EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 7, No. 1, 2014, 77-85 ISSN 1307-5543 – www.ejpam.com

The Relation \mathscr{B} and Minimal bi–ideals in Γ -semigroups

Islam Braja¹, Petraq Petro^{2,*}

¹ Department of Mathematics, Faculty of Natural Sciences, University "A. Xhuvani", Elbasan, Albania

² Department of Mathematics, Faculty of Natural Sciences, University of Tirana, Tirana, Albania

Abstract. In this paper we introduce the relation \mathscr{B} "to generate the same principal bi-ideal" in Γ -semigroups. One of the main results that are proved here is the analogue of the Green's Theorem for Γ -semigroups, which we call the Green's Theorem for the relation \mathscr{B} in Γ -semigroups. Applying our Green's Theorem for relation \mathscr{B} in Γ -semigroups, we prove that any bi-ideal of a Γ -semigroup without zero is minimal if and only if it is a Γ -subgroup. Further, we prove that, if a Γ -semigroup. Finally, we prove that, if for elements a, c of a Γ -semigroup without zero we have $a\mathscr{D}c$ and the principal bi-ideal $(a)_b$ and principal quasi-ideal $(a)_q$ are minimal, then $(a)_b = (a)_q$ and the principal bi-ideal $(c)_b$ and the principal quasi-ideal $(c)_q$ are minimal too, and $(c)_b = (c)_q$.

Key Words and Phrases: Γ-semigroup, Green's theorem, quasi-ideal, bi-ideal, Γ-group.

1. Introduction

The notion of Γ -semigroup is introduced by Sen in [8]. Let M and Γ be non–empty sets. Any map from $M \times \Gamma \times M$ to M will be called a Γ -multiplication in M and is denoted by $(\cdot)_{\Gamma}$. The result of this Γ -multiplication for $a, b \in M$ and $\gamma \in \Gamma$ is denoted by $a\gamma b$. According to Sen and Saha [9], a Γ -semigroup is an ordered pair $(M, (\cdot)_{\Gamma})$, where M and Γ are non-empty sets and $(\cdot)_{\Gamma}$ is a Γ -multiplication in M for which the following proposition:

$$\forall (a, b, c, \alpha, \beta) \in M^3 \times \Gamma^2, (a\alpha b)\beta c = a\alpha (b\beta c)$$

is true.

In the literature there are many examples of Γ -semigroups, but the following example, which is inspired from Hestenes's rings [3] is the most well known one.

http://www.ejpam.com

© 2014 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: braja_islam@yahoo.com (I. Braja), petropetraq@yahoo.com (P. Petro)

Example 1. The Γ -semigroup M of all $m \times n$ matrices with entries from a field F, where Γ is the set of all $n \times m$ matrices, with entries from F. The result of Γ -multiplication in M for two $m \times n$ matrices A, B and an $n \times m$ matrix C is the usual product ACB.

Note that every plain semigroup *S* can be considered as a Γ -semigroup by taking as Γ a singelton {1}, where 1 is the identity element of *S*, when *S* has a such element, or it is a symbol not representing an element of *S*, and the Γ -multiplication in *S* is defined by a1b = ab, where ab is the usual product in plain semigroup *S*.

