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Abstract. In the current paper we focus on the study of three special matrices and two symmetric
polynomials. As a consequence, a recurrence relation satisfