EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 3, 2009, (361-371) ISSN 1307-5543 – www.ejpam.com

Module Extension Banach Algebras and (σ, τ) -amenability

M. Eshaghi Gordji^{1*} and A. Niyazi Motlagh²

¹ Department of mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran.

² Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran

Abstract. In this paper among other things we find some necessary and sufficient conditions for a Banach algebra \mathscr{A} , to be (σ, τ) -amenable, where σ and τ are continuous homomorphisms on \mathscr{A} .

2000 Mathematics Subject Classifications: Primary 46H25; Secondary 47B47 **Key Words and Phrases**: (σ, τ) -derivation; Arens product; approximate identity

1. Introduction.

Let \mathscr{A} be a Banach algebra and \mathscr{X} be a Banach \mathscr{A} -bimodule, that \mathscr{X} is both a Banach space and an algebraic \mathscr{A} -bimodule, and the module operations $(a, x) \mapsto ax$ and $(a, x) \mapsto xa$ from $\mathscr{A} \times \mathscr{X}$ into \mathscr{X} are (jointly) continuous. Then \mathscr{X}^* is also a Banach \mathscr{A} -bimodule under the following module actions:

$$(a \cdot f)(x) = f(xa),$$

http://www.ejpam.com 361 © 2009 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: madjid.eshaghi@gmail.com (M. Gordji), ab_ni40@stu-mail.um.ac.ir and niazimotlagh@gmail.com (A. Motlagh)

$$(f \cdot a)(x) = f(ax),$$

 $a \in \mathscr{A}, x \in \mathscr{X}, f \in \mathscr{X}^*.$

Let \mathscr{A} be a Banach algebra. Given $f \in \mathscr{A}^*$ and $F \in \mathscr{A}^{**}$, then Ff and fF are defined in \mathscr{A}^* by the following formulae

$$Ff(a) = F(f \cdot a), \qquad fF(a) = F(a \cdot f) \qquad (a \in \mathscr{A}).$$

Next, for $F, G \in \mathscr{A}^{**}$, FG is defined in \mathscr{A}^{**} by the formulae

$$(FG)(f) = F(Gf),$$

this product is called first Arens product on \mathscr{A}^{**} and \mathscr{A}^{**} with the first Arens product is a Banach algebra.

Let \mathscr{A} be a Banach algebra and \mathscr{X} be a Banach \mathscr{A} -bimodule. The Banach space \mathscr{X}^{**} is a Banach \mathscr{A}^{**} -bimodule under following actions

$$F \cdot G = w^* - \lim_i \lim_j a_i x_j, \qquad G \cdot F = w^* - \lim_j \lim_i x_j a_i$$

where $F = w^* - \lim_i a_i$, $G = w^* - \lim_j x_j$, (a_i) is a net in \mathcal{A} , (x_j) and is a net in X.

Suppose that $\varphi : \mathscr{A} \to \mathscr{B}$ is a Banach algebra homomorphism. The Banach algebra \mathscr{B} is considered as a Banach \mathscr{A} - bimodule by the following module actions

$$a \cdot b = \varphi(a)b, \qquad b \cdot a = b\varphi(a) \qquad (a \in \mathscr{A}, b \in \mathscr{B})$$

we denote \mathscr{B}_{φ} the above \mathscr{A} -bimodule.

Let \mathscr{A} be a Banach algebra and σ, τ be continuous homomorphisms on \mathscr{A} . Suppose that \mathscr{X} is a Banach \mathscr{A} -bimodule. A linear mapping $d : \mathscr{A} \to \mathscr{X}$ is called a (σ, τ) -derivation if

$$d(ab) = d(a)\sigma(b) + \tau(a)d(b) \quad (a, b \in A).$$

For example every ordinary derivation of an algebra \mathscr{A} into an \mathscr{A} -bimodule \mathscr{X} is an $(id_{\mathscr{A}}, id_{\mathscr{A}})$ -derivation, where $id_{\mathscr{A}}$ is the identity mapping on the algebra \mathscr{A} .

362

A linear mapping $d : \mathscr{A} \longrightarrow \mathscr{X}$ is called (σ, τ) -inner derivation if there exists $x \in \mathscr{X}$ such that $d(a) = \tau(a)x - x\sigma(a)$ $(a \in \mathscr{A})$. See also [3–6].

