EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 7, No. 2, 2014, 201-209 ISSN 1307-5543 – www.ejpam.com

Primary Decomposition in Lattice Modules

C S Manjarekar¹, U N Kandale^{2,*}

 ¹ Department of Mathematics, Shivaji University, Kolhapur, Maharashtra, India
² General Engineering Department, Sharad Institute of Technology College of Engineering, Shivaji University, Kolhapur, India

Abstract. In this paper, we study primary decomposition of elements in lattice modules. A necessary and sufficient condition for a prime element p of a multiplicative lattice L to be equal to some associated prime of an element in a lattice module having primary decomposition is obtained.

2010 Mathematics Subject Classifications: 13A99

Key Words and Phrases: Prime element, primary element, lattice modules, primary decomposition

1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if a < 1. A proper element p of L is said to be prime if $ab \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L, b \in L$, (a : b) is the join of all elements c in L such that $cb \leq a$. A proper element p of L is said to be primary if $ab \leq p$ implies $a \leq p$ or $b^n \leq p$ for some positive integer n. If $a \in L$, the radical of a denoted by $\sqrt{a} = \lor \{x \in L \mid x^n \leq a, n \in Z_+\}$. An element $a \in L$ is called compact if $a \leq \lor b_a$ implies $a \leq b_{a1} \lor b_{a2} \lor \ldots \lor b_{an}$ for some finite subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. Throughout this paper, L denotes a multiplicative lattice which satisfies the ACC so that each element of L is compact. If q is a primary element of L then

 $p_q = \lor \{x \in L \mid x^n \leq q, \text{ for some integer } n\}$

is a prime element containing q. It is easily verified that, p_q is a minimal prime containing q [2]. The prime p_q which is same as \sqrt{q} is called the prime associated with q and has the properties, $p_q^k \leq q \leq p_q$ for some integer k and $ab \leq q$ implies $a \leq q$ or $b \leq p_q$.

An element *a* is said to have a primary decomposition if there exist primary elements q_1, q_2, \ldots, q_n such that $a = q_1 \land q_2 \land \ldots \land q_n$. If some q_i contains the meet of remaining ones

Email addresses: csmanjrekar@yahoo.co.in (C. Manjarekar), ujwalabiraje@gmail.com (U. Kandale)

http://www.ejpam.com

© 2014 EJPAM All rights reserved.

^{*}Corresponding author.

then this q_i can be dropped from the primary decomposition. After deleting such primary components and combining the primary components with same associated prime we get a reduced primary decomposition in which distinct primaries are associated with distinct primes. Such a primary decomposition is also called an irredundant primary decomposition, reduced primary decomposition or normal primary decomposition. Let $a = q_1 \land q_2 \ldots \land q_n$ be a reduced primary decomposition of a and let p_1, p_2, \ldots, p_n denotes the associated primes of q_1, q_2, \ldots, q_n respectively, which are also called associated primes of a. A subset C of $\{p_1, p_2, \ldots, p_n\}$ is called isolated if $p_i \in C$ implies $p_j \in C$ whenever $p_j \leq p_i$.

Let *M* be a complete lattice and *L* be a multiplicative lattice. Then *M* is called L-module or module over *L* if there is a multiplication between elements of *L* and *M* written as *aB* where $a \in L$ and $B \in M$ which satisfies the following properties,

- i) $(\bigvee_{\alpha} a_{\alpha})A = \bigvee_{\alpha} a_{\alpha}A \ \forall a_{\alpha} \in L, A \in M$
- ii) $a(\bigvee_{\alpha} A_{\alpha}) = \bigvee_{\alpha} a A_{\alpha} \ \forall a \in L, A_{\alpha} \in M$
- iii) $(ab)A = a(bA) \forall a, b \in L, A \in M$

iv)
$$IB = B$$

v) $0B = 0_M$, for all $a, a_\alpha, b \in L$ and $A, A_\alpha \in M$,

where *I* is the supremum of *L* and 0 is the infimum of *L*. We denote by 0_M and I_M the least element and the greatest element of *M*. The elements of *L* will generally be denoted by *a*, *b*, *c*, ... and elements of M will generally be denoted by *A*, *B*, *C*

Let *M* be a L-module. If $N \in M$ and $a \in L$ then $(N : a) = \bigvee \{X \in M \mid aX \leq N\}$. If $A, B \in M$, then $(A : B) = \bigvee \{x \in L \mid xB \leq A\}$. An L-module *M* is called a multiplication L-module if for every element $N \in M$ there exists an element $a \in L$ such that $N = aI_M$ [4].

