EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 3, 2009, (361-371)
ISSN 1307-5543 - www.ejpam.com

Module Extension Banach Algebras and (σ, τ)-amenability

M. Eshaghi Gordji ${ }^{1 *}$ and A. Niyazi Motlagh ${ }^{2}$
${ }^{1}$ Department of mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran.
${ }^{2}$ Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran

Abstract

In this paper among other things we find some necessary and sufficient conditions for a Banach algebra \mathscr{A}, to be (σ, τ)-amenable, where σ and τ are continuous homomorphisms on \mathscr{A}.

2000 Mathematics Subject Classifications: Primary 46H25; Secondary 47B47
Key Words and Phrases: $(\sigma, \tau)-$ derivation; Arens product; approximate identity

1. Introduction.

Let \mathscr{A} be a Banach algebra and \mathscr{X} be a Banach \mathscr{A}-bimodule, that \mathscr{X} is both a Banach space and an algebraic \mathscr{A}-bimodule, and the module operations $(a, x) \mapsto a x$ and $(a, x) \mapsto x a$ from $\mathscr{A} \times \mathscr{X}$ into \mathscr{X} are (jointly) continuous. Then \mathscr{X}^{*} is also a Banach \mathscr{A}-bimodule under the following module actions:

$$
(a \cdot f)(x)=f(x a)
$$

*Corresponding author.

Email addresses: madjid.eshaghi@gmail.com (M. Gordji), ab_ni40@stu-mail.um.ac.ir and niazimotlagh@gmail.com (A. Motlagh)
http://www.ejpam.com $361 \quad$ (c) 2009 EJPAM All rights reserved.
M. Gordji and A. Motlagh / Eur. J. Pure Appl. Math, 2 (2009), (361-371)

$$
(f \cdot a)(x)=f(a x)
$$

$a \in \mathscr{A}, x \in \mathscr{X}, f \in \mathscr{X}^{*}$.
Let \mathscr{A} be a Banach algebra. Given $f \in \mathscr{A}^{*}$ and $F \in \mathscr{A}^{* *}$, then $F f$ and $f F$ are defined in \mathscr{A}^{*} by the following formulae

$$
F f(a)=F(f \cdot a), \quad f F(a)=F(a \cdot f) \quad(a \in \mathscr{A})
$$

Next, for $F, G \in \mathscr{A}^{* *}, F G$ is defined in $\mathscr{A}^{* *}$ by the formulae

$$
(F G)(f)=F(G f),
$$

this product is called first Arens product on $\mathscr{A}^{* *}$ and $\mathscr{A}^{* *}$ with the first Arens product is a Banach algebra.

Let \mathscr{A} be a Banach algebra and \mathscr{X} be a Banach \mathscr{A}-bimodule. The Banach space $\mathscr{X}^{* *}$ is a Banach $\mathscr{A}^{* *}$-bimodule under following actions

$$
F \cdot G=w^{*}-\lim _{i} \lim _{j} a_{i} x_{j}, \quad G \cdot F=w^{*}-\lim _{j} \lim _{i} x_{j} a_{i}
$$

where $F=w^{*}-\lim _{i} a_{i}, G=w^{*}-\lim _{j} x_{j},\left(a_{i}\right)$ is a net in $\mathscr{A},\left(x_{j}\right)$ and is a net in X.
Suppose that $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ is a Banach algebra homomorphism. The Banach algebra \mathscr{B} is considered as a Banach \mathscr{A}-bimodule by the following module actions

$$
a \cdot b=\varphi(a) b, \quad b \cdot a=b \varphi(a) \quad(a \in \mathscr{A}, b \in \mathscr{B})
$$

we denote \mathscr{B}_{φ} the above \mathscr{A}-bimodule.
Let \mathscr{A} be a Banach algebra and σ, τ be continuous homomorphisms on \mathscr{A}. Suppose that \mathscr{X} is a Banach \mathscr{A}-bimodule. A linear mapping $d: \mathscr{A} \rightarrow \mathscr{X}$ is called a (σ, τ)-derivation if

$$
d(a b)=d(a) \sigma(b)+\tau(a) d(b) \quad(a, b \in A)
$$

For example every ordinary derivation of an algebra \mathscr{A} into an \mathscr{A}-bimodule \mathscr{X} is an $\left(i d_{\mathscr{A}}, i d_{\mathscr{A}}\right)$-derivation, where $i d_{\mathscr{A}}$ is the identity mapping on the algebra \mathscr{A}.

A linear mapping $d: \mathscr{A} \longrightarrow \mathscr{X}$ is called (σ, τ)-inner derivation if there exists $x \in \mathscr{X}$ such that $d(a)=\tau(a) x-x \sigma(a) \quad(a \in \mathscr{A})$. See also [3-6].

We denote the set of continuous (σ, τ)-derivations from \mathscr{A} into \mathscr{X} by $Z_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X})$ and the set of inner (σ, τ)-derivations by $B_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X})$. we define the space $H_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X})$ as the quotient space $Z_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X}) / B_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X})$. The space $H_{(\sigma, \tau)}^{1}(\mathscr{A}, \mathscr{X})$ is called the first (σ, τ)-cohomology group of \mathscr{A} with coefficients in \mathscr{X}. \mathscr{A} is called (σ, τ)-amenable if $H_{(\sigma, \tau)}^{1}\left(\mathscr{A}, \mathscr{X}^{*}\right)=\{0\}$, for each Banach \mathscr{A}-bimodule \mathscr{X}.

Let \mathscr{A} be a Banach algebra and let \mathscr{X} be a Banach \mathscr{A}-bimodule. Define $\mathscr{A} \oplus_{1} \mathscr{X}$ by actions:

$$
\begin{aligned}
(a, x)+(b, y) & =(a+b, x+y) \\
a(b, x)=(a b, a x) & , \quad(b, x) a=(b a, x a) \\
(a, x)(b, y) & =(a b, a y+x b),
\end{aligned}
$$

for every $a, b \in \mathscr{A}$ and $x, y \in \mathscr{X}$.
It is clear $\mathscr{A} \oplus_{1} \mathscr{X}$ is a Banach algebra with the following norm:

$$
\|(a, x)\|=\|a\|+\|x\| .
$$

This Banach algebra is called module extension Banach algebra.
We use some ideas and terminology of [2] to investigate (σ, τ)-amenability of Banach algebras.

2. (σ, τ)-amenability of Banach Algebras.

Let \mathscr{A} be a Banach algebra and let σ, τ be continuous homomorphisms on \mathscr{A}. Suppose that \mathscr{X} is a Banach \mathscr{A}-bimodule. Then \mathscr{X} is a Banach \mathscr{A}-bimodule by the following module actions:

$$
a \cdot x=\tau(a) b, \quad x \cdot a=b \sigma(a) \quad(a \in \mathscr{A}, x \in \mathscr{X}) .
$$

We denote $\mathscr{X}_{(\sigma, \tau)}$ for this \mathscr{A}-bimodule. It is easy to check that $\left(\mathscr{X}_{(\sigma, \tau)}\right)^{*}=X_{(\tau, \sigma)}^{*}$, and that every (σ, τ)-derivation from \mathscr{A} into \mathscr{X} is a derivation from \mathscr{A} into $\mathscr{X}_{(\sigma, \tau)}$. Thus we can show that \mathscr{A} is amenable, if and only if \mathscr{A} is (σ, τ)-amenable, for each $\sigma, \tau \in \operatorname{Hom}(\mathscr{A})$. First we give the following examples for (σ, τ)-amenability of Banach algebras.

Example 2.1. It is easy to see that ℓ^{1} is a Banach algebra equipped with the following product [7]

$$
a \cdot b=a(1) b \quad\left(a, b \in \ell^{1}\right)
$$

and ℓ^{1} has a left identity e defined by

$$
e(n)=\left\{\begin{array}{lll}
1 & \text { if } & n=1 \\
0 & \text { if } & n \neq 1
\end{array}\right.
$$

