Primary Decomposition in Lattice Modules

C S Manjarekar ${ }^{1}$, U N Kandale ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Shivaji University, Kolhapur, Maharashtra, India
${ }^{2}$ General Engineering Department, Sharad Institute of Technology College of Engineering, Shivaji University, Kolhapur, India

Abstract

In this paper, we study primary decomposition of elements in lattice modules. A necessary and sufficient condition for a prime element p of a multiplicative lattice L to be equal to some associated prime of an element in a lattice module having primary decomposition is obtained.

2010 Mathematics Subject Classifications: 13A99
Key Words and Phrases: Prime element,primary element,lattice modules,primary decomposition

1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if $a<1$. A proper element p of L is said to be prime if $a b \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L, b \in L,(a: b)$ is the join of all elements c in L such that $c b \leq a$. A proper element p of L is said to be primary if $a b \leq p$ implies $a \leq p$ or $b^{n} \leq p$ for some positive integer n. If $a \in L$, the radical of a denoted by $\sqrt{a}=\vee\left\{x \in L \mid x^{n} \leqslant a, n \in Z_{+}\right\}$. An element $a \in L$ is called compact if $a \leqslant \vee_{\alpha} b_{\alpha}$ implies $a \leqslant b_{\alpha 1} \vee b_{\alpha 2} \vee \ldots \vee b_{\alpha n}$ for some finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. Throughout this paper, L denotes a multiplicative lattice which satisfies the ACC so that each element of L is compact. If q is a primary element of L then

$$
p_{q}=\vee\left\{x \in L \mid x^{n} \leqslant q, \text { for some integer } n\right\}
$$

is a prime element containing q. It is easily verified that, p_{q} is a minimal prime containing q [2]. The prime p_{q} which is same as \sqrt{q} is called the prime associated with q and has the properties, $p_{q}^{k} \leqslant q \leqslant p_{q}$ for some integer k and $a b \leqslant q$ implies $a \leqslant q$ or $b \leqslant p_{q}$.

An element a is said to have a primary decomposition if there exist primary elements $q_{1}, q_{2}, \ldots, q_{n}$ such that $a=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{n}$. If some q_{i} contains the meet of remaining ones

[^0]then this q_{i} can be dropped from the primary decomposition. After deleting such primary components and combining the primary components with same associated prime we get a reduced primary decomposition in which distinct primaries are associated with distinct primes.Such a primary decomposition is also called an irredundant primary decomposition, reduced primary decomposition or normal primary decomposition. Let $a=q_{1} \wedge q_{2} \ldots \wedge q_{n}$ be a reduced primary decomposition of a and let $p_{1}, p_{2}, \ldots, p_{n}$ denotes the associated primes of $q_{1}, q_{2}, \ldots, q_{n}$ respectively,which are also called associated primes of a. A subset C of $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is called isolated if $p_{i} \in C$ implies $p_{j} \in C$ whenever $p_{j} \leqslant p_{i}$.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L-module or module over L if there is a multiplication between elements of L and M written as $a B$ where $a \in L$ and $B \in M$ which satisfies the following properties,
i) $\left.\underset{\alpha}{\vee} a_{\alpha}\right) A=\underset{\alpha}{\vee} a_{\alpha} A \forall a_{\alpha} \in L, A \in M$
ii) $a\left(\underset{\alpha}{\vee} A_{\alpha}\right)=\underset{\alpha}{\vee} a A_{\alpha} \forall a \in L, A_{\alpha} \in M$
iii) $(a b) A=a(b A) \forall a, b \in L, A \in M$
iv) $I B=B$
v) $O B=0_{M}$, for all $a, a_{\alpha}, b \in L$ and $A, A_{\alpha} \in M$,
where I is the supremum of L and 0 is the infimum of L. We denote by 0_{M} and I_{M} the least element and the greatest element of M. The elements of L will generally be denoted by a, b, c, \ldots and elements of M will generally be denoted by $A, B, C \ldots$.

Let M be a L-module. If $N \in M$ and $a \in L$ then $(N: a)=\vee\{X \in M \mid a X \leqslant N\}$. If $A, B \in M$, then $(A: B)=\vee\{x \in L \mid x B \leqslant A\}$. An L-module M is called a multiplication L-module if for every element $N \in M$ there exists an element $a \in L$ such that $N=a I_{M}$ [4].