A proper element *N* of *M* is said to be prime if $aX \leq N$ implies $X \leq N$ or $aI_M \leq N$ that is $a \leq (N : I_M)$ for every $a \in L, X \in M$. An element $N < I_M$ in *M* is said to be primary if $aX \leq N$ implies $X \leq N$ or $a^n I_M \leq N$ that is $a^n \leq (N : I_M)$ for some integer *n*. An element *N* of *M* is called a radical element if $(N : I_M) = \sqrt{(N : I_M)}$. Noether lattice is a modular multiplicative lattice satisfying ascending chain condition in which every element is the join of principal elements. Let *N* be an element of a lattice module *M*. Then *N* is said to have a primary decomposition if there exist primary element Q_1, Q_2, \ldots, Q_n such that

 $N = Q_1 \wedge Q_2 \wedge \ldots Q_n$. If some Q_i contains the meet of remaining ones then this Q_i can be dropped from the primary decomposition. Similarly, any other primary components which contains the meet of remaining ones can be dropped from the primary decomposition. If no Q_i can be dropped further we get a reduced primary decomposition of N. Such a primary decomposition is also called an irredundant primary decomposition. If Q is primary then $\sqrt{Q} = \sqrt{(Q : I_M)}$ is prime. We note that, $\sqrt{(N : I_M)}$ may also be denoted by \sqrt{N} .

2. Primary Decomposition of Elements

The following result gives the relation between a primary element *Q* and $\sqrt{(Q:I_M)}$.

Theorem 1. If Q is a primary element of a lattice module M then $\sqrt{(Q:I_M)}$ is a prime element of L. If a is an element of L and if $a \leq p$ where p is a prime element of L then $\sqrt{a} \leq p$.

Proof. Let $ab \leq \sqrt{(Q:I_M)}$ and suppose $b \nleq \sqrt{(Q:I_M)}$. Then $(ab)^n = a^n b^n \leq (Q:I_M)$ for some positive integer *n*. Now $b \nleq \sqrt{(Q:I_M)}$ implies $b^m \nleq (Q:I_M)$ for any positive integer *m*. In particular $b^n \nleq (Q:I_M)$. As *Q* is primary, $(a^n)^k \leq (Q:I_M)$ for some positive integer *k*. That is $a^t \leq (Q:I_M)$ for some positive integer *t* and $a \leq \sqrt{(Q:I_M)}$. Therefore $\sqrt{(Q:I_M)}$ is prime. Let $a \leq p$. Take any $x \leq \sqrt{a}$. Then $x^n \leq a \leq p$ for some positive integer *n*. As *p* is prime, $x \leq p$ and hence $\sqrt{a} \leq p$.

The following theorem gives the relation between meet of primary elements and their equal associated primes.

Theorem 2. If Q_1, Q_2, \ldots, Q_k are *p*-primary elements of a lattice module *M* then $Q_1 \land Q_2 \land \ldots \land Q_k$ is *p*-primary.

Proof. By hypothesis $\sqrt{(Q_i:I_M)} = p$, i = 1, 2, ..., k. Let $Q = Q_1 \land Q_2 \land ... \land Q_k$. We have, $\sqrt{\land Q_i} = \sqrt{((\land Q_i):I_M)} = \sqrt{(Q_1:I_M)} \land \sqrt{(Q_2:I_M)} \land ... \land \sqrt{(Q_k:I_M)} = p$. We show that $\land Q_i$ is primary, where i = 1, 2, ..., k. Let $aX \leq Q = \land Q_i$ where $a \in L, X \in M$. Suppose, $X \notin Q$. Then $X \notin Q_i$ for some i $(1 \leq i \leq k)$. As Q_i is primary, $aX \leq Q_i$ and $X \notin Q_i$ implies $a \leq \sqrt{(Q_i:I_M)} = p$. That is $a \leq \sqrt{(Q:I_M)}$. Therefore, Q is primary. \Box

It is shown by Thakare and Manjarekar [6] that the radical of any element a of a multiplicative lattice satisfing the ACC can be written as the meet of minimal prime divisors of a. Hence, we have the following result.