Similarly to the definition of relations \mathscr{R}_{plain} , \mathscr{L}_{plain} , \mathscr{H}_{plain} and \mathscr{D}_{plain} in plain semigroup, Saha in [7] has introduced the analogue relations $\mathcal{R}, \mathcal{L}, \mathcal{H}, \mathcal{D}$ in a Γ -semigroup M, which are called the Green's relations in the Γ -semigroup M. In this paper we define the relation \mathscr{B} in a Γ -semigroup M such that $a \mathscr{B} c$ if and only if $(a)_b = (c)_b$, where $(a)_b$ and $(c)_b$ are the principal bi–ideals generated by elements a, c of M respectively. The definition of relation \mathscr{B} in Γ -semigroups mimics the definition of relation \mathscr{B} in plain semigroup introduced in [4]. We show that in Γ -semigroups the relation \mathcal{B} is different from Green's relation \mathcal{H} . One of our main results claims that the analogue of Green's Theorem for Green's relation $\mathcal{H}_{plain} = \mathcal{R}_{plain} \cap \mathcal{L}_{plain}$ holds true for the relation \mathcal{B} in Γ -semigroups. This theorem we call Green's Theorem for the relation \mathcal{B} in Γ -semigroups. From this theorem, as a particular case, we get a Green's Theorem for the relation \mathcal{B} in plain semigroups. Then we use our theorem for the relation \mathscr{B} in Γ -semigroups to prove that any bi-ideal of a Γ -semigroup without zero is minimal if and only if it is a Γ -subgroup. As a corollary of the above result we get the analogue of the result for minimal quasi-ideal in Γ -semigroup [6], which states that "if a Γ -semigroup M without zero has a cancellable element contained in a minimal bi-ideal B of M, then M is a Γ -group". From this result we get the analogue of result for plain semigroups which state that "if a semigroup S without zero has a cancellable element contained in a minimal bi–ideal, then S is group".

At last, we show that if for the elements a, c of Γ -semigroup M without zero, we have $a \mathscr{D} c$ and principal bi-ideal $(a)_b$ and principal quasi-ideal $(a)_q$ are minimal, then $(a)_b = (a)_q$ and the principal bi-ideal $(c)_b$ and the principal quasi-ideal $(c)_q$ are minimal too, and $(c)_b = (c)_q$.

At the end of this paper we raise an open problem.

2. Preliminaries

We give some notions and present some auxiliary results that will be used throughout the paper.

Let M be a Γ -semigroup and A, B be subsets of M. We define the set

$$A\Gamma B = \{a\gamma b \in M | a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

For simplicity we write $a\Gamma B$ instead of $\{a\}\Gamma B$, $A\Gamma b$ in place of $A\Gamma\{b\}$, and $a\Gamma b$ instead of $\{a\}\Gamma\{b\}$.

Analogously with the definitions in plain semigroups there are given the following definitions in Γ -semigroups.

Definition 1. Let M be a Γ -semigroup. A non-empty subset M_1 of M is said to be a Γ -subsemigroup of M if $M_1 \Gamma M_1 \subseteq M_1$.

Definition 2. A right [left] ideal of a Γ -semigroup M is a non-empty subset R [L] of M such that $R\Gamma M \subseteq R$, [$M\Gamma L \subseteq L$].

Definition 3. A quasi-ideal of a Γ -semigroup M is a non-empty subset Q of M such that $Q\Gamma M \cap M\Gamma Q \subseteq Q$.

Definition 4. A bi–ideal of a Γ -semigroup M is a Γ -subsemigroup B of M such that $B\Gamma M\Gamma B \subseteq B$.

Similarly to the plain semigroups, it is easy to prove the following two propositions:

Proposition 1. Every quasi-ideal of a Γ -semigroup M is a bi-ideal of M.

Proposition 2. The intersection of any set of bi-ideals of a Γ -semigroup M is an empty set or is a bi-ideal of M.

Theorem 1 ([1]). Let A be a nonempty subset of a Γ -semigroup M. Then

$$(A)_b = A \cup A \Gamma A \cup A \Gamma M \Gamma A,$$

where $(A)_b$ is the smallest bi–ideal of M containing A, i.e. the intersection of bi–ideals of M containing A.

Let *M* be a Γ -semigroup and $\gamma \in \Gamma$ is a fixed element. As in [9], we define the multiplication \circ in *M* by $a \circ b = a\gamma b$. It is obvious that \circ is associative, hence we obtain a semigroup (M, \circ) which is shortly denoted by M_{γ} .

A zero of a Γ -semigroup *M* is an element 0 of *M* such that for all $a \in M$ and $\gamma \in \Gamma$ we have $a\gamma 0 = 0\gamma a = 0$.