A proper element N of M is said to be prime if $a X \leqslant N$ implies $X \leqslant N$ or $a I_{M} \leqslant N$ that is $a \leqslant\left(N: I_{M}\right)$ for every $a \in L, X \in M$. An element $N<I_{M}$ in M is said to be primary if $a X \leqslant N$ implies $X \leqslant N$ or $a^{n} I_{M} \leqslant N$ that is $a^{n} \leqslant\left(N: I_{M}\right)$ for some integer n. An element N of M is called a radical element if $\left(N: I_{M}\right)=\sqrt{\left(N: I_{M}\right)}$. Noether lattice is a modular multiplicative lattice satisfying ascending chain condition in which every element is the join of principal elements. Let N be an element of a lattice module M. Then N is said to have a primary decomposition if there exist primary element $Q_{1}, Q_{2}, \ldots, Q_{n}$ such that $N=Q_{1} \wedge Q_{2} \wedge \ldots Q_{n}$. If some Q_{i} contains the meet of remaining ones then this Q_{i} can be dropped from the primary decomposition. Similarly, any other primary components which contains the meet of remaining ones can be dropped from the primary decomposition. If no Q_{i} can be dropped further we get a reduced primary decomposition of N. Such a primary decomposition is also called an irredundant primary decomposition. If Q is primary then $\sqrt{Q}=\sqrt{\left(Q: I_{M}\right)}$ is prime. We note that, $\sqrt{\left(N: I_{M}\right)}$ may also be denoted by \sqrt{N}.

2. Primary Decomposition of Elements

The following result gives the relation between a primary element Q and $\sqrt{\left(Q: I_{M}\right)}$.

Theorem 1. If Q is a primary element of a lattice module M then $\sqrt{\left(Q: I_{M}\right)}$ is a prime element of L. If a is an element of L and if $a \leqslant p$ where p is a prime element of L then $\sqrt{a} \leqslant p$.

Proof. Let $a b \leqslant \sqrt{\left(Q: I_{M}\right)}$ and suppose $b \nless \sqrt{\left(Q: I_{M}\right)}$. Then $(a b)^{n}=a^{n} b^{n} \leqslant\left(Q: I_{M}\right)$ for some positive integer n. Now $b \nless \sqrt{\left(Q: I_{M}\right)}$ implies $b^{m} \nless\left(Q: I_{M}\right)$ for any positive integer m. In particular $b^{n} \nless\left(Q: I_{M}\right)$. As Q is primary, $\left(a^{n}\right)^{k} \leqslant\left(Q: I_{M}\right)$ for some positive integer k. That is $a^{t} \leqslant\left(Q: I_{M}\right)$ for some positive integer t and $a \leqslant \sqrt{\left(Q: I_{M}\right)}$. Therefore $\sqrt{\left(Q: I_{M}\right)}$ is prime. Let $a \leqslant p$. Take any $x \leqslant \sqrt{a}$. Then $x^{n} \leqslant a \leqslant p$ for some positive integer n. As p is prime, $x \leqslant p$ and hence $\sqrt{a} \leqslant p$.

The following theorem gives the relation between meet of primary elements and their equal associated primes.

Theorem 2. If $Q_{1}, Q_{2}, \ldots, Q_{k}$ are p-primary elements of a lattice module M then $Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$ is p-primary.

Proof. By hypothesis $\sqrt{\left(Q_{i}: I_{M}\right)}=p, i=1,2, \ldots, k$. Let $Q=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$. We have, $\sqrt{\wedge Q_{i}}=\sqrt{\left(\left(\wedge Q_{i}\right): I_{M}\right)}=\sqrt{\left(Q_{1}: I_{M}\right)} \wedge \sqrt{\left(Q_{2}: I_{M}\right)} \wedge \ldots \wedge \sqrt{\left(Q_{k}: I_{M}\right)}=p$. We show that $\wedge Q_{i}$ is primary, where $i=1,2, \ldots, k$. Let $a X \leqslant Q=\wedge Q_{i}$ where $a \in L, X \in M$. Suppose, $X \nless Q$. Then $X \nless Q_{i}$ for some i $(1 \leqslant i \leqslant k)$. As Q_{i} is primary, $a X \leqslant Q_{i}$ and $X \nless Q_{i}$ implies $a \leqslant \sqrt{\left(Q_{i}: I_{M}\right)}=p$. That is $a \leqslant \sqrt{\left(Q: I_{M}\right)}$. Therefore, Q is primary.

It is shown by Thakare and Manjarekar [6] that the radical of any element a of a multiplicative lattice satisfing the ACC can be written as the meet of minimal prime divisors of a. Hence, we have the following result.

Theorem 3. Let L be a multiplicative lattice satisfing the ACC and N be an element of M then $\sqrt{\left(N: I_{M}\right)}=\wedge\left\{p \mid p\right.$ is minimal prime containing $\left.\left(N: I_{M}\right)\right\}$.

An element N of a lattice module M is said to be meet irreducible if for any two elements A_{1} and A_{2} of $M, N=A_{1} \wedge A_{2}$ implies either $A_{1}=N$ or $A_{2}=N$.

Theorem 4. If a lattice module M satisfies ACC the chain $A_{1} \leqslant A_{2} \leqslant \ldots$ implies there exist positive integer m such that $A_{n}=A_{m}$ for all $n \geq m$. Then every element of M can be written as the meet of a finite number of meet irreducible elements of M.

Proof. Let τ be the set of all elements of M which can not be written as a meet of a finite number of meet irreducible elements of M. If τ is empty we have nothing to prove. Suppose τ is not empty. As M satifies ACC, τ has a maximal element say N. As $N \in \tau, N$ is not irreducible. So there exists elements A_{1} and A_{2} of M such that $N=A_{1} \wedge A_{2}$ where $N \neq A_{1}, N \neq A_{2}$. So, $N<A_{1}, N<A_{2}$. This shows that both A_{1} and A_{2} can be written as the meet of a finite number of meet irreducible elements of M. So there are irreducible elements $K_{1}, K_{2}, \ldots, K_{m}$ and $K_{1}^{\prime}, K_{2}^{\prime}, \ldots, K_{n}^{\prime}$ of M such that $A_{1}=K_{1} \wedge K_{2} \wedge \ldots \wedge K_{m}$ and $A_{2}=K_{1}^{\prime} \wedge K_{2}^{\prime} \wedge \ldots \wedge K_{n}^{\prime}$. But then $N=K_{1} \wedge K_{2} \ldots \wedge K_{m} \wedge K_{1}^{\prime} \wedge K_{2}^{\prime} \wedge \ldots K_{n}^{\prime}$. That is N is the meet of a finite number of meet irreducible elements. This contradicts the fact that $N \in \tau$. Hence, τ is empty.

The study of primary elements and their associated primes for modules is carried out by P J Mc Carthy and Larsen [5]. We give eqivalent formulation in the next theorems for lattice modules.

Theorem 5. Let Q be a p-primary element of lattice module M and N be an element of M. If $N \nless Q$ then $(Q: N)$ is a p-primary element.

Proof. First we show that $(Q: N)$ is a p-primary element. Let $a, b \in L, a b \leqslant(Q: N)$ and suppose, $a \nless(Q: N)$. As $a \nless(Q: N), a N \nless Q$. Also as $a b \leqslant(Q: N), a b N \leqslant Q$. But $a N \nless Q$ and Q is a primary element implies that $b^{n} \leqslant\left(Q: I_{M}\right)$ for some integer n. But $b^{n} I_{M} \leqslant Q$ implies $b^{n} N \leqslant Q$. Hence, $b \leqslant \sqrt{(Q: N)}$. Therefore, $(Q: N)$ is a primary element of L. Now since $N \nless Q$, there exists $A \in M$ and $A \leqslant N$ such that $A \nless Q$. Let $a \leqslant \sqrt{(Q: N)}$. Then $a^{n} N \leqslant Q$. Hence, $a^{n} A \leqslant Q$. But $A \nless Q$ and Q is primary implies that $\left(a^{n}\right)^{k}=a^{m} \leqslant\left(Q: I_{M}\right)$ for some integer m. That is $a \leqslant \sqrt{\left(Q: I_{M}\right)}=p$ and $\sqrt{(Q: N)} \leqslant p$. Conversely, let $a \leqslant \sqrt{\left(Q: I_{M}\right)}=p$. Hence, $a^{n} I_{M} \leqslant Q$ for some integer n. So $a^{n} N \leqslant Q$ for some integer n. Thus $a^{n} \leqslant(Q: N)$ and $a \leqslant \sqrt{(Q: N)}$. This shows that $p \leqslant \sqrt{(Q: N)}$ and we have $\sqrt{(Q: N)}=p$. Therefore, $(Q: N)$ is a p-primary element.

Theorem 6. Let M be a lattice module and a be an element of L, p be a prime element of L and Q be p-primary element of M. If $a \nless p$ then $(Q: a)=Q$.

Proof. Suppose $a \nless p$ where $p=\sqrt{\left(Q: I_{M}\right)}$. Since, $a \nless p$ there is some $b \leqslant a$ such that $b \nless p$. Let $X \leqslant(Q: a)$. Then $a X \leqslant Q$ and hence $b X \leqslant Q$ where $b \nless \sqrt{\left(Q: I_{M}\right)}=p$. As Q is a p-primary, $X \leqslant Q$. Hence, $(Q: a) \leqslant Q$. Conversely let $X \leqslant Q$. Since $a \leqslant 1, a X \leqslant Q$. So $X \leqslant(Q: a)$ and hence $Q \leqslant(Q: a)$. Therefore, $Q=(Q: a)$.

The following theorem gives the characterisation of a prime element p of L to be equal to some associated prime of an element which has a primary decomposition.