Theorem 3. Let *L* be a multiplicative lattice satisfing the ACC and *N* be an element of *M* then $\sqrt{(N:I_M)} = \wedge \{p \mid p \text{ is minimal prime containing } (N:I_M) \}.$

An element *N* of a lattice module *M* is said to be meet irreducible if for any two elements A_1 and A_2 of *M*, $N = A_1 \land A_2$ implies either $A_1 = N$ or $A_2 = N$.

Theorem 4. If a lattice module M satisfies ACC the chain $A_1 \leq A_2 \leq ...$ implies there exist positive integer m such that $A_n = A_m$ for all $n \geq m$. Then every element of M can be written as the meet of a finite number of meet irreducible elements of M.

Proof. Let τ be the set of all elements of M which can not be written as a meet of a finite number of meet irreducible elements of M. If τ is empty we have nothing to prove. Suppose τ is not empty. As M satifies ACC, τ has a maximal element say N. As $N \in \tau$, N is not irreducible. So there exists elements A_1 and A_2 of M such that $N = A_1 \wedge A_2$ where $N \neq A_1, N \neq A_2$. So, $N < A_1, N < A_2$. This shows that both A_1 and A_2 can be written as the meet of a finite number of meet irreducible elements of M. So there are irreducible elements K_1, K_2, \ldots, K_m and K'_1, K'_2, \ldots, K'_n of M such that $A_1 = K_1 \wedge K_2 \wedge \ldots \wedge K_m$ and $A_2 = K'_1 \wedge K'_2 \wedge \ldots \wedge K'_n$. But then $N = K_1 \wedge K_2 \ldots \wedge K_m \wedge K'_1 \wedge K'_2 \wedge \ldots \wedge K'_n$. That is N is the meet of a finite number of meet irreducible elements. This contradicts the fact that $N \in \tau$. Hence, τ is empty.

The study of primary elements and their associated primes for modules is carried out by P J Mc Carthy and Larsen [5]. We give eqivalent formulation in the next theorems for lattice modules.

Theorem 5. Let Q be a p-primary element of lattice module M and N be an element of M. If $N \notin Q$ then (Q:N) is a p-primary element.

Proof. First we show that (Q:N) is a p-primary element. Let $a, b \in L$, $ab \leq (Q:N)$ and suppose, $a \notin (Q:N)$. As $a \notin (Q:N)$, $aN \notin Q$. Also as $ab \leq (Q:N)$, $abN \leq Q$. But $aN \notin Q$ and Q is a primary element implies that $b^n \leq (Q:I_M)$ for some integer n. But $b^n I_M \leq Q$ implies $b^n N \leq Q$. Hence, $b \leq \sqrt{(Q:N)}$. Therefore, (Q:N) is a primary element of L. Now since $N \notin Q$, there exists $A \in M$ and $A \leq N$ such that $A \notin Q$. Let $a \leq \sqrt{(Q:N)}$. Then $a^n N \leq Q$. Hence, $a^n A \leq Q$. But $A \notin Q$ and Q is primary implies that $(a^n)^k = a^m \leq (Q:I_M)$ for some integer m. That is $a \leq \sqrt{(Q:I_M)} = p$ and $\sqrt{(Q:N)} \leq p$. Conversely, let $a \leq \sqrt{(Q:I_M)} = p$. Hence, $a^n I_M \leq Q$ for some integer n. So $a^n N \leq Q$ for some integer n. Thus $a^n \leq (Q:N)$ and $a \leq \sqrt{(Q:N)}$. This shows that $p \leq \sqrt{(Q:N)}$ and we have $\sqrt{(Q:N)} = p$. Therefore,(Q:N)is a p-primary element.

Theorem 6. Let *M* be a lattice module and a be an element of *L*, *p* be a prime element of *L* and *Q* be *p*-primary element of *M*. If $a \notin p$ then (Q : a) = Q.

Proof. Suppose $a \notin p$ where $p = \sqrt{(Q : I_M)}$. Since, $a \notin p$ there is some $b \leqslant a$ such that $b \notin p$. Let $X \leqslant (Q : a)$. Then $aX \leqslant Q$ and hence $bX \leqslant Q$ where $b \notin \sqrt{(Q : I_M)} = p$. As Q is a p-primary, $X \leqslant Q$. Hence, $(Q : a) \leqslant Q$. Conversely let $X \leqslant Q$. Since $a \leqslant 1$, $aX \leqslant Q$. So $X \leqslant (Q : a)$ and hence $Q \leqslant (Q : a)$. Therefore, Q = (Q : a).