Theorem 2 ([6]). Let *M* be any Γ -semigroup without zero and $\gamma \in \Gamma$ a fixed element. Then S_{γ} is a group if and only if *S* has not proper quasi-ideals.

From this theorem we give:

Theorem 3 (citesensaha). Let M be a Γ -semigroup without zero. If M_{γ} is a group for some $\gamma \in \Gamma$, then it is a group for all $\gamma \in \Gamma$.

Definition 5 ([9]). A Γ -semigroup M is called a Γ -group if M_{γ} is a group for some (hence for all) $\gamma \in \Gamma$.

Let \overline{M} be a Γ -subsemigroup of a Γ -semigroup M. In the set \overline{M} we have a Γ -multiplication induced by the Γ -multiplication of Γ -semigroup M, $(\cdot)_{\Gamma}$, denoting it with the same symbol. It is clear that the ordered pair $(\overline{M}, (\cdot)_{\Gamma})$ is a Γ -semigroup. From Theorem 3, if \overline{M}_{γ} is a group for some $\gamma \in \Gamma$, then it is group for all $\gamma \in \Gamma$ and so it is a Γ -group. In this case, we will call \overline{M} a Γ -subgroup of the Γ -semigroup M.

Saha has defined in [7] the Green's relations $\mathcal{R}, \mathcal{L}, \mathcal{H}$ in a Γ -semigroup M as follows:

$$\begin{aligned} \forall (a,b) \in M^2, \ a \mathscr{R} b &\Leftrightarrow (a)_r = (b)_r, \\ \forall (a,b) \in M^2, \ a \mathscr{L} b &\Leftrightarrow (a)_l = (b)_l, \\ \forall (a,b) \in M^2, \ a \mathscr{H} b &\Leftrightarrow (a)_r = (b)_r \text{ and } (a)_l = (b)_l \end{aligned}$$

where $(a)_r = a \cup a \Gamma M$, $(b)_r = b \cup b \Gamma M$, $(a)_l = a \cup M \Gamma a$, $(b)_l = b \cup M \Gamma b$, are respectively the principal right ideal generated by *a*, the principal right ideal generated by *b*, the principal left ideal generated by *a*, and the principal left ideal generated by *b* in Γ -semigroup *M*.

It turns out that $\mathcal{R}, \mathcal{L}, \mathcal{H}$ are equivalent relations. The respective equivalence classes of $a \in M$ are denoted by R_a, L_a, H_a .

Proposition 3 ([7]). Let M be a Γ -semigroup. Then we have:

(i) For every three elements a, b, c of M and for every $\gamma \in \Gamma$

 $a \mathscr{R} b \Rightarrow c \gamma a \mathscr{R} c \gamma b$ and $a \mathscr{L} b \Rightarrow a \gamma c \mathscr{L} a \gamma b$.

- (ii) For every two elements $a, b \in M$, $a \mathscr{R} b$ if and only if either a = b or there exist $\alpha, \beta \in \Gamma$ and $c, d \in M$ such that $a = b \alpha c$ and $b = \alpha \beta d$.
- (iii) For every two elements $a, b \in M$, $a \mathscr{L} b$ if and only if either a = b or there exist $\alpha, \beta \in \Gamma$ and $c, d \in M$ such that $a = c\alpha b$ and $b = d\beta \alpha$.
- (iv) \mathscr{R} and \mathscr{L} commute, that is $\mathscr{R} \circ \mathscr{L} = \mathscr{L} \circ \mathscr{R}$. So, one can define a fourth Green's relation in M which is

$$\mathscr{D} = \mathscr{R} \circ \mathscr{L} = \mathscr{L} \circ \mathscr{R}.$$

The equivalence class of $a \in M$ from \mathcal{D} is denoted by D_a . In [6], it is defined the relation \mathcal{Q} in a Γ -semigroup M as follows

$$\forall (a,b) \in M^2, a \mathscr{Q} b \Leftrightarrow (a)_a = (b)_a,$$

where $(a)_q = a \cup (a\Gamma M \cap M\Gamma a)$, $(b)_q = b \cup (b\Gamma M \cap M\Gamma b)$, are the principal quasi-ideal generated by *a* and the principal quasi-ideal generated by *b* in Γ –semigroup *M*, respectively.