We denote the set of continuous (σ, τ) -derivations from \mathscr{A} into \mathscr{X} by $Z^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})$ and the set of inner (σ, τ) -derivations by $B^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})$. we define the space $H^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})$ as the quotient space $Z^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})/B^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})$. The space $H^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X})$ is called the first (σ, τ) -cohomology group of \mathscr{A} with coefficients in \mathscr{X} . \mathscr{A} is called (σ, τ) -amenable if $H^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{X}^{*}) = \{0\}$, for each Banach \mathscr{A} -bimodule \mathscr{X} .

Let \mathscr{A} be a Banach algebra and let \mathscr{X} be a Banach \mathscr{A} -bimodule. Define $\mathscr{A} \oplus_1 \mathscr{X}$ by actions:

$$(a,x) + (b,y) = (a+b,x+y)$$

 $a(b,x) = (ab,ax)$, $(b,x)a = (ba,xa)$
 $(a,x)(b,y) = (ab,ay+xb),$

for every $a, b \in \mathscr{A}$ and $x, y \in \mathscr{X}$.

It is clear $\mathscr{A} \oplus_1 \mathscr{X}$ is a Banach algebra with the following norm:

$$||(a,x)|| = ||a|| + ||x||.$$

This Banach algebra is called module extension Banach algebra.

We use some ideas and terminology of [2] to investigate (σ , τ)-amenability of Banach algebras.

2. (σ, τ) -amenability of Banach Algebras.

Let \mathscr{A} be a Banach algebra and let σ, τ be continuous homomorphisms on \mathscr{A} . Suppose that \mathscr{X} is a Banach \mathscr{A} -bimodule. Then \mathscr{X} is a Banach \mathscr{A} -bimodule by the following module actions:

$$a \cdot x = \tau(a)b, \qquad x \cdot a = b\sigma(a) \qquad (a \in \mathscr{A}, x \in \mathscr{X}).$$

We denote $\mathscr{X}_{(\sigma,\tau)}$ for this \mathscr{A} -bimodule. It is easy to check that $(\mathscr{X}_{(\sigma,\tau)})^* = X^*_{(\tau,\sigma)}$, and that every (σ, τ) -derivation from \mathscr{A} into \mathscr{X} is a derivation from \mathscr{A} into $\mathscr{X}_{(\sigma,\tau)}$. Thus we can show that \mathscr{A} is amenable, if and only if \mathscr{A} is (σ, τ) -amenable, for each $\sigma, \tau \in Hom(\mathscr{A})$. First we give the following examples for (σ, τ) -amenability of Banach algebras.

Example 2.1. It is easy to see that l^1 is a Banach algebra equipped with the following product [7]

$$a \cdot b = a(1)b$$
 $(a, b \in \ell^1),$

and l^1 has a left identity e defined by

$$e(n) = \begin{cases} 1 & if \quad n=1\\ 0 & if \quad n \neq 1. \end{cases}$$

The dual space $(\ell^1)^* = \ell^\infty$ is a ℓ^1 -bimodule via the ordinary actions as follows

$$a \cdot f = f(a)e, \quad f \cdot a = a(1)f \qquad (a \in \ell^1, f \in \ell^{\infty}),$$

where e is regarded as an element of ℓ^{∞} .

Next let $\sigma : \ell^1 \longrightarrow \ell^1$ be a bounded homomorphism. We have $a(1)\sigma(b) = \sigma(a \cdot b) = \sigma(a) \cdot \sigma(b) = \sigma(a)(1)\sigma(b)$ and so $\sigma(b)(a(1) - \sigma(a)(1)) = 0$ for all $a, b \in \mathbb{N}$. Since $\sigma \neq 0$, we have

$$(\sigma(a))(1) = a(1) \quad (a \in \ell^1)$$
(2.1)

In [5] has been shown that ℓ^1 is (σ, τ) -weakly amenable for all homomorphisms σ, τ but for some homomorphisms σ and τ it is not (σ, τ) -amenable. In the following we prove if the Banach algebra ℓ^1 is (σ, τ) -amenable, then $\tau(a) = a(1)c$ where c(1) = 1.