The following theorem gives the characterisation of a prime element p of L to be equal to some associated prime of an element which has a primary decomposition.

Theorem 7. Let $N \neq I_M$ be an element of a lattice module M and assume that N has a primary decomposition. Let $N = Q_1 \land Q_2 \land \ldots \land Q_k$ be a reduced primary decomposition of N and p be prime element of L. Then $p = \sqrt{Q_i}$ for some i if and only if (N : X) is a p-primary element of L for some $X \nleq N$.

Proof. Let $N = Q_1 \land Q_2 \land \ldots \land Q_k$ be a reduced primary decomposition of N. First suppose that, $p = \sqrt{Q_i}$ for some i. Without loss of generality we can assume that $p = \sqrt{(Q_1 : I_M)}$ where $p_i = \sqrt{(Q_i : I_M)}$ $i = 1, 2, \ldots, k$. We prove that, (N : X) is a p-primary element of L for some $X \nleq N$. Since the decomposition is reduced $Q_i \ngeq Q_1 \land Q_2 \land \ldots \land Q_{i-1} \land Q_{i+1} \land \ldots \land Q_k$ for $i = 1, 2, \ldots, k$. In particular, $Q_1 \trianglerighteq Q_2 \land Q_3 \land \ldots \land Q_k$. So there exists $X \leqslant Q_2 \land Q_3 \land \ldots \land Q_k$ such that $X \nleq Q_1$ and hence $X \nleq N = Q_1 \land Q_2 \land \ldots \land Q_k$. Also

$$(N:X) = (Q_1 \land Q_2 \land \ldots \land Q_k) : X = (Q_1:X) \land (Q_2:X) \land \ldots \land (Q_k:X).$$

For i = 2, 3, ..., k we show that $(Q_i : X) = 1$. Since $X \leq Q_2 \land Q_3 \ldots \land Q_k$, we have $X \leq Q_i$ for all i = 2, ..., k. Then $aX \leq Q_i$ for all $a \in L$ and for all i = 2, 3, ..., k. That is $a \leq (Q_i : X)$ for all

i = 2, 3, ..., k. So $1 \leq (Q_i : X)$. But $(Q_i : X) \leq 1$ implies $(Q_i : X) = 1$ for i = 2, 3, ..., k. Hence, $(N:X) = (Q_1:X) \land 1 \land \ldots \land 1 = (Q_1:X)$. So by above result, $(Q_1:X)$ is p-primary element implies (N : X) is a p-primary element of L where $X \notin N$. Conversely assume that (N : X) is a p-primary element of L for some $X \nleq N, X \in M$. We prove that $\sqrt{Q_i} = p$ for some i. We have, $p = \sqrt{(N:X)} = \sqrt{[(Q_1 \land Q_2 \land \ldots \land Q_k):X]} = \sqrt{(Q_1:X)} \land \sqrt{(Q_2:X)} \land \ldots \land \sqrt{(Q_k:X)}.$ We claim that for each *i*, $\sqrt{(Q_i : X)} = p_i$ or 1 and equal to p_i for at least one *i*. We have $X \notin N = Q_1 \land Q_2 \land \ldots \land Q_k$ implies $X \notin Q_i$ for at least one $i \ (1 \leq i \leq k)$. Suppose $X \notin Q_r$ $(1 \leqslant r \leqslant k)$ and $X \leqslant Q_1 \land Q_2 \land \ldots \land Q_{r-1} \land Q_{r+1} \land \ldots \land Q_k$ that is $X \leqslant \land Q_i$, where $(i \neq r)$. We have, $aX \leq Q_i$ for all $i \neq r$ and $a \in L$. Hence, $a \leq \sqrt{(Q_i : X)}$ for all $a \in L$. In particular, $1 \leq \sqrt{(Q_i:X)}$ for all $i \neq r$. But, $\sqrt{(Q_i:X)} \leq 1$ for all $i \neq r$. Therefore, $\sqrt{(Q_i:X)} = 1$ for all $i \neq r$. For $i = r, X \notin Q_r$. Let $a \notin \sqrt{(Q_r : X)}$. Hence, $a^n X \notin Q_r$, for some positive integer *n*, where $X \notin Q_r$. As Q_r is primary, $a^n \leqslant \sqrt{(Q_r : I_M)} = p_r$. Thus, $a \leqslant p_r$, since p_r is prime and we have, $\sqrt{(Q_r:X)} \leq p_r$. On the other hand, let $a \leq p_r = \sqrt{Q_r} = \sqrt{(Q_r:I_M)}$. Hence, $a^n \leq (Q_r : I_M)$ for some positive integer n. That is $a^n I_M \leq Q_r$ and therefore, $a^n X \leq Q_r$, for some positive integer n. Consequently, $a^n \leq (Q_r : X)$ and hence $a \leq \sqrt{(Q_r : X)}$. This gives $p_r \leq \sqrt{(Q_r:X)}$. Hence, $\sqrt{(Q_r:X)} = p_r$ where $X \leq Q_r$. We have shown that for each *i*, $\sqrt{(Q_i:X)} = p_i$ or 1 and is equal to p_i for at least one *i*, since $X \notin N$. Then,

$$p = \sqrt{(N:X)} = \sqrt{(Q_1:X)} \land \ldots \land \sqrt{(Q_k:X)}$$

is the meet of some of the prime elements p_1, p_2, \ldots, p_l $(1 \le l \le k)$. That is

$$p = \sqrt{(N:X)} = p_1 \wedge p_2 \wedge \ldots \wedge p_l.$$

We show that $p = p_i$ for some *i*. We have, $p \le p_i$ i = 1, 2, ..., l. If for each $i, p \ne p_i$ then $p_i \nleq p$ for all i = 1, 2, ..., l. This implies that there exist $x_i \le p_i$ such that $x_i \nleq p$ for all i = 1, 2, ..., l Then, $x_1 x_2 ... x_l \le p_1 \land p_2 \land ... \land p_l = p$. This shows that $x_i \le p$ for at least one i $(1 \le i \le k)$ a contradiction. Hence, $p = p_i$ for at least one *i*.

This leads us to the following result.

Theorem 8. Let $N \neq I_M$ be an element of a lattice module M and assume that N has a primary decomposition. If $N = Q_1 \land Q_2 \land \ldots \land Q_m = S_1 \land S_2 \land \ldots \land S_n$ are two reduced primary decompositions of N then n = m and the Q_i and S_i can be so numbered that $\sqrt{(Q_i : I_M)} = \sqrt{(S_i : I_M)}$ for i = 1, 2, ..., n.

The above theorem proves the uniqueness of associated primes in reduced primary decomposition. The next result gives the relation between zero divisors of L and associated primes of zero.

Theorem 9. Let *L* be a Noetherian lattice and $p_1, p_2, ..., p_k$ be the prime divisors of the element 0 that is associated prime elements of element 0. Then every zero divisors of *L* is contained in $p_1 \lor p_2 \lor ... \lor p_k$.

C. Manjarekar, U. Kandale / Eur. J. Pure Appl. Math, 7 (2014), 201-209

Proof. Let $0 = q_1 \land q_2 \land \ldots \land q_k$ be a reduced primary decomposition of 0 and $p_i = \sqrt{q_i}$, $i = 1, 2, \ldots, k$. Suppose *a* is a zero divisor. Then if a = 0 obviously $a \leq p_1 \lor p_2 \lor \ldots \lor p_k$. Suppose, *a* is a proper zero divisor that is $a \neq 0$ and let ab = 0 where $b \neq 0$. Now, $ab = 0 \leq q_1 \land q_2 \land \ldots \land q_k = \{0\}$. Hence, $ab \leq q_i$ for all *i* and $b \leq q_i$ for at least one *i*. Because, $b \leq q_i$ for all *i* implies $b \leq q_1 \land q_2 \land \ldots \land q_k = \{0\}$ and hence b = 0, a contradiction. Let $b \leq q_j$. Then, $ab \leq q_j, b \leq q_j$ and q_j is a primary element. Therefore, $a \leq \sqrt{q_j} = p_j$, which shows that $a \leq p_1 \lor p_2 \lor \ldots \lor p_k$.

Theorem 10. Let *M* be a lattice module and $N \neq I_M$ be an element of *M* which has a reduced primary decomposition $N = Q_1 \land Q_2 \land \ldots \land Q_m$. If every Q_i $(1 \leq i \leq m)$ is a prime element then $(N : I_M) = \sqrt{(N : I_M)}$ and the converse holds if $(Q_i : I_M)$ are prime elements.