Theorem 7. Let $N \neq I_{M}$ be an element of a lattice module M and assume that N has a primary decomposition. Let $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$ be a reduced primary decomposition of N and p be prime element of L. Then $p=\sqrt{Q_{i}}$ for some i if and only if $(N: X)$ is a p-primary element of L for some $X \nless N$.

Proof. Let $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$ be a reduced primary decomposition of N. First suppose that, $p=\sqrt{Q_{i}}$ for some i. Without loss of generality we can assume that $p=\sqrt{\left(Q_{1}: I_{M}\right)}$ where $p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)} i=1,2, \ldots, k$. We prove that, $(N: X)$ is a p-primary element of L for some $X \nexists N$. Since the decomposition is reduced $Q_{i} \nsupseteq Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{i-1} \wedge Q_{i+1} \wedge \ldots \wedge Q_{k}$ for $i=1,2, \ldots, k$. In particular, $Q_{1} \nsucceq Q_{2} \wedge Q_{3} \wedge \ldots \wedge Q_{k}$. So there exists $X \leqslant Q_{2} \wedge Q_{3} \wedge \ldots \wedge Q_{k}$ such that $X \nless Q_{1}$ and hence $X \nless N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$. Also

$$
(N: X)=\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}\right): X=\left(Q_{1}: X\right) \wedge\left(Q_{2}: X\right) \wedge \ldots \wedge\left(Q_{k}: X\right)
$$

For $i=2,3, \ldots, k$ we show that $\left(Q_{i}: X\right)=1$. Since $X \leqslant Q_{2} \wedge Q_{3} \ldots \wedge Q_{k}$, we have $X \leqslant Q_{i}$ for all $i=2, \ldots, k$. Then $a X \leqslant Q_{i}$ for all $a \in L$ and for all $i=2,3, \ldots, k$. That is $a \leqslant\left(Q_{i}: X\right)$ for all
$i=2,3, \ldots, k$. So $1 \leqslant\left(Q_{i}: X\right)$. But $\left(Q_{i}: X\right) \leqslant 1$ implies $\left(Q_{i}: X\right)=1$ for $i=2,3, \ldots, k$. Hence, $(N: X)=\left(Q_{1}: X\right) \wedge 1 \wedge \ldots \wedge 1=\left(Q_{1}: X\right)$. So by above result, $\left(Q_{1}: X\right)$ is p-primary element implies $(N: X)$ is a p-primary element of L where $X \nexists N$. Conversely assume that $(N: X)$ is a p-primary element of L for some $X \nless N, X \in M$. We prove that $\sqrt{Q_{i}}=p$ for some i. We have, $p=\sqrt{(N: X)}=\sqrt{\left[\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}\right): X\right]}=\sqrt{\left(Q_{1}: X\right)} \wedge \sqrt{\left(Q_{2}: X\right)} \wedge \ldots \wedge \sqrt{\left(Q_{k}: X\right)}$. We claim that for each $i, \sqrt{\left(Q_{i}: X\right)}=p_{i}$ or 1 and equal to p_{i} for at least one i. We have $X \nless N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{k}$ implies $X \nless Q_{i}$ for at least one $i(1 \leqslant i \leqslant k)$. Suppose $X \nless Q_{r}(1 \leqslant r \leqslant k)$ and $X \leqslant Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{r-1} \wedge Q_{r+1} \wedge \ldots Q_{k}$ that is $X \leqslant \wedge Q_{i}$, where $(i \neq r)$. We have, $a X \leqslant Q_{i}$ for all $i \neq r$ and $a \in L$. Hence, $a \leqslant \sqrt{\left(Q_{i}: X\right)}$ for all $a \in L$. In particular, $1 \leqslant \sqrt{\left(Q_{i}: X\right)}$ for all $i \neq r$. But, $\sqrt{\left(Q_{i}: X\right)} \leqslant 1$ for all $i \neq r$. Therefore, $\sqrt{\left(Q_{i}: X\right)}=1$ for all $i \neq r$. For $i=r, X \nless Q_{r}$. Let $a \leqslant \sqrt{\left(Q_{r}: X\right)}$. Hence, $a^{n} X \leqslant Q_{r}$, for some positive integer n, where $X \nless Q_{r}$. As Q_{r} is primary, $a^{n} \leqslant \sqrt{\left(Q_{r}: I_{M}\right)}=p_{r}$. Thus, $a \leqslant p_{r}$, since p_{r} is prime and we have, $\sqrt{\left(Q_{r}: X\right)} \leqslant p_{r}$. On the other hand, let $a \leqslant p_{r}=\sqrt{Q_{r}}=\sqrt{\left(Q_{r}: I_{M}\right)}$. Hence, $a^{n} \leqslant\left(Q_{r}: I_{M}\right)$ for some positive integer n. That is $a^{n} I_{M} \leqslant Q_{r}$ and therefore, $a^{n} X \leqslant Q_{r}$, for some positive integer n. Consequently, $a^{n} \leqslant\left(Q_{r}: X\right)$ and hence $a \leqslant \sqrt{\left(Q_{r}: X\right)}$. This gives $p_{r} \leqslant \sqrt{\left(Q_{r}: X\right)}$. Hence, $\sqrt{\left(Q_{r}: X\right)}=p_{r}$ where $X \nless Q_{r}$. We have shown that for each i, $\sqrt{\left(Q_{i}: X\right)}=p_{i}$ or 1 and is equal to p_{i} for at least one i, since $X \nless N$. Then,