Let $\mathscr{B} = \ell^1$ by product $a \bullet b = a(2)b$. Then \mathscr{B} is a Banach algebra and for each bounded homomorphism $\psi : \mathscr{B} \longrightarrow \mathscr{B}$ we have $(\psi(a))(2) = a(2)$. Let $a \in \ell^1$ define $a' \in \ell^1$ by $a' = (a(2), a(1), a(3), \cdots)$. Let $\varphi : \ell^1 \longrightarrow \mathscr{B}$ defined by $\varphi(a) = a'$. It is clear that φ is a homomorphism. Consider the Banach ℓ^1 -bimodule \mathscr{B}_{φ} under actions $a \circ b = \varphi(a) \bullet b = a' \bullet b = a'(2)b = a(1)b$ and $b \circ a = b \bullet \varphi(a) = b \bullet a' = b(2)a'$ for each $a \in \ell^1, b \in \mathscr{B}_{\varphi}$. Let $D : \ell^1 \longrightarrow \mathscr{B}_{\varphi}^*$ be a bounded (σ, τ) -derivation. We have

$$\begin{pmatrix} D(a \cdot b) \end{pmatrix}(c) = D(a)\sigma(b)(c) + \tau(a)D(b)(c) a(1)D(b)(c) = D(a)(\sigma(b) \circ c) + D(b)(c \circ \tau(a)) a(1)D(b)(c) = b(1)D(a)(c) + c(2)D(b)(\tau(a))$$

for all $a, b \in \ell^1$ and $c \in B_{\varphi}$.

By taking a = b we obtain $D(a)(\tau(a)) = 0$. Also by taking $c \in \mathscr{B}_{\varphi}$ such that c(2) = 0 we can conclude a(1)D(b) = b(1)D(a).

If ℓ^1 is (σ, τ) -amenable, then there exists $f \in B^*_{\varphi}$ such that $D = D_f$ is a (σ, τ) -inner derivation. So we have

$$a(1)D_f(b) = b(1)D_f(a)$$

$$a(1)f(b(1)c - c(2)\tau(b)) = b(1)f(a(1)c - c(2)\tau(a))$$

for all $a, b \in \ell^1$ and $c \in B_{\varphi}$.

Then $f(b(1)c(2)\tau(a) - a(1)c(2)\tau(b)) = 0$. Since $f \in B_{\varphi}^*$ is arbitrary, immediately is conclude $a(1)\tau(b) = b(1)\tau(a)$. By taking b = e we have $\tau(a) = a(1)\tau(e)$, where $\tau(e)(1) = 1$.

So we have the following result.

Corollary 2.1. Let σ , τ be two continuous homomorphisms on ℓ^1 (by above product). If ℓ^1 is (σ, τ) -amenable then there is $c \in \ell^1$ such that $\tau(a) = a(1)c$, and c(1) = 1.

Example 2.2. Let \mathscr{A} be a Banach algebra. Then \mathscr{A} has a bounded approximate identity if and only if \mathscr{A} is (id, 0) and (0, id)-amenable.

Corollary 2.2. Let \mathscr{A} be a C^* -algebra or $\mathscr{A} = L^1(G)$ for a locally compact topological group G. Then \mathscr{A} is (id, 0) and (0, id)-amenable.

Let $T : \mathscr{A} \to \mathscr{B}$ be a continuous linear map between Banach algebras. Two continuous linear maps $T' : \mathscr{B}^* \to \mathscr{A}^*$ and $T'' : \mathscr{A}^{**} \to \mathscr{B}^{**}$ are known, that are defined by the following formula

$$(T'(f))(a) = f(T(a)), \qquad (T''(G))(f) = G(T'(f))$$

where $a \in \mathcal{A}, f \in \mathcal{B}^*$ and $G \in \mathcal{A}^{**}$.

Lemma 2.1. Let \mathscr{A} be a Banach algebra, \mathscr{X} be a Banach \mathscr{A} -bimodule, and let σ and τ be two continuous homomorphisms on \mathscr{A} . Suppose that $D : \mathscr{A} \longrightarrow \mathscr{X}$ is (σ, τ) -derivation. Then $D'' : \mathscr{A}^{**} \longrightarrow \mathscr{X}^{**}$ is a (σ'', τ'') -derivation.

Proof. Let $F, G \in \mathscr{A}^{**}$ and let $F = w^* - \lim_{\alpha} a_{\alpha}, G = w^* - \lim_{\beta} b_{\beta}$ in \mathscr{A}^{**} , where $(a_{\alpha}), (b_{\beta})$ are nets in \mathscr{A} with $||a_{\alpha}|| \leq ||F||, ||b_{\beta}|| \leq ||G||$. Then

$$D''(FG) = D''\left(w^* - \lim_{\alpha} w^* - \lim_{\beta} a_{\alpha} b_{\beta}\right)$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} D''(a_{\alpha} b_{\beta})$
= $w^* - \lim_{\alpha} w^* - \lim_{\beta} \left(\tau(a_{\alpha})D(b_{\beta}) + D(a_{\alpha})\sigma(b_{\beta})\right)$
= $\tau''(F)D''(G) + D''(F)\sigma''(G)$

and so D'' is a (σ'', τ'') -derivation.

Now we are ready to state some equivalent conditions by (σ, τ) -amenability of Banach algebras.

Theorem 2.1. Let σ and τ be two continuous homomorphisms on Banach algebra \mathscr{A} . The following statements are equivalent:

- 1. \mathscr{A} is (σ, τ) -amenable.
- 2. For each Banach algebra \mathscr{B} and every homomorphism $\varphi : \mathscr{A} \longrightarrow \mathscr{B}, H^1_{(\sigma,\tau)}(\mathscr{A}, \mathscr{B}^*_{\varphi}) = 0.$
- 3. For each Banach algebra \mathscr{B} and every injective homomorphism $\varphi : \mathscr{A} \longrightarrow \mathscr{B}$, $H^{1}_{(\sigma,\tau)}(\mathscr{A}, \mathscr{B}^{*}_{\varphi}) = 0.$
- 4. For each Banach algebra ℬ and every injective homomorphism φ : A → ℬ, if
 d : A → ℬ_φ^{*} is a (σ, τ)-derivation satisfies

$$(d(a))(\varphi(b)) + (d(b))(\varphi(a)) = 0 \qquad (a, b \in \mathscr{A}),$$

then d is (σ, τ) -inner derivation.

Proof. Clearly $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. It is sufficient to show that $(4) \Rightarrow (1)$. Let \mathscr{X} be a Banach \mathscr{A} -bimodule and $D : \mathscr{A} \longrightarrow \mathscr{X}^*$ be a (σ, τ) -derivation. Set $\mathscr{B} = \mathscr{A} \oplus_1 \mathscr{X}$ and define injective homomorphism $\varphi : \mathscr{A} \longrightarrow \mathscr{B}$ by $\varphi(a) = (a, 0)$ and so we can assume that \mathscr{A} is a subalgebra of \mathscr{B} . Define $d : \mathscr{A} \longrightarrow \mathscr{B}^*_{\varphi}$ by d(a) = (0, D(a)). The map d is (σ, τ) -derivation, since

$$d(ab) = (0, D(ab)) = (0, D(a)\sigma(b) + \tau(a)D(b))$$

= $(0, D(a))(0, \sigma(b)) + (0, \tau(a))(0, D(b))$
= $d(a)\varphi(\sigma(b)) + \varphi(\tau(a))d(b)$
= $d(a) \cdot \sigma(b) + \tau(a) \cdot d(b)$ $(a, b \in \mathcal{A}).$

Since $(d(a))(\varphi(b)) + (d(b))(\varphi(a)) = (0, D(a))((b, 0)) + (0, D(b))((a, 0)) = 0$, we have $(d(a))(\varphi(b)) + (d(b))(\varphi(a)) = 0$.

It follows from our assumption that *d* is a (σ, τ) -inner derivation. Hence there are $f \in \mathscr{A}^*$ and $g \in \mathscr{X}^*$ such that

$$(0, D(a)) = d(a) = (\sigma(a), 0)(f, g) - (f, g)(\tau(a), 0)$$
$$= (\sigma(a)f - f\tau(a), \sigma(a)g - g\tau(a)).$$

Thus $D(a) = \sigma(a)g - g\tau(a)$, hence *D* is (σ, τ) -inner derivation.

Definition 2.1. Let \mathscr{A} be a Banach algebra and σ be a continuous homomorphisms on \mathscr{A} . The Banach algebra \mathscr{A} is called approximately σ -contractible, if for each Banach \mathscr{A} -bimodule \mathscr{X} and σ -derivation $D : \mathscr{A} \longrightarrow \mathscr{X}$, there exists a bounded net $(x_{\alpha}) \subseteq \mathscr{X}$ such that

$$D(a) = \lim_{\alpha} \left(\sigma(a) x_{\alpha} - x_{\alpha} \sigma(a) \right) \qquad (a \in \mathscr{A}).$$

In the following theorem we follow the structure of Proposition 2.8.59 [1].