Proof. Suppose each Q_i is a prime element. Let $a \leq \sqrt{(N : I_M)}$. Then

$$a^n I_M \leqslant N = Q_1 \land Q_2 \land \ldots \land Q_m$$

for some positive integer *n*. This implies that, $a^n I_M \leq Q_i$ for each *i*. As Q_i is a prime element, $aI_M \leq Q_i$ or $a^{n-1}I_M \leq Q_i$. If $aI_M \leq Q_i$ then $a \leq (Q_i : I_M)$. Otherwise $a^{n-1}I_M \leq Q_i$ implies $aI_M \leq Q_i$ or $a^{n-2}I_M \leq Q_i$. Continuing in this way we obtain, $a \leq (Q_i : I_M)$ for each *i*. Therefore $a \leq (Q_1 : I_M) \land (Q_2 : I_M) \land \ldots \land (Q_m : I_M)$. That is $a \leq (N : I_M)$ and hence $(N : I_M) = \sqrt{(N : I_M)}$. Conversely assume that, $(N : I_M) = \sqrt{(N : I_M)}$. We show that $(Q_i : I_M) = p_i$. Let $y \leq p_i = \sqrt{(Q_i : I_M)}$. As $\bigwedge_{i=1}^m p_i$ is irredundant(reduced) there exists $z \leq \land p_j$ such that $z \nleq p_i$ in L. Now $yz \leq \bigwedge_{i=1}^m p_i = \bigwedge_{i=1}^m \sqrt{(Q_i : I_M)} = \bigwedge_{i=1}^m (Q_i : I_M)$ implies $yzI_M \leq Q_i$ for each *i*. Since Q_i is primary, $z \nleq p_i$ gives $y \leq (Q_i : I_M)$. Hence, $p_i \leq (Q_i : I_M)$. Consequently, $p_i = (Q_i : I_M)$.

Now we obtain a characterization of a prime element *p* of *L* containing some associated prime p_i of $N \neq I_M$ in a lattice module *M*.

Theorem 11. Let $N \neq I_M$ have a reduced primary decomposition $N = Q_1 \land Q_2 \land ... \land Q_m$ and $p_i = \sqrt{(Q_i : I_m)}$ be the associated primes of N. For a prime element p of L to contain $(N : I_M)$ it is necessary and sufficient that p contains p_i for some i.

Proof. Suppose $p_i \leq p$ for some *i*. Then $(N : I_M) = \bigwedge_{i=1}^{m} (Q_i : I_M)$ implies $(N : I_M) \leq p$. Conversely assume that $(N : I_M) \leq p$. Then $(Q_1 : I_M) \wedge (Q_2 : I_M) \wedge \ldots \wedge (Q_m : I_M) \leq p$ implies $(Q_i : I_M) \leq p$ for some *i*. But $\sqrt{(Q_i : I_M)} = p_i$ is the smallest prime containing $(Q_i : I_M)$. Hence, $p_i \leq p$ for some *i*.

In our next result we show that those $Q_i^{'s}$ can be uniquely determined which are isolated primary components of $N \neq I_M$.

Theorem 12. Let $N \neq I_M$ have a reduced primary decomposition $N = Q_1 \land Q_2 \land \ldots \land Q_m$ and p_1, p_2, \ldots, p_m be the associated primes of Q_1, Q_2, \ldots, Q_m respectively. The element

$$Q'_{i} = \lor \{X \in M \mid (N : X) \nleq p_{i}\}$$

is an element of M which is contained in Q_i . If Q_i is an isolated primary component of N then $Q_i = Q'_i$.

Proof. Take any element $A \in \{X \in M \mid (N:X) \nleq p_i\}$. Then $(N:A) \nleq p_i$. So there exists $a \in L$ such that $aA \leqslant N$ and $a \nleq p_i = \sqrt{(Q_i:I_M)}$. Hence, $a^n I_M \nleq Q_i$ for any integer n. Now $aA \leqslant Q_i$, $a^n I_M \nleq Q_i$ and Q_i is primary gives $A \leqslant Q_i$. Hence $Q_i^{\ i} \leqslant Q_i$ and the first part is proved. If p_i is a minimal associated primes of N it follows that $p_j \nleq p_i$ for $i \ne j$. Then there exists $b_j \leqslant p_j$ in L such that $b_j \nleq p_i$. We have $b_j \leqslant p_j = \sqrt{(Q_j:I_M)} = \vee \{a_j \in L \mid a_j^{s_j} I_M \leqslant Q_j$ for some integer $s_j\}$. Since each element of L is compact, we have $b_j \leqslant p_j = \bigvee_{j=1}^n \{a_j \mid a_j^{s_j} I_M \leqslant Q_j$ for some integer $s_j\}$. Put $s_1 + s_2 + \ldots + s_n = k(j)$. Then $b_j^{k(j)} I_M \leqslant (a_1 \vee a_2 \vee \ldots \vee a_n)^{k(j)} I_M \leqslant Q_j$. Clearly $b = \prod_{j \ne i} b_j^{k(j)} \nleq p_i$ as p_i is prime. However, $bI_M \leqslant \bigwedge Q_j$. Next take any $X \leqslant Q_i$. Then $X bI_M \leqslant \bigwedge_{i=1}^m Q_i = N$. So $b \leqslant (N:X) \nleq p_i$. This implies that $X \in \{X \in M \mid (N:X) \ne p_i\}$. Hence $X \leqslant \lor \{X \in M \mid (N:X) \nleq p_i\} = Q_i^{\ i}$ and we have $Q_i \leqslant Q_i^{\ j}$. Consequently, $Q_i = Q_i^{\ i}$.