The relation \mathcal{Q} is an equivalence relation and moreover we have

Proposition 4 ([6]). The relations \mathcal{H} and \mathcal{Q} coincide in every Γ -semigroup M.

For the relation \mathcal{H} , consequently for relation \mathcal{Q} , has an analogue of Green's Theorem for plain semigroups, which is called Green's Theorem for Γ -semigroups.

Theorem 4 ([6] Green's Theorem for Γ -semigroups). *If the elements a*, *b*, $a\gamma b$ *of a* Γ -semigroup M all belong to the same \mathcal{H} -class H of M, then H is a subgroup of the semigroup M_{γ} . Moreover, for any two element $h_1, h_2 \in H$, the element $h_1\gamma h_2$ belongs to H.

Theorem 5 ([6]). A quasi-ideal Q of a Γ -semigroup S without zero is minimal if and only if Q is an \mathcal{H} -class.

Theorem 6 ([6]). A quasi-ideal Q of a Γ -semigroup S without zero is minimal if and only if Q is a Γ -subgroup of S.

Theorem 7 ([6]). Let a, b be two elements of a Γ -semigroup S without zero such that $a \mathscr{D} b$. Then the principal quasi-ideal $(a)_a$ is minimal if and only if the same holds for $(b)_a$.

3. Main Results

For every element *a* of a Γ -semigroup *M* we denote by $(a)_b$ the intersection of all bi-ideals of *M* that contain *a*. This bi-ideal, that is, the smallest bi-ideal of *M* containing *a*, is called principal bi-ideal of *M* generated by *a*. From the Theorem 1 we have

$$(a)_b = a \cup a \Gamma a \cup a \Gamma M \Gamma a$$

Now, similarly with the definition of the relation \mathcal{B} in plain semigroups [4], we define the relation \mathcal{B} in Γ -semigroup M by

$$\forall (a,c) \in M^2, a \mathscr{B} c \Leftrightarrow (a)_b = (c)_b.$$

So, for every two elements a, c of Γ -semigroups we have

$$a \mathscr{B} c \Leftrightarrow a \cup a \Gamma a \cup a \Gamma M \Gamma a = c \cup c \Gamma c \cup c \Gamma M \Gamma c.$$

Clearly \mathcal{B} is an equivalence relation on M. The equivalence class of $M \mod \mathcal{B}$ containing the element $a \in M$ is denoted by B_a .

From Proposition 3, it is clear that $\mathscr{B} \subseteq \mathscr{H}$. The following example shows that the inclusion may be strict.

Example 2. Consider the set of integers modulo 8,

$$\mathbb{Z}/8\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, 6, \overline{7}\},\$$

_ _ _ _ _ _ _ _ _

and $\Gamma = \{0, 1, 2\} \subseteq \mathbb{N} \cup \{0\}.$

The result of Γ -multiplication in $M = \mathbb{Z}/8\mathbb{Z}$ for two any elements $\overline{a}, \overline{b}$ of M and every element $\gamma \in \Gamma$ is the usual product $\overline{a} \overline{\gamma} \overline{b}$ of integers modulo 8, $\overline{a}, \overline{\gamma}, \overline{b}$.

It is clear that $(M = \mathbb{Z}/8\mathbb{Z}, (\cdot)_{\Gamma})$ is a Γ -semigroup.