The dual space $\left(\ell^{1}\right)^{*}=\ell^{\infty}$ is a ℓ^{1}-bimodule via the ordinary actions as follows

$$
a \cdot f=f(a) e, \quad f \cdot a=a(1) f \quad\left(a \in \ell^{1}, f \in \ell^{\infty}\right)
$$

where e is regarded as an element of ℓ^{∞}.
Next let $\sigma: \ell^{1} \longrightarrow \ell^{1}$ be a bounded homomorphism. We have $a(1) \sigma(b)=\sigma(a \cdot b)=$ $\sigma(a) \cdot \sigma(b)=\sigma(a)(1) \sigma(b)$ and so $\sigma(b)(a(1)-\sigma(a)(1))=0$ for all $a, b \in \mathbb{N}$. Since $\sigma \neq 0$, we have

$$
\begin{equation*}
(\sigma(a))(1)=a(1) \quad\left(a \in \ell^{1}\right) \tag{2.1}
\end{equation*}
$$

In [5] has been shown that ℓ^{1} is (σ, τ)-weakly amenable for all homomorphisms σ, τ but for some homomorphisms σ and τ it is not (σ, τ)-amenable. In the following we prove if the Banach algebra ℓ^{1} is (σ, τ)-amenable, then $\tau(a)=a(1) c$ where $c(1)=1$.

Let $\mathscr{B}=\ell^{1}$ by product $a \bullet b=a(2) b$. Then \mathscr{B} is a Banach algebra and for each bounded homomorphism $\psi: \mathscr{B} \longrightarrow \mathscr{B}$ we have $(\psi(a))(2)=a(2)$. Let $a \in \ell^{1}$ define $a^{\prime} \in \ell^{1}$ by $a^{\prime}=(a(2), a(1), a(3), \cdots)$. Let $\varphi: \ell^{1} \longrightarrow \mathscr{B}$ defined by $\varphi(a)=a^{\prime}$. It is clear that φ is a homomorphism. Consider the Banach ℓ^{1}-bimodule \mathscr{B}_{φ} under actions $a \circ b=\varphi(a) \bullet b=a^{\prime} \bullet b=a^{\prime}(2) b=a(1) b$ and $b \circ a=b \bullet \varphi(a)=b \bullet a^{\prime}=b(2) a^{\prime}$ for each $a \in \ell^{1}, b \in \mathscr{B}_{\varphi}$. Let $D: \ell^{1} \longrightarrow \mathscr{B}_{\varphi}^{*}$ be a bounded (σ, τ)-derivation. We have

$$
\begin{aligned}
(D(a \cdot b))(c) & =D(a) \sigma(b)(c)+\tau(a) D(b)(c) \\
a(1) D(b)(c) & =D(a)(\sigma(b) \circ c)+D(b)(c \circ \tau(a)) \\
a(1) D(b)(c) & =b(1) D(a)(c)+c(2) D(b)(\tau(a))
\end{aligned}
$$

for all $a, b \in \ell^{1}$ and $c \in B_{\varphi}$.
By taking $a=b$ we obtain $D(a)(\tau(a))=0$. Also by taking $c \in \mathscr{B}_{\varphi}$ such that $c(2)=0$ we can conclude $a(1) D(b)=b(1) D(a)$.

If ℓ^{1} is (σ, τ)-amenable, then there exists $f \in B_{\varphi}^{*}$ such that $D=D_{f}$ is $a(\sigma, \tau)$-inner derivation. So we have

$$
\begin{aligned}
a(1) D_{f}(b) & =b(1) D_{f}(a) \\
a(1) f(b(1) c-c(2) \tau(b)) & =b(1) f(a(1) c-c(2) \tau(a))
\end{aligned}
$$

for all $a, b \in \ell^{1}$ and $c \in B_{\varphi}$.
Then $f(b(1) c(2) \tau(a)-a(1) c(2) \tau(b))=0$. Since $f \in B_{\varphi}^{*}$ is arbitrary, immediately is conclude $a(1) \tau(b)=b(1) \tau(a)$. By taking $b=e$ we have $\tau(a)=a(1) \tau(e)$, where $\tau(e)(1)=1$.

So we have the following result.
Corollary 2.1. Let σ, τ be two continuous homomorphisms on ℓ^{1} (by above product). If ℓ^{1} is (σ, τ)-amenable then there is $c \in \ell^{1}$ such that $\tau(a)=a(1) c$, and $c(1)=1$.

Example 2.2. Let \mathscr{A} be a Banach algebra. Then \mathscr{A} has a bounded approximate identity if and only if \mathscr{A} is $(i d, 0)$ and $(0, i d)$-amenable.