We now relate the radical of *N* with the isolated primes of $N \in M$. In that direction we have:

Theorem 13. Let *M* be a lattice module and $N \neq I_M$ have an irredudent(reduced) primary decomposition $N = Q_1 \land Q_2 \land \ldots \land Q_n$ then $\sqrt{(N : I_M)}$ is the meet of isolated prime elements of *N*.

Proof. We have

$$\sqrt{(N:I_M)} = \sqrt{(Q_1 \land Q_2 \land \dots Q_n) : I_M} = \sqrt{(Q_1:I_M)} \land \sqrt{(Q_2:I_M)} \dots \land \sqrt{(Q_n:I_M)}$$
$$= p_1 \land p_2 \land \dots \land p_n,$$

where $p_i = \sqrt{(Q_i : I_M)}$ are associated primes of *N*. If some p_k is not isolated then $p_k \ge p_i$ for some p_i and hence we can delete such elements from the above primary decomposition and we are through.

We note that an element $A = aI_M$ of M where $a \in L$ is said to be nilpotent if $a^n I_M = 0_M$ for some positive integer n. If a lattice module M satisfies the ACC and if every element of L is the join of meet prncipal elements then every element of M can be written as a meet of finite number of primary elements [1].

Theorem 14. Let *M* be a lattice module satisfying the ACC over a multiplicative lattice *L* in which every element is the join of meet principal elements. Then the join of the set of all elements $a \in L$ such that aI_M is nilpotent is the meet of the isolated primes of 0_M .

Proof. Let $0_M = \bigwedge_{i=1}^{n} Q_i$ be a reduced primary decomposition of 0_M and $p_i = \sqrt{(Q_i : I_M)}$ be an associated prime of $Q_i, i = 1, 2, ... n$. We have

$$\sqrt{(0_M : I_M)} = \lor \{a \in L \mid a^n I_M = 0_M \text{ for some positive integer } n\}$$

C. Manjarekar, U. Kandale / Eur. J. Pure Appl. Math, 7 (2014), 201-209

and $\sqrt{(0_M : I_M)} = p_1 \wedge p_2 \wedge \ldots \wedge p_k$ where p_1, p_2, \ldots, p_k are the isolated primes of 0_M . Hence, $\sqrt{(0_M : I_M)}$ is the meet of isolated primes of 0_M .

The primeness of the radical of $A \in M$ is characterized in the following result.

Theorem 15. For $A \in M$, $\sqrt{(A:I_M)}$ is prime if and only if A has a single isolated prime element.

Proof. Let $A = Q_1 \land Q_2 \land \ldots \land Q_n$ be primary decomposition of *A*. If *A* has a single isolated prime element p then $\sqrt{(A:I_M)} = p$. Conversely, assume that $\sqrt{(A:I_M)}$ is prime and $\sqrt{(A:I_M)} = p_1 \land p_2$ where p_1, p_2 are isolated primes of *A*. Then there are $x, y \in L$ such that $x \leq p_1, x \neq p_2$ and $y \leq p_2, y \neq p_1$. Hence $xy \leq \sqrt{(A:I_M)}$ which is prime. But then $x \leq p_2$ or $y \leq p_1$ which is a contradiction. Thus *A* has a single isolated prime element.

In the remaining part we assume that a lattice module M satisfies the ACC over a multiplicative lattice L in which every element is the join of meet principal elements. This condition assures that any element M has a reduced primary decomposition.