The elements $\overline{2}$ and $\overline{6}$ are \mathcal{L} equivalent since:

$$(\overline{2})_l = \overline{2} \cup \mathbb{Z}/8\mathbb{Z}\Gamma\overline{2} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\},\$$
$$(\overline{6})_l = \overline{6} \cup \mathbb{Z}/8\mathbb{Z}\Gamma\overline{6} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}.$$

In the Γ -semigroup $(M = \mathbb{Z}/8\mathbb{Z}, (\cdot)_{\Gamma})$ the Green's relations \mathcal{L} and \mathcal{R} coincide and so we have $\overline{2\mathcal{H}6}$.

The elements $\overline{2}, \overline{6}$ of Γ -semigroup $M = \mathbb{Z}/8\mathbb{Z}$ are not \mathscr{B} -equivalent since:

$$\begin{aligned} (\overline{2})_b =& \overline{2} \cup \overline{2} \Gamma \overline{2} \cup \overline{2} \Gamma M \Gamma \overline{2} = \{\overline{0}, \overline{2}, \overline{4}\}, \\ (\overline{6})_b =& \overline{6} \cup \overline{6} \Gamma \overline{6} \cup \overline{6} \Gamma M \Gamma \overline{6} = \{\overline{0}, \overline{4}, \overline{6}\}, \end{aligned}$$

and so $\mathcal{H} \neq \mathcal{B}$.

For the equivalence relation \mathscr{B} in Γ -semigroup it is true the following theorem, which resembles the Green's Theorem for plain semigroups [10], the Green's Theorem for rings [5], the Green's Theorem for semirings [2], and Green's Theorem for Γ -semigroup [6]. We will call this theorem the Green's Theorem for the relation \mathscr{B} in Γ -semigroups.

Theorem 8. If the elements $a, b, a\gamma b$ of a Γ -semigroup $(M, (\cdot)_{\Gamma})$ all belong to the same \mathscr{B} -class B, then B is a Γ -subgroup of semigroup M_{γ} .

Proof. Since the relation \mathcal{B} is included in the relation \mathcal{H} , we have

$$B = B_a \subseteq H_a.$$

Thus the elements $a, b, a\gamma b$ belong to the \mathcal{H} -class H_a of Γ -semigroup M. So, by Theorem 3, H_a is a subgroup of semigroup M_{γ} and therefore there exists the identity e of subgroup H_a and the following equalities are true:

$$a = e\gamma a\gamma e, \quad e = a\gamma a^{-1}\gamma a^{-1}\gamma a,$$

where a^{-1} is the inverse element of *a* in the subgroup H_a of semigroup M_{γ} . These equalities show that the principal bi–ideals generated by elements *a* and *e* are the same. Thus, the element *e* belongs to the class $B_a = B$. Now, let *x* be any element of subgroup H_a . We have the following equalities:

$$x = e\gamma x\gamma e, \quad e = x\gamma x^{-1}\gamma x^{-1}\gamma x,$$

where x^{-1} is the inverse element of the element x of subgroup H_a of semigroup M_{γ} . These equalities show that $(x)_b = (e)_b$. So, since $e \in B_a$, the element x belongs to B_a . Thus, we have

$$B = B_a = H_a,$$

and consequently \mathscr{B} -class *B* is a subgroup of Γ -semigroup M_{γ} .

A element *e* of a Γ -semigroup *M* is called *idempotent* if there exists $\gamma \in \Gamma$ such that $e = e\gamma e$. From the Theorem 8 we get immediately the following:

Corollary 1. If a \mathscr{B} -class B of a Γ -semigroup M contains an idempotent $e = e\gamma e, \gamma \in \Gamma$, then B is a subgroup of semigroup M_{γ} .

Since, every plain semigroup *S* can be considered as a Γ -semigroup, from the Theorem 8 and the Corollary 1, we get the following theorem and corollary to plain semigroups:

Theorem 9. If the elements a, b, ab of a semigroup S all belong to the same \mathcal{B} -class B, then B is a subgroup of semigroup S.

Corollary 2. If an \mathcal{B} -class B of a semigroup S contains an idempotent e, then B is a subgroup of semigroup S.

We can call the Theorem 9 the Green's Theorem for the relation \mathcal{B} in plain semigroups.