Corollary 2.2. Let \mathscr{A} be a C^{*}-algebra or $\mathscr{A}=L^{1}(G)$ for a locally compact topological group G. Then \mathscr{A} is $(i d, 0)$ and $(0, i d)$-amenable.

Let $T: \mathscr{A} \rightarrow \mathscr{B}$ be a continuous linear map between Banach algebras. Two continuous linear maps $T^{\prime}: \mathscr{B}^{*} \rightarrow \mathscr{A}^{*}$ and $T^{\prime \prime}: \mathscr{A}^{* *} \rightarrow \mathscr{B}^{* *}$ are known, that are defined by the following formula

$$
\left(T^{\prime}(f)\right)(a)=f(T(a)), \quad\left(T^{\prime \prime}(G)\right)(f)=G\left(T^{\prime}(f)\right)
$$

where $a \in \mathscr{A}, f \in \mathscr{B}^{*}$ and $G \in \mathscr{A}^{* *}$.
Lemma 2.1. Let \mathscr{A} be a Banach algebra, \mathscr{X} be a Banach \mathscr{A}-bimodule, and let σ and τ be two continuous homomorphisms on \mathscr{A}. Suppose that $D: \mathscr{A} \longrightarrow \mathscr{X}$ is (σ, τ) derivation. Then $D^{\prime \prime}: \mathscr{A}^{* *} \longrightarrow \mathscr{X}^{* *}$ is a $\left(\sigma^{\prime \prime}, \tau^{\prime \prime}\right)$-derivation.

Proof. Let $F, G \in \mathscr{A}^{* *}$ and let $F=w^{*}-\lim _{\alpha} a_{\alpha}, G=w^{*}-\lim _{\beta} b_{\beta}$ in $\mathscr{A}^{* *}$, where $\left(a_{\alpha}\right),\left(b_{\beta}\right)$ are nets in \mathscr{A} with $\left\|a_{\alpha}\right\| \leq\|F\|,\left\|b_{\beta}\right\| \leq\|G\|$. Then

$$
\begin{aligned}
D^{\prime \prime}(F G) & =D^{\prime \prime}\left(w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} a_{\alpha} b_{\beta}\right) \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} D^{\prime \prime}\left(a_{\alpha} b_{\beta}\right) \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left(\tau\left(a_{\alpha}\right) D\left(b_{\beta}\right)+D\left(a_{\alpha}\right) \sigma\left(b_{\beta}\right)\right) \\
& =\tau^{\prime \prime}(F) D^{\prime \prime}(G)+D^{\prime \prime}(F) \sigma^{\prime \prime}(G)
\end{aligned}
$$

and so $D^{\prime \prime}$ is a $\left(\sigma^{\prime \prime}, \tau^{\prime \prime}\right)$-derivation.
Now we are ready to state some equivalent conditions by (σ, τ)-amenability of Banach algebras.

Theorem 2.1. Let σ and τ be two continuous homomorphisms on Banach algebra \mathscr{A}. The following statements are equivalent:

1. \mathscr{A} is (σ, τ)-amenable.
2. For each Banach algebra \mathscr{B} and every homomorphism $\varphi: \mathscr{A} \longrightarrow \mathscr{B}, H_{(\sigma, \tau)}^{1}\left(\mathscr{A}, \mathscr{B}_{\varphi}^{*}\right)=$ 0.
3. For each Banach algebra \mathscr{B} and every injective homomorphism $\varphi: \mathscr{A} \longrightarrow \mathscr{B}$, $H_{(\sigma, \tau)}^{1}\left(\mathscr{A}, \mathscr{B}_{\varphi}^{*}\right)=0$.
4. For each Banach algebra \mathscr{B} and every injective homomorphism $\varphi: \mathscr{A} \longrightarrow \mathscr{B}$, if $d: \mathscr{A} \longrightarrow \mathscr{B}_{\varphi}{ }^{*}$ is a (σ, τ)-derivation satisfies

$$
(d(a))(\varphi(b))+(d(b))(\varphi(a))=0 \quad(a, b \in \mathscr{A})
$$

then d is (σ, τ)-inner derivation.
Proof. Clearly $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$. It is sufficient to show that $(4) \Rightarrow(1)$. Let \mathscr{X} be a Banach \mathscr{A}-bimodule and $D: \mathscr{A} \longrightarrow \mathscr{X}^{*}$ be a (σ, τ)-derivation. Set $\mathscr{B}=\mathscr{A} \oplus_{1} \mathscr{X}$ and define injective homomorphism $\varphi: \mathscr{A} \longrightarrow \mathscr{B}$ by $\varphi(a)=(a, 0)$ and so we can assume that \mathscr{A} is a subalgebra of \mathscr{B}. Define $d: \mathscr{A} \longrightarrow \mathscr{B}_{\varphi}^{*}$ by $d(a)=(0, D(a))$. The map d is (σ, τ)-derivation, since

$$
\begin{aligned}
d(a b) & =(0, D(a b))=(0, D(a) \sigma(b)+\tau(a) D(b)) \\
& =(0, D(a))(0, \sigma(b))+(0, \tau(a))(0, D(b)) \\
& =d(a) \varphi(\sigma(b))+\varphi(\tau(a)) d(b) \\
& =d(a) \cdot \sigma(b)+\tau(a) \cdot d(b) \quad(a, b \in \mathscr{A}) .
\end{aligned}
$$

Since $(d(a))(\varphi(b))+(d(b))(\varphi(a))=(0, D(a))((b, 0))+(0, D(b))((a, 0))=0$, we have $(d(a))(\varphi(b))+(d(b))(\varphi(a))=0$.

It follows from our assumption that d is a (σ, τ)-inner derivation. Hence there are $f \in \mathscr{A}^{*}$ and $g \in \mathscr{X}^{*}$ such that

$$
\begin{aligned}
(0, D(a))=d(a) & =(\sigma(a), 0)(f, g)-(f, g)(\tau(a), 0) \\
& =(\sigma(a) f-f \tau(a), \sigma(a) g-g \tau(a))
\end{aligned}
$$

Thus $D(a)=\sigma(a) g-g \tau(a)$, hence D is (σ, τ)-inner derivation.

Definition 2.1. Let \mathscr{A} be a Banach algebra and σ be a continuous homomorphisms on \mathscr{A}. The Banach algebra \mathscr{A} is called approximately σ-contractible, if for each Banach \mathscr{A}-bimodule \mathscr{X} and σ-derivation $D: \mathscr{A} \longrightarrow \mathscr{X}$, there exists a bounded net $\left(x_{\alpha}\right) \subseteq \mathscr{X}$ such that

$$
D(a)=\lim _{\alpha}\left(\sigma(a) x_{\alpha}-x_{\alpha} \sigma(a)\right) \quad(a \in \mathscr{A})
$$

In the following theorem we follow the structure of Proposition 2.8.59 [1].
Theorem 2.2. Let \mathscr{A} be a Banach algebra and σ be a bounded homomorphism on \mathscr{A}. Then the following assertion are equivalent:

1. \mathscr{A} is σ-amenable.
2. For every \mathscr{A}-bimodule $\mathscr{X}, H_{(\sigma, \sigma)}^{1}\left(\mathscr{A}, \mathscr{X}^{* *}\right)=0$
3. \mathscr{A} is approximately σ-contractible.

Proof. (1) \Rightarrow (2) is trivially. (2) \Rightarrow (3): Let $D: \mathscr{A} \longrightarrow \mathscr{X}$ be a σ-derivation from \mathscr{A} into \mathscr{A}-bimodule \mathscr{X} and let $J_{\mathscr{X}}: \mathscr{X} \longrightarrow \mathscr{X}^{* *}$ be the canonical embedding, then for each $a, b \in \mathscr{A}$ we have

$$
\widetilde{D}(a b)=\left(J_{\mathscr{X}} \circ D\right)(a b)=J_{\mathscr{X}}(\sigma(a) D(b)+D(a) \sigma(b))
$$