Theorem 2.2. Let \mathscr{A} be a Banach algebra and σ be a bounded homomorphism on \mathscr{A} . Then the following assertion are equivalent:

- 1. \mathscr{A} is σ -amenable.
- 2. For every \mathscr{A} -bimodule \mathscr{X} , $H^1_{(\sigma,\sigma)}(\mathscr{A}, \mathscr{X}^{**}) = 0$
- 3. \mathscr{A} is approximately σ -contractible.

Proof. (1) \Rightarrow (2) is trivially. (2) \Rightarrow (3): Let $D : \mathscr{A} \longrightarrow \mathscr{X}$ be a σ -derivation from \mathscr{A} into \mathscr{A} -bimodule \mathscr{X} and let $J_{\mathscr{X}} : \mathscr{X} \longrightarrow \mathscr{X}^{**}$ be the canonical embedding, then for each $a, b \in \mathscr{A}$ we have

$$\widetilde{D}(ab) = (J_{\mathscr{X}} \circ D)(ab) = J_{\mathscr{X}} \Big(\sigma(a)D(b) + D(a)\sigma(b) \Big)$$

$$= \sigma(a)\widetilde{D}(b) + \widetilde{D}(a)\sigma(b).$$

Thus \widetilde{D} is a σ -derivation. Then by (2) there exists $\Lambda \in \mathscr{X}^{**}$ such that $\widetilde{D}(a) = \sigma(a)\Lambda - \Lambda\sigma(a)$ $(a \in \mathscr{A})$. Set $m = ||\Lambda||, \mathscr{U} = \mathscr{X}_{[m]}$. Then $\Lambda \in \overline{J_{\mathscr{X}}(\mathscr{U})}^{w^*}$. Let $a_1, a_2, a_3, \ldots, a_n \in \mathscr{A}$, then $\mathscr{V} = \prod_{j=1}^n \left(\sigma(a_j)\mathscr{U} - \mathscr{U}\sigma(a_j)\right)$ is a convex subset of $\mathscr{X}^{(n)}$ and $(D(a_1), D(a_2), \ldots, D(a_n)) \in \overline{\mathscr{V}}^{weak}$. Thus for each finite subset F of \mathscr{A} , and $\varepsilon > 0$, there exists $x_{(F,\varepsilon)} \in \mathscr{U}$ such that

$$||D(a) - (\sigma(a)x_{(F,\varepsilon)} - x_{(F,\varepsilon)}\sigma(a))|| < \varepsilon \qquad (a \in F).$$

The family of such pairs (*F*, ε) is a directed if order \leq given by

$$(F_1, \varepsilon_1) \leq (F_2, \varepsilon_2) \Leftrightarrow F_1 \subseteq F_2, \varepsilon_1 \leq \varepsilon_2.$$

Also we have

$$D(a) = \lim_{(F,\varepsilon)} \left(\sigma(a) x_{(F,\varepsilon)} - x_{(F,\varepsilon)} \sigma(a) \right)$$

(3) \Rightarrow (1): Let $D : \mathscr{A} \longrightarrow \mathscr{X}^*$ be a σ -derivation. Then there exists a net $(x'_{\alpha}) \subseteq \mathscr{X}^*$ such that $D(a) = \lim_{\alpha} \left(\sigma(a) x'_{\alpha} - x'_{\alpha} \sigma(a) \right)$ $(a \in \mathscr{A})$. By passing to a subnet we may assume that $w^* - \lim x'_{\alpha} = x'$ in \mathscr{X}^* and then $D(a) = \sigma(a) x' - x' \sigma(a)$. Thus \mathscr{A} is σ -amenable.

Theorem 2.3. Let \mathscr{A} be a Banach algebra and σ be a continuous homomorphism on \mathscr{A} . If \mathscr{A}^{**} is σ'' -amenable, then \mathscr{A} is σ -amenable.

Proof. Let \mathscr{X} be a Banach \mathscr{A} -bimodule, and $D : \mathscr{A} \longrightarrow \mathscr{X}^{**}$ be a σ -derivation. Then by Lemma 2.1, $D'' : \mathscr{A}^{**} \longrightarrow \mathscr{X}^{****}$ is a σ'' -derivation. Since \mathscr{A}^{**} is σ'' -amenable, then there exists $x^{(4)} \in \mathscr{X}^{****}$ such that $D''(a'') = \sigma''(a'')x^{(4)} - x^{(4)}\sigma''(a'')$, $(a'' \in \mathscr{A}^{**})$. We have $\mathscr{X}^{****} = \mathscr{X}^{**} \oplus (\mathscr{X}^{*})^{\perp}$ (as \mathscr{A}^{**} -bimodules). Let $P : \mathscr{X}^{****} \longrightarrow \mathscr{X}^{**}$ be the natural projection. Then for each $a \in \mathscr{A}$, we have $D(a) = \sigma(a)P(x^{(4)}) - P(x^{(4)})\sigma(a)$, and so $D \in N^1_{(\sigma,\sigma)}(\mathscr{A}, \mathscr{X}^{**})$. Thus by above theorem, \mathscr{A} is σ -amenable. REFERENCES

In the following we fined an easy equivalent condition for σ -amenability of a Banach algebra.