Proposition 5. Let *M* be an arbitrary Γ -semigroup. If the idempotent $e = e\gamma e, \gamma \in \Gamma$ together with $a, b \in M$ all belong to the same \mathscr{B} -class *B*, then $e\gamma a = a\gamma e = a$ and $a\gamma b \in B$.

Proof. Since *B* contains an idempotent $e = e\gamma e, \gamma \in \Gamma$, then the Corollary 1 implies that *B* is a subgroup of M_{γ} . The identity of *B* is *e* because $e \circ e = e\gamma e = e$. Since $a \circ e = e \circ a = e$, we have $a\gamma e = a = a\gamma e$. The element *a*, *b* belongs to *B*, therefore $a\gamma b = a \circ b \in B$.

A bi–ideal *B* of a Γ –semigroup *M* without zero is called *minimal* if *B* does not properly contain any bi–ideal of *M*.

One can prove easily that:

Lemma 1. A bi-ideal B of a Γ -semigroup M without zero is minimal if and only if B is an \mathscr{B} -class.

Now we will use the Green's Theorem for the relation \mathscr{B} in Γ -semigroup (Theorem 8) to prove a theorem concerning minimal bi–ideals in Γ -semigroup M without zero.

Theorem 10. A bi–ideal B of a Γ -semigroup M without zero is minimal if and only if B is a Γ -subgroup of M.

Proof. If *B* is a minimal bi–ideal of the Γ -semigroup *M*, then by Lemma 1 all elements of *B* are \mathscr{B} -equivalent. Thus for two elements *a*, *b* of *B* and every $\gamma \in \Gamma$ the elements *a*, *b*, $a\gamma b$ all belong to the same \mathscr{B} -class of *M*. Now applying the Green's Theorem for the relation \mathscr{B} in Γ -semigroup (Theorem 8) the \mathscr{B} -class *B* is a subgroup of semigroup M_{γ} for every $\gamma \in \Gamma$. So, *B* is a Γ -subsemigroup such that for every $\gamma \in \Gamma$, $B_{\gamma} = (B, \circ)$ is a group. Thus *B* is a Γ -subgroup of Γ -semigroup *M* and it is a \mathscr{H} -class.

Conversely, let the bi–ideal *B* be a Γ –subgroup of *M*. If *B'* is a bi–ideal of *M* contain in *B*, then

$$B'\Gamma B\Gamma B' \subseteq B'\Gamma M\Gamma B' \subseteq B',$$

that is, B' is a bi–ideal of B, too. Let a be an element of B' and γ an element of Γ . Then, since the semigroup $B_{\gamma} = (B, \circ)$ is a group, we have

$$B = a \circ B \circ a = a\gamma B\gamma a \subseteq B',$$

whence B = B'. This means that B is a minimal bi–ideal of Γ -semigroup M.

As a particular case we get the following theorem for plain semigroups:

Theorem 11. A bi–ideal B of a plain semigroup S without zero is minimal if and only if B is a subgroup of S.

This theorem is proved in [4] by a direct method.

Definition 6. An element a of a Γ -semigroup M is called cancellable if for two elements $b, c \in M$ and every $\gamma \in \Gamma$ we have

$$(a\gamma b = a\gamma c \Rightarrow b = c) \land (b\gamma a = c\gamma a \Rightarrow b = c).$$

Theorem 12. If a Γ -semigroup M without zero has a cancellable element contained in a minimal *bi*-ideal B of M, then M is a Γ -group.

Proof. By the Theorem 10, the minimal bi–ideal *B* is a Γ -subgroup of *M*. Let *e* be the identity of the group $B_{\gamma} = (B, \circ)$ for a fixed $\gamma \in \Gamma$ and let *a* be a cancellable element of *M* contained in *B*. Then multiplying both side of the equality $e\gamma a = a$ by any element *b* of *M*, we have $b\gamma e\gamma a = b\gamma a$, hence $b\gamma e = b$. Dually we obtain $e\gamma b = b$ for every $b \in M$. Thus *e* is the identity element of the semigroup $M_{\gamma} = (M, \circ)$. Since $e \in B$, for any $b \in M$ we have

$$b = e\gamma b\gamma e \in B.$$

So, M = B and consequently M is a Γ -group with zero.