$$
=\sigma(a) \widetilde{D}(b)+\widetilde{D}(a) \sigma(b)
$$

Thus \widetilde{D} is a σ-derivation. Then by (2) there exists $\Lambda \in \mathscr{X}^{* *}$ such that $\widetilde{D}(a)=$ $\sigma(a) \Lambda-\Lambda \sigma(a) \quad(a \in \mathscr{A})$. Set $m=\|\Lambda\|, \mathscr{U}=\mathscr{X}_{[m]}$. Then $\Lambda \in{\overline{J_{\mathscr{X}}(\mathscr{U})}}^{w^{*}}$. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n} \in \mathscr{A}$, then $\mathscr{V}=\prod_{j=1}^{n}\left(\sigma\left(a_{j}\right) \mathscr{U}-\mathscr{U} \sigma\left(a_{j}\right)\right)$ is a convex subset of $\mathscr{X}^{(n)}$ and $\left(D\left(a_{1}\right), D\left(a_{2}\right), \ldots, D\left(a_{n}\right)\right) \in \overline{\mathscr{V}}^{\text {weak }}$. Thus for each finite subset F of \mathscr{A}, and $\varepsilon>0$, there exists $x_{(F, \varepsilon)} \in \mathscr{U}$ such that

$$
\left\|D(a)-\left(\sigma(a) x_{(F, \varepsilon)}-x_{(F, \varepsilon)} \sigma(a)\right)\right\|<\varepsilon \quad(a \in F)
$$

The family of such pairs (F, ε) is a directed if order \leq given by

$$
\left(F_{1}, \varepsilon_{1}\right) \leq\left(F_{2}, \varepsilon_{2}\right) \Leftrightarrow F_{1} \subseteq F_{2}, \varepsilon_{1} \leq \varepsilon_{2}
$$

Also we have

$$
D(a)=\lim _{(F, \varepsilon)}\left(\sigma(a) x_{(F, \varepsilon)}-x_{(F, \varepsilon)} \sigma(a)\right)
$$

(3) \Rightarrow (1): Let $D: \mathscr{A} \longrightarrow \mathscr{X}^{*}$ be a σ-derivation. Then there exists a net $\left(x_{\alpha}^{\prime}\right) \subseteq \mathscr{X}^{*}$ such that $D(a)=\lim _{\alpha}\left(\sigma(a) x_{\alpha}^{\prime}-x_{\alpha}^{\prime} \sigma(a)\right) \quad(a \in \mathscr{A})$. By passing to a subnet we may assume that $w^{*}-\lim x_{\alpha}^{\prime}=x^{\prime}$ in \mathscr{X}^{*} and then $D(a)=\sigma(a) x^{\prime}-x^{\prime} \sigma(a)$. Thus \mathscr{A} is σ-amenable.

Theorem 2.3. Let \mathscr{A} be a Banach algebra and σ be a continuous homomorphism on \mathscr{A}. If $\mathscr{A}^{* *}$ is $\sigma^{\prime \prime}$-amenable, then \mathscr{A} is σ-amenable.

Proof. Let \mathscr{X} be a Banach \mathscr{A}-bimodule, and $D: \mathscr{A} \longrightarrow \mathscr{X}^{* *}$ be a σ-derivation. Then by Lemma 2.1, $D^{\prime \prime}: \mathscr{A}^{* *} \longrightarrow \mathscr{X}^{* * * *}$ is a $\sigma^{\prime \prime}$-derivation. Since $\mathscr{A}^{* *}$ is $\sigma^{\prime \prime}$ amenable, then there exists $x^{(4)} \in \mathscr{X}^{* * * *}$ such that $D^{\prime \prime}\left(a^{\prime \prime}\right)=\sigma^{\prime \prime}\left(a^{\prime \prime}\right) x^{(4)}-x^{(4)} \sigma^{\prime \prime}\left(a^{\prime \prime}\right)$, ($a^{\prime \prime} \in \mathscr{A}^{* *}$). We have $\mathscr{X}^{* * * *}=\mathscr{X}^{* *} \oplus\left(\mathscr{X}^{*}\right)^{\perp}$ (as $\mathscr{A}^{* *}$-bimodules). Let $P: \mathscr{X}^{* * * *} \longrightarrow \mathscr{X}^{* *}$ be the natural projection. Then for each $a \in \mathscr{A}$, we have $D(a)=\sigma(a) P\left(x^{(4)}\right)-$ $P\left(x^{(4)}\right) \sigma(a)$, and so $D \in N_{(\sigma, \sigma)}^{1}\left(\mathscr{A}, \mathscr{X}^{* *}\right)$. Thus by above theorem, \mathscr{A} is σ-amenable.

In the following we fined an easy equivalent condition for σ-amenability of a Banach algebra.