$$
p=\sqrt{(N: X)}=\sqrt{\left(Q_{1}: X\right)} \wedge \ldots \wedge \sqrt{\left(Q_{k}: X\right)}
$$

is the meet of some of the prime elements $p_{1}, p_{2}, \ldots, p_{l}(1 \leqslant l \leqslant k)$. That is

$$
p=\sqrt{(N: X)}=p_{1} \wedge p_{2} \wedge \ldots \wedge p_{l} .
$$

We show that $p=p_{i}$ for some i. We have, $p \leqslant p_{i} i=1,2, \ldots, l$. If for each $i, p \neq p_{i}$ then $p_{i} \nless p$ for all $i=1,2, \ldots, l$. This implies that there exist $x_{i} \leqslant p_{i}$ such that $x_{i} \nless p$ for all $i=1,2, \ldots, l$ Then, $x_{1} x_{2} \ldots x_{l} \leqslant p_{1} \wedge p_{2} \wedge \ldots \wedge p_{l}=p$. This shows that $x_{i} \leqslant p$ for at least one $\mathrm{i}(1 \leqslant i \leqslant k)$ a contradiction. Hence, $p=p_{i}$ for at least one i.

This leads us to the following result.
Theorem 8. Let $N \neq I_{M}$ be an element of a lattice module M and assume that N has a primary decomposition. If $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}=S_{1} \wedge S_{2} \wedge \ldots \wedge S_{n}$ are two reduced primary decompositions of N then $n=m$ and the Q_{i} and S_{i} can be so numbered that $\sqrt{\left(Q_{i}: I_{M}\right)}=\sqrt{\left(S_{i}: I_{M}\right)}$ for $i=1,2, \ldots, n$.

The above theorem proves the uniqueness of associated primes in reduced primary decomposition. The next result gives the relation between zero divisors of L and associated primes of zero.

Theorem 9. Let L be a Noetherian lattice and $p_{1}, p_{2}, \ldots, p_{k}$ be the prime divisors of the element 0 that is associated prime elements of element 0 . Then every zero divisors of L is contained in $p_{1} \vee p_{2} \vee \ldots \vee p_{k}$.

Proof. Let $0=q_{1} \wedge q_{2} \wedge \ldots \wedge q_{k}$ be a reduced primary decomposition of 0 and $p_{i}=\sqrt{q_{i}}$, $i=1,2, \ldots, k$. Suppose a is a zero divisor. Then if $a=0$ obviously $a \leqslant p_{1} \vee p_{2} \vee \ldots \vee p_{k}$. Suppose, a is a proper zero divisor that is $a \neq 0$ and let $a b=0$ where $b \neq 0$. Now, $a b=0 \leqslant q_{1} \wedge q_{2} \wedge \ldots \wedge q_{k}=\{0\}$. Hence, $a b \leqslant q_{i}$ for all i and $b \nless q_{i}$ for at least one i. Because, $b \leqslant q_{i}$ for all i implies $b \leqslant q_{1} \wedge q_{2} \wedge \ldots \wedge q_{k}=\{0\}$ and hence $b=0$, a contradiction. Let $b \nless q_{j}$. Then, $a b \leqslant q_{j}, b \nless q_{j}$ and q_{j} is a primary element. Therefore, $a \leqslant \sqrt{q_{j}}=p_{j}$, which shows that $a \leqslant p_{1} \vee p_{2} \vee \ldots \vee p_{k}$.

Theorem 10. Let M be a lattice module and $N \neq I_{M}$ be an element of M which has a reduced primary decomposition $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}$. If every $Q_{i}(1 \leqslant i \leqslant m)$ is a prime element then ($\left.N: I_{M}\right)=\sqrt{\left(N: I_{M}\right)}$ and the converse holds if $\left(Q_{i}: I_{M}\right)$ are prime elements.

Proof. Suppose each Q_{i} is a prime element. Let $a \leqslant \sqrt{\left(N: I_{M}\right)}$. Then

$$
a^{n} I_{M} \leqslant N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}
$$

for some positive integer n. This implies that, $a^{n} I_{M} \leqslant Q_{i}$ for each i. As Q_{i} is a prime element, $a I_{M} \leqslant Q_{i}$ or $a^{n-1} I_{M} \leqslant Q_{i}$. If $a I_{M} \leqslant Q_{i}$ then $a \leqslant\left(Q_{i}: I_{M}\right)$. Otherwise $a^{n-1} I_{M} \leqslant Q_{i}$ implies $a I_{M} \leqslant Q_{i}$ or $a^{n-2} I_{M} \leqslant Q_{i}$. Continuing in this way we obtain, $a \leqslant\left(Q_{i}: I_{M}\right)$ for each i. Therefore $a \leqslant\left(Q_{1}: I_{M}\right) \wedge\left(Q_{2}: I_{M}\right) \wedge \ldots \wedge\left(Q_{m}: I_{M}\right)$. That is $a \leqslant\left(N: I_{M}\right)$ and hence $\left(N: I_{M}\right)=\sqrt{\left(N: I_{M}\right)}$. Conversely assume that, $\left(N: I_{M}\right)=\sqrt{\left(N: I_{M}\right)}$. We show that $\left(Q_{i}: I_{M}\right)=p_{i}$. Let $y \leqslant p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)}$. As $\wedge_{i=1}^{m} p_{i}$ is irredundant(reduced) there exists $z \leqslant \wedge p_{j}$ such that $z \not \equiv p_{i}$ in L. Now $y z \leqslant \wedge_{i=1}^{m} p_{i}=\wedge_{i=1}^{m} \sqrt{\left(Q_{i}: I_{M}\right)}=\wedge_{i=1}^{m}\left(Q_{i}: I_{M}\right)$ implies $y z I_{M} \leqslant Q_{i}$ for each i. Since Q_{i} is primary, $z \not \leq p_{i}$ gives $y \leqslant\left(Q_{i}: I_{M}\right)$. Hence, $p_{i} \leqslant\left(Q_{i}: I_{M}\right)$. Consequently, $p_{i}=\left(Q_{i}: I_{M}\right)$.

Now we obtain a characterization of a prime element p of L containing some associated prime p_{i} of $N \neq I_{M}$ in a lattice module M.

Theorem 11. Let $N \neq I_{M}$ have a reduced primary decomposition $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}$ and $p_{i}=\sqrt{\left(Q_{i}: I_{m}\right)}$ be the associated primes of N. For a prime element p of L to contain $\left(N: I_{M}\right)$ it is necessary and sufficient that p contains p_{i} for some i.

Proof. Suppose $p_{i} \leqslant p$ for some i. Then $\left(N: I_{M}\right)={ }_{i=1}^{m}\left(Q_{i}: I_{M}\right)$ implies $\left(N: I_{M}\right) \leqslant p$. Conversely assume that $\left(N: I_{M}\right) \leqslant p$. Then $\left(Q_{1}: I_{M}\right) \wedge\left(Q_{2}: I_{M}\right) \wedge \ldots \wedge\left(Q_{m}: I_{M}\right) \leqslant p$ implies $\left(Q_{i}: I_{M}\right) \leqslant p$ for some i. But $\sqrt{\left(Q_{i}: I_{M}\right)}=p_{i}$ is the smallest prime containing $\left(Q_{i}: I_{M}\right)$. Hence, $p_{i} \leqslant p$ for some i.

In our next result we show that those $Q_{i}^{\prime s}$ can be uniquely determined which are isolated primary components of $N \neq I_{M}$.

Theorem 12. Let $N \neq I_{M}$ have a reduced primary decomposition $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}$ and $p_{1}, p_{2}, \ldots, p_{m}$ be the associated primes of $Q_{1}, Q_{2}, \ldots, Q_{m}$ respectively. The element

$$
Q_{i}^{\prime}=\vee\left\{X \in M \mid(N: X) \not \leq p_{i}\right\}
$$

is an element of M which is contained in Q_{i}. If Q_{i} is an isolated primary component of N then $Q_{i}=Q_{i}^{\prime}$.