Theorem 16. Let A be any element of M and $b \in L$ be such that $A \neq I_M$. Then A = (A : b) if and only if b is contained in no associated prime element of A.

Proof. Let $A = Q_1 \land Q_2 \land \ldots \land Q_m$ be an irredundant primary decomposition of A and let $p_i = \sqrt{(Q_i : I_M)}$. Suppose $b \nleq p_i$ for any $i = 1, 2, \ldots, m$. This leads us to the fact $b^n \nleq p_i$ for any positive integer n. We know that $(A : b)b \leqslant A$ [3] and thus $(A : b)b \leqslant Q_i$ for all i. Since Q_i is primary and $b \nleq p_i$ we have $(A : b) \leqslant Q_i$. That is $(A : b) \leqslant \bigwedge_{i=1}^m Q_i = A$. But $A \leqslant (A : b)$ gives (A : b) = A. Conversely, suppose (A : b) = A and if possible without loss of generality assume that $b \leqslant p_1$. Then $(Q : b^s) = I_M$ for some integer s. We have $(A : b) : b = A : b^2$ [3]. Continuing in this way $A : b = A : b^s$. But A : b = A implies $A : b^s = A$. Finally,

$$A = (A: b^{s}) = ((Q_{1} \land Q_{2} \land \dots \land Q_{m}): b^{s}) = ((Q_{1}: b^{s}) \land (Q_{2}: b^{s}) \land \dots \land (Q_{m}: b^{s}))$$
$$= \bigwedge_{i \neq 1} (Q_{j}: b^{s}) \ge \bigwedge_{i \neq 1} Q_{j} \ge A.$$

That is $A = \bigwedge_{j \neq 1} Q_j$. This contradicts the fact that $A = \bigwedge_{i=1}^m Q_i$ is a reduced primary decomposition of *A*.

The above theorem can be restated in the following form.

Theorem 17. Let $N \neq I_M$ have a reduced primary decomposition $Q_1 \wedge Q_2 \wedge ... \wedge Q_m$ and $p_1, p_2, ..., p_m$ be the associated primes of $Q_i^{'s}$. For an element b of L to be contained in some associated prime element of N it is necessary and sufficient that $(N : b) \neq N$.

Direct application of the above theorem gives the following result.

Theorem 18. For an element *b* of *L* to be contained in some associated prime element of *N*, it is necessary and sufficient that there is an element $Y \nleq N$ such that $bY \leqslant N$.

REFERENCES

An element $X \in M$ is called a zero divisor if $(0_M : X) \neq 0$ so there exists $a \neq 0$ in L such that $aX = 0_M$.

Theorem 19. Let *M* be a lattice module where *M* satisfies the ACC and every element of *M* is the join of meet principal elements. If $X \in M$ then the join of all $a \in L$ such that $a \neq 0$ and $aX = 0_M$ is contained in the join of all associated prime elements of 0_M .

Proof. Let *X* be a zero divisor of *M*. Then $0_M : X \neq 0$ that is there exists $a \neq 0$ in *L* such that $aX = 0_M$. We know that for an element *b* of *L* ($b \neq 0, bX = 0_M$) to be contained in some associated prime of 0_M it is necessary and sufficient that

$$(0_M : b) = \lor \{X \in M \mid bX = 0_M\} \neq 0_M.$$

Hence the join of all elements *a* of *L* such that $a \neq 0$ and $aX = 0_M$ is contained in the join of all associated prime elements of 0_M , by Theorem 16.

ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful.

References

- [1] D.D. Anderson. Multiplicative Latices. Ph.D. thesis, Chicago University, 1974.
- [2] R.P. Dilworth. Abstract Commutative Ideal Theory, Pacific Journal of Mathematics, 12, 481-498. 1962.
- [3] J.A. Johnson. a-adic.Completions of Noetherian Lattice Modules, Fundamenta Mathematicae, 66, 341-371. 1970.
- [4] F. Callialp and U. Tekir. Multiplication Lattice Modules, Iranian Journal of Science and Technology, 309-313. 2011.
- [5] M.D. Larsen and P.J. McCarthy. Multiplicative theory of ideals, Academic press, New York, USA. 1970.
- [6] N.K. Thakare and C.S. Manjarekar. Radicals and uniqueness theorem in multiplicative lattices with chain conditions, Studia Scientifica Mathematicarum Hungarica 18, 13-19. 1983