Since every plain groups is a minimal bi–ideal and has a cancellable element (this is the identity element of the group), therefore from the Theorem 12, we get the following:

Theorem 13. A semigroup S without zero is a group if and only if it has a cancellable element contained in a minimal bi–ideal B of S.

Theorem 14. Let a, c are two elements of a Γ -semigroup without zero such that $a \mathscr{D} c$. If the principal bi-ideal $(a)_b$ and the principal quasi-ideal $(a)_q$ are minimal, then $(a)_b = (a)_q$ and the principal bi-ideal $(c)_b$ and the principal quasi-ideal $(c)_a$ are minimal and $(c)_b = (c)_a$.

Proof. Assume that bi–ideal $(a)_b$ and quasi–ideal $(a)_q$ are minimal. Firstly we prove that $(a)_b = (a)_q$. It is clear the inclusion $(a)_b \subseteq (a)_q$. Since $(a)_q$ is a minimal quasi–ideal, then Theorem 5 implies that $(a)_q = H_a$. So, we have

$$B_a = (a)_b \subseteq (a)_q \subseteq H_a.$$

By Theorem 4, H_a is a Γ -subgroup, therefore $H_a \subseteq B_a$ and consequently $(a)_b = (a)_q$.

Since the principal quasi-ideal $(a)_q$ is minimal, then the Theorem 7 implies that the principal quasi-ideal $(c)_q$ is minimal. Now from the Theorem 5 we have

$$B_c \subseteq (c)_b \subseteq (c)_q = H_c.$$

By the Theorem 4, H_c is a Γ -group, therefore $H_c \subseteq B_c$ and consequently there are true the equalities

$$B_c = (c)_b = (c)_q = H_c.$$

So, $(c)_b = (c)_q$.

At the end of this paper, we raise the following open problem:

Problem. If the element *a*, *c* of a Γ -semigroup *M* without zero are such that $a \mathscr{D}c$, then is it the principal bi–ideal $(a)_b$ minimal if and only if the same holds for $(c)_b$?

References

- R. Chinram and Ch. Jirojkul. On bi-Γ-ideals in Γ-semigroups, Songklanakarin Journal of Science and Technology, 29 No. 1, 231–234. 2007.
- [2] M.P. Grillet. *Green's relations in a semiring*, Portugaliae Mathematical, 29, 181–195. 1970.
- [3] M.R. Hestenes. A ternary algebra with applications to matrices and linear transformations. Archive for Rational Mechanics and Analysis, 11, 138–194. 1962.
- [4] K.M. Kapp. On bi-ideals and quasi-ideals in semigroups, Publicationes Mathematicae Debrecen, 16, 179–185. 1969.
- [5] P. Petro. *Green's relations and minimal quasi–ideals in rings*, Communications in Algebra, 30, No. 10, 4677–4688. 2002.
- [6] P. Petro and Th. Xhillari. *Green's Theorem and Minimal Quasi–ideals in* Γ–*Semigroups*, International Journal of Algebra, 5, No. 10, 461–470. 2011.
- [7] N.K. Saha. On Γ-semigroups, Bulletin of Calcutta Mathematical Society, 79, 331–335. 1987.
- [8] M.K. Sen. On Γ-semigroup, Algebra and its application (New Delhi, 1981), 301–308, Lectures in Pure and Applied Mathematics, 91, Dekker, New York, 1984.
- [9] M.K. Sen and N.K. Saha. On Γ-semigroups I, Bulletin of Calcutta Mathematical Society, 78, 180–186. 1986.
- [10] O. Steinfeld. *Quasi-ideals in semigroups and rings*, Akademia Kiado, Budapest, 1978.