Proof. Take any element $A \in\left\{X \in M \mid(N: X) \not \subset p_{i}\right\}$. Then $(N: A) \not \leq p_{i}$. So there exists $a \in L$ such that $a A \leqslant N$ and $a \not \leq p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)}$. Hence, $a^{n} I_{M} \not \leq Q_{i}$ for any integer n. Now $a A \leqslant Q_{i}, a^{n} I_{M} \not \leq Q_{i}$ and Q_{i} is primary gives $A \leqslant Q_{i}$. Hence $Q_{i}{ }^{\prime} \leqslant Q_{i}$ and the first part is proved. If p_{i} is a minimal associated primes of N it follows that $p_{j} \not \leq p_{i}$ for $i \neq j$. Then there exists $b_{j} \leqslant p_{j}$ in L such that $b_{j} \not \leq p_{i}$. We have $b_{j} \leqslant p_{j}=\sqrt{\left(Q_{j}: I_{M}\right)}=\vee\left\{a_{j} \in L \mid a_{j}^{s_{j}} I_{M} \leqslant Q_{j}\right.$ for some
 some integer $\left.s_{j}\right\}$. Put $s_{1}+s_{2}+\ldots+s_{n}=k(j)$. Then $b_{j}{ }^{k(j)} I_{M} \leqslant\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right)^{k(j)} I_{M} \leqslant Q_{j}$. Clearly $b=\prod_{j \neq i} b_{j}^{k(j)} \nexists p_{i}$ as p_{i} is prime. However, $b I_{M} \leqslant \underset{j \neq i}{\wedge} Q_{j}$. Next take any $X \leqslant Q_{i}$. Then $X b I_{M} \leqslant \wedge_{i=1}^{m} Q_{i}=N$. So $b \leqslant(N: X) \not \leq p_{i}$. This implies that $X \in\left\{X \in M \mid(N: X) \neq p_{i}\right\}$. Hence $X \leqslant \vee\left\{X \in M \mid(N: X) \nsubseteq p_{i}\right\}=Q_{i}{ }^{\prime}$ and we have $Q_{i} \leqslant Q_{i}{ }^{\prime}$. Consequently, $Q_{i}=Q_{i}{ }^{\prime}$.

We now relate the radical of N with the isolated primes of $N \in M$. In that direction we have:

Theorem 13. Let M be a lattice module and $N \neq I_{M}$ have an irredudent(reduced) primary decomposition $N=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{n}$ then $\sqrt{\left(N: I_{M}\right)}$ is the meet of isolated prime elements of N.

Proof. We have

$$
\begin{aligned}
\sqrt{\left(N: I_{M}\right)} & =\sqrt{\left(Q_{1} \wedge Q_{2} \wedge \ldots Q_{n}\right): I_{M}}=\sqrt{\left(Q_{1}: I_{M}\right)} \wedge \sqrt{\left(Q_{2}: I_{M}\right)} \ldots \wedge \sqrt{\left(Q_{n}: I_{M}\right)} \\
& =p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n},
\end{aligned}
$$

where $p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)}$ are associated primes of N. If some p_{k} is not isolated then $p_{k} \geq p_{i}$ for some p_{i} and hence we can delete such elements from the above primary decomposition and we are through.

We note that an element $A=a I_{M}$ of M where $a \in L$ is said to be nilpotent if $a^{n} I_{M}=0_{M}$ for some positive integer n. If a lattice module M satisfies the ACC and if every element of L is the join of meet prncipal elements then every element of M can be written as a meet of finite number of primary elements [1].

Theorem 14. Let M be a lattice module satisfying the ACC over a multiplicative lattice L in which every element is the join of meet principal elements. Then the join of the set of all elements $a \in L$ such that a I_{M} is nilpotent is the meet of the isolated primes of 0_{M}.

Proof. Let $0_{M}=\wedge_{i=1}^{n} Q_{i}$ be a reduced primary decomposition of 0_{M} and $p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)}$ be an associated prime of $Q_{i}, i=1,2, \ldots n$. We have

$$
\sqrt{\left(0_{M}: I_{M}\right)}=\vee\left\{a \in L \mid a^{n} I_{M}=0_{M} \text { for some positive integer } n\right\}
$$

and $\sqrt{\left(0_{M}: I_{M}\right)}=p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are the isolated primes of 0_{M}. Hence, $\sqrt{\left(0_{M}: I_{M}\right)}$ is the meet of isolated primes of 0_{M}.

The primeness of the radical of $A \in M$ is characterized in the following result.
Theorem 15. For $A \in M, \sqrt{\left(A: I_{M}\right)}$ is prime if and only if A has a single isolated prime element.
Proof. Let $A=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{n}$ be primary decomposition of A. If A has a single isolated prime element p then $\sqrt{\left(A: I_{M}\right)}=p$. Conversely, assume that $\sqrt{\left(A: I_{M}\right)}$ is prime and $\sqrt{\left(A: I_{M}\right)}=p_{1} \wedge p_{2}$ where p_{1}, p_{2} are isolated primes of A. Then there are $x, y \in L$ such that $x \leqslant p_{1}, x \not \leq p_{2}$ and $y \leqslant p_{2}, y \not \leq p_{1}$. Hence $x y \leqslant \sqrt{\left(A: I_{M}\right)}$ which is prime. But then $x \leqslant p_{2}$ or $y \leqslant p_{1}$ which is a contradiction. Thus A has a single isolated prime element.

In the remaining part we assume that a lattice module M satisfies the ACC over a multiplicative lattice L in which every element is the join of meet principal elements. This condition assures that any element M has a reduced primary decomposition.

Theorem 16. Let A be any element of M and $b \in L$ be such that $A \neq I_{M}$. Then $A=(A: b)$ if and only if b is contained in no associated prime element of A.

Proof. Let $A=Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}$ be an irredundant primary decomposition of A and let $p_{i}=\sqrt{\left(Q_{i}: I_{M}\right)}$. Suppose $b \not \leq p_{i}$ for any $i=1,2, \ldots, m$. This leads us to the fact $b^{n} \not \leq p_{i}$ for any positive integer n. We know that $(A: b) b \leqslant A[3]$ and thus $(A: b) b \leqslant Q_{i}$ for all i. Since Q_{i} is primary and $b \not \leq p_{i}$ we have $(A: b) \leqslant Q_{i}$. That is $(A: b) \leqslant \wedge_{i=1}^{m} Q_{i}=A$. But $A \leqslant(A: b)$ gives $(A: b)=A$. Conversely, suppose $(A: b)=A$ and if possible without loss of generality assume that $b \leqslant p_{1}$. Then $\left(Q: b^{s}\right)=I_{M}$ for some integer s. We have $(A: b): b=A: b^{2}[3]$. Continuing in this way $A: b=A: b^{s}$. But $A: b=A$ implies $A: b^{s}=A$. Finally,

$$
\begin{aligned}
A & =\left(A: b^{s}\right)=\left(\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}\right): b^{s}\right)=\left(\left(Q_{1}: b^{s}\right) \wedge\left(Q_{2}: b^{s}\right) \wedge \ldots \wedge\left(Q_{m}: b^{s}\right)\right. \\
& =\underset{j \neq 1}{\wedge}\left(Q_{j}: b^{s}\right) \geq \underset{j \neq 1}{\wedge Q_{j} \geq A .}
\end{aligned}
$$

That is $A=\underset{j \neq 1}{\wedge} Q_{j}$. This contradicts the fact that $A=\wedge_{i=1}^{m} Q_{i}$ is a reduced primary decomposition of A.

The above theorem can be restated in the following form.
Theorem 17. Let $N \neq I_{M}$ have a reduced primary decomposition $Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{m}$ and $p_{1}, p_{2}, \ldots, p_{m}$ be the associated primes of $Q_{i}^{\prime s}$. For an element b of L to be contained in some associated prime element of N it is necessary and sufficient that $(N: b) \neq N$.

Direct application of the above theorem gives the following result.
Theorem 18. For an element b of L to be contained in some associated prime element of N, it is necessary and sufficient that there is an element $Y \nsubseteq N$ such that $b Y \leqslant N$.

An element $X \in M$ is called a zero divisor if $\left(0_{M}: X\right) \neq 0$ so there exists $a \neq 0$ in L such that $a X=0_{M}$.

Theorem 19. Let M be a lattice module where M satisfies the ACC and every element of M is the join of meet principal elements. If $X \in M$ then the join of all $a \in L$ such that $a \neq 0$ and $a X=0_{M}$ is contained in the join of all associated prime elements of 0_{M}.

Proof. Let X be a zero divisor of M. Then $0_{M}: X \neq 0$ that is there exists $a \neq 0$ in L such that $a X=0_{M}$. We know that for an element b of $L\left(b \neq 0, b X=0_{M}\right)$ to be contained in some associated prime of 0_{M} it is necessary and sufficient that

$$
\left(0_{M}: b\right)=\vee\left\{X \in M \mid b X=0_{M}\right\} \neq 0_{M} .
$$

Hence the join of all elements a of L such that $a \neq 0$ and $a X=0_{M}$ is contained in the join of all associated prime elements of 0_{M}, by Theorem 16 .

ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful.

References

[1] D.D. Anderson. Multiplicative Latices. Ph.D. thesis, Chicago University, 1974.
[2] R.P. Dilworth. Abstract Commutative Ideal Theory, Pacific Journal of Mathematics, 12, 481-498. 1962.
[3] J.A. Johnson. a-adic.Completions of Noetherian Lattice Modules, Fundamenta Mathematicae, 66, 341-371. 1970.
[4] F. Callialp and U. Tekir. Multiplication Lattice Modules, Iranian Journal of Science and Technology, 309-313. 2011.
[5] M.D. Larsen and P.J. McCarthy. Multiplicative theory of ideals, Academic press, New York, USA. 1970.
[6] N.K. Thakare and C.S. Manjarekar. Radicals and uniqueness theorem in multiplicative lattices with chain conditions, Studia Scientifica Mathematicarum Hungarica 18, 13-19. 1983

[^0]: *Corresponding author.
 Email addresses: csmanjrekar@yahoo.co.in (C. Manjarekar), ujwalabiraje@gmail.com (U. Kandale)
 (c) 2014 EJPAM All rights reserved.