Proposition 2.1. Let \mathscr{A} be a Banach algebra and let σ be a continuous homomorphism on \mathscr{A}. Then \mathscr{A} is a σ-amenable if and only if for every Banach algebra \mathscr{B} and every injective homomorphism $\varphi: \mathscr{A} \longrightarrow \mathscr{B}, H_{(\sigma, \sigma)}^{1}\left(\mathscr{A}, B_{\varphi}^{* *}\right)=0$.

Proof. One side is clear, so we prove the other side. Let \mathscr{X} be a Banach \mathscr{A} bimodule and $D: \mathscr{A} \longrightarrow \mathscr{X}^{* *}$ be a σ-derivation. If $\phi: \mathscr{A} \longrightarrow \mathscr{A} \oplus_{1} \mathscr{X}$ is defined by $\varphi(a)=(a, 0)$. Then φ is injective and $\varphi^{* *}: \mathscr{A}^{* *} \longrightarrow\left(\mathscr{A} \oplus_{1} \mathscr{X}\right)^{* *}$ the second transpose of φ is a Banach algebra homomorphism and $\left(\left(\mathscr{A} \oplus_{1} \mathscr{X}\right)_{\varphi}\right)^{* *} \simeq\left(\mathscr{A}^{* *} \oplus_{1} \mathscr{X}^{* *}\right)_{\varphi^{* *}}$ as $\mathscr{A}^{* *}$-bimodules. Then

$$
\begin{equation*}
H_{(\sigma, \sigma)}^{1}\left(\mathscr{A},\left(\mathscr{A}^{* *} \oplus_{1} \mathscr{X}^{* *}\right)_{\varphi^{* *}}\right)=H_{(\sigma, \sigma)}^{1}\left(\mathscr{A},\left(\left(\mathscr{A} \oplus_{1} \mathscr{X}\right)_{\varphi}\right)^{* *}\right)=\{0\} . \tag{2.2}
\end{equation*}
$$

Now we define $D_{1}: \mathscr{A} \longrightarrow \mathscr{A}^{* *} \oplus_{1} \mathscr{X}^{* *}$ by $D_{1}(a)=(0, D(a))$. For $a, b \in \mathscr{A}$ we have $D_{1}(a b)=D_{1}(a) \varphi^{* *}(\widehat{b})+\varphi^{* *}(\widehat{a}) D_{1}(b)$. Thus D_{1} is a σ-derivation from \mathscr{A} into $\left(\mathscr{A}^{* *} \oplus_{1} \mathscr{X}^{* *}\right)_{\varphi^{* *}}$. By (2.2), D_{1} is σ-inner. Therefore there exist $a^{\prime \prime} \in \mathscr{A}^{* *}, x^{\prime \prime} \in \mathscr{X}^{* *}$ such that

$$
(0, D(a))=D_{1}(a)=\left(a^{\prime \prime}, x^{\prime \prime}\right)(0, \sigma(a))-(0, \sigma(a))\left(a^{\prime \prime}, x^{\prime \prime}\right)
$$

Thus D is σ-inner. Therefore $H_{(\sigma, \sigma)}^{1}\left(\mathscr{A}, \mathscr{X}^{* *}\right)=0$, and by Theorem 2.2, \mathscr{A} is σ amenable.

ACKNOWLEDGEMENTS The authors would like to thank Professor M. S. Moslehian for his useful comments.

References

[1] H. G. Dales, Banach algebra and Automatic continuity, Oxford university Press, 2001.
[2] M. Eshaghi Gordji, Homomorphisms, Amenability and weak amenability of Banach algebras, Vietnam J. Math. 36 (2008), no. 3, 253-260.
[3] M. Mirzavaziri, M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (2006), no. 1, 65-78
[4] M. S. Moslehian, Approximate ($\sigma-\tau$)-contractibility, Nonlinear Funct. Anal. Appl., 11 (2006), no. 5, 805-813.
[5] M. S. Moslehian and A. N. Motlagh, (σ, τ)-amenability of Banach algebras, preprint.
[6] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ-derivations in C^{*} algebras, Proc. Amer. Math. Soc., 11 (2006), no. 5, 805-813.
[7] Yong Zhang, Weak Amenability of a Class of Banach Algebras, Canada. Math. Bull. Vol. 44(4), 2001 pp.504-508

