*#-convergence into u(Y), and write 2 : A(X)E),u(Y), if #-1im2(,x exists for any ¢ € A(X)
and there is an index set N = (n;) from Z(.#) such that the submatrix vy = (ay, ) maps A(X)

b*
into £ (Y). In the case of .# = % we get the matrices of type 2 : A(X) iz,u(Y).

Based on Theorems 4 and 5, we describe the matrices 2 : A(X) LA c(Y) and
b*
A A(X)i{c(Y), where A € {c, ¢, {,}

Proposition 2. Let 20 = (A,x) be an infinite matrix with A, € B(X,Y). Suppose that X has a
countable fundamental set ® and the ideal ¢ has property (AP). Then:

@ A: c(X)gc(Y) if and only if (4) and (7) hold,

Gn :Oﬂ(1)> (10)
34-limAyd (kEN, ¢ €9), (11)
3g-1m D Aud (¢ € 2); (12)

k

(i) 2A: cO(X)gc(Y) if and only if (4), (10) and (11) hold;
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(i) A:€1(X) LA c(Y) if and only if (9) is satisfied and (H,) is .#-bounded.

Proof. The equality ng); = Z£=1Ankxk defines a linear operator Q(gr) on ¢(X) and ¢y(X)
for any n,r € N. Since
.
ZAnka

k=1
by Theorem 2 we get that the series 2, (n € N) converge for all ¢y € ¢(X) and 2, € B(c(X),Y)
if and only if (4), (7) are satisfied. Similarly, 2, € B(cy(X),Y) if and only if (4) holds. Now,

applying Theorem 4 to the operators 2,,, we have that 2 : ¢(X) LA c(Y) (or 2 : cp(X) LEA c(Y))
if and only if (10) holds and (2(,,p) is .#-convergent for any vy € &;(®) (respectively, y € &,(®)).
But this reduces to (11) and (12) because 2, e, (¢) =A, ¢ and A e(P) = D, A -

Since 2, € B(¢1(X),Y) if and only if (9) holds, the statement (iii) also follows by Theo-
rem 4. O

) =
126,71l =

3

The matrix map 21 : £,(X) 4 c(Y) we consider in the special casesY = Kand 1 < p < oo.
Then B(X,Y) = X’ and so, Ay € X' (n,k € N). In this case 2, € ({,(X))" if and only if
(Anken € £g(X"), ie., D5 AT < 0o, where 1/p +1/q = 1. Therefore, denoting ¢ = ¢(K)
and using the same arguments as in the proof of Proposition 2, we get the following result.

Proposition 3. Let A = (A,;) be an infinite matrix with A, € X’. Suppose that X has a
countable fundamental set ®, the ideal .¢ has property (AP) and 1 < p < oo, 1/p+1/q=1.

Then 2 : £,(X) 5 if and only if (11) holds and

D AT =0,(1).
k

If X =Y =K, then the matrix map 2l reduces to the transformation A : A — u defined by
an infinite scalar matrix A = (a,; ). Using the fact that for Y = K we have (see [12, p. 114])

.
= A,
k=1

from Propositions 2 and 3 we obtain the following corollary.

r
ZAnkxk
k=1

sup
llxxlI<1

Corollary 1. Let A = (a,) be an infinite matrix of scalars, 1 <p < oo and 1/p+1/q=1. If
the ideal ¢ has property (AP), then:

i A: cgc if and only if
D lawl =0,4(1), (13)
k
3.¢- lirrln a, (keN), 14)

Eleﬂ-lirranank;
k
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.. b . .
(ii) A:cy—cif and only if (13) and (14) hold;

(iii) A : Zlﬂc if and only if (14) is satisfied, h, = sup |a,| < oo (n € N) and (h,) is
SF-bounded;

Giv) A: Ep H, c if and only if (14) is satisfied and

D laul? = 0,(1).
k

Letting .¢ = .4; in Propositions 2, 3 and Corollary 1, we get the characterizations of ana-
logical matrix maps in the sense of b*T-statistical convergence. We also remark that the matrix
maps in the sense of b.#- and bsty-convergence were studied in [15].

At the beginning of Section 2 we remarked that a weakly .#-convergent sequence is not
necessary .#-bounded. This fact leads us to a new variant of weak .#-convergence.

Definition 3. A sequence ¢ = (x,) € w(X) is said to be weakly b*.#-convergent to | € X, briefly
wb*#-lim, x, = I, if ¢ is weakly #-convergent to | and there is a set K € & (.#) such that the
sequence (x’'(xy))xex is bounded for every x’ € X'. For % = % we get the notion of weak
b*T-statistical convergence, in this case we write wb'st-lim, x,, = L.

Using bounded linear functionals F, : X’ — R, F,x’ = x'(z) (x’ € X',z € X), we can say
that wb™#-lim,, x, =l (Wb'sty-lim, x, =1) if and only if the sequence (F, ) is b"#-convergent
(b*T -statistically convergent) to F;. Thus, since ||F,|| = ||z||, by Theorems 4 and 5 we get the
following characterizations of these new types of weak convergence.

Proposition 4. Let r = (x,) € w(X) and | € X. Assume that X’ has a countable fundamental
set &’

() If £ is an ideal with the property (AP), then wb*#-lim, x,, = L if and only if

Ieall =0,(D), (15)
S-1im @’ (x,) =¢'(D) (¢ € ®). (16)

(i) If T is a regular matrix, then wb*st;-1im,, x,, = L if and only if (15) and (16) are satisfied
with sty instead of £.

Finally we apply Proposition 4 to Banach sequence spaces cy(X) and £,(X) with
1 < p < o0o. It is known that the dual spaces c;(X)" and £,(X )’ are isometrically isomorphic,
respectively, to £1(X’) and £,(X"), where 1/p +1/q = 1 (see, for example, [18]). If &’ is a
fundamental set of X', then &,(®’) is the fundamental set of £;(X") and £,(X"). Thus from
Proposition 4 we get the following two corollaries.

Corollary 2. Letr, = (x,;) (n € N) and ry = (x;) be the elements of co(X). Assume that the dual
X' has a countable fundamental set ®'.
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() If £ is an ideal with the property (AP), then wb*.#-1im, ¢, = 1 if and only if

”Fn”oo :Oy(l), (17)
£-lim ¢’ (x,) =¢'(x;) (¢’ €@, neN). (18)

(i) If T is a non-negative regular matrix, then wb*st;-lim,, r, =y if and only (17) and (18)
hold with sty instead of .#.

Corollary 3. Let r, = (x,;) (n € N) and ry = (x;) be the elements of £,(X) (1 < p < 00).
Assume that X’ has a countable fundamental set ®'.

() If £ is an ideal with the property (AP), then wb*#-lim, t,, = 1, if and only if (18) is true
and

llznll, = O4(1). (19)

(i) If T is a non-negative regular matrix, then wb*st,-lim, r,, = ro if and only (18) and (19)
hold with sty instead of .#.

Proposition 4(ii) and Corollary 3(ii), for T = C;, may be considered as some corrected
versions, respectively, of Theorem 3.1 and Lemma 3.2 from [2].
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