Proposition 2.1. Let \mathscr{A} be a Banach algebra and let σ be a continuous homomorphism on \mathscr{A} . Then \mathscr{A} is a σ -amenable if and only if for every Banach algebra \mathscr{B} and every injective homomorphism $\varphi : \mathscr{A} \longrightarrow \mathscr{B}, H^1_{(\sigma,\sigma)}(\mathscr{A}, B^{**}_{\varphi}) = 0.$

Proof. One side is clear, so we prove the other side. Let \mathscr{X} be a Banach \mathscr{A} bimodule and $D: \mathscr{A} \longrightarrow \mathscr{X}^{**}$ be a σ -derivation. If $\phi : \mathscr{A} \longrightarrow \mathscr{A} \oplus_1 \mathscr{X}$ is defined by $\varphi(a) = (a, 0)$. Then φ is injective and $\varphi^{**} : \mathscr{A}^{**} \longrightarrow (\mathscr{A} \oplus_1 \mathscr{X})^{**}$ the second transpose of φ is a Banach algebra homomorphism and $((\mathscr{A} \oplus_1 \mathscr{X})_{\varphi})^{**} \simeq (\mathscr{A}^{**} \oplus_1 \mathscr{X}^{**})_{\varphi^{**}}$ as \mathscr{A}^{**} -bimodules. Then

$$H^{1}_{(\sigma,\sigma)}(\mathscr{A},(\mathscr{A}^{**}\oplus_{1}\mathscr{X}^{**})_{\varphi^{**}}) = H^{1}_{(\sigma,\sigma)}(\mathscr{A},((\mathscr{A}\oplus_{1}\mathscr{X})_{\varphi})^{**}) = \{0\}.$$
(2.2)

Now we define $D_1 : \mathscr{A} \longrightarrow \mathscr{A}^{**} \oplus_1 \mathscr{X}^{**}$ by $D_1(a) = (0, D(a))$. For $a, b \in \mathscr{A}$ we have $D_1(ab) = D_1(a)\varphi^{**}(\widehat{b}) + \varphi^{**}(\widehat{a})D_1(b)$. Thus D_1 is a σ -derivation from \mathscr{A} into $(\mathscr{A}^{**} \oplus_1 \mathscr{X}^{**})_{\varphi^{**}}$. By (2.2), D_1 is σ -inner. Therefore there exist $a'' \in \mathscr{A}^{**}, x'' \in \mathscr{X}^{**}$ such that

$$(0, D(a)) = D_1(a) = (a'', x'')(0, \sigma(a)) - (0, \sigma(a))(a'', x''),$$

Thus *D* is σ -inner. Therefore $H^1_{(\sigma,\sigma)}(\mathscr{A}, \mathscr{X}^{**}) = 0$, and by Theorem 2.2, \mathscr{A} is σ -amenable.

ACKNOWLEDGEMENTS The authors would like to thank Professor M. S. Moslehian for his useful comments.

References

[1] H. G. Dales, Banach algebra and Automatic continuity, Oxford university Press, 2001.

- [2] M. Eshaghi Gordji, Homomorphisms, Amenability and weak amenability of Banach algebras, Vietnam J. Math. 36 (2008), no. 3, 253–260.
- [3] M. Mirzavaziri, M. S. Moslehian, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. **32** (2006), no. 1, 65–78
- [4] M. S. Moslehian, *Approximate* $(\sigma \tau)$ *-contractibility*, Nonlinear Funct. Anal. Appl., 11 (2006), no. 5, 805–813.
- [5] M. S. Moslehian and A. N. Motlagh, (σ, τ) -amenability of Banach algebras, preprint.
- [6] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ -derivations in C^{*}algebras, Proc. Amer. Math. Soc., **11** (2006), no. 5, 805–813.
- [7] Yong Zhang, Weak Amenability of a Class of Banach Algebras, Canada. Math. Bull. Vol. 44(4), 2001 pp.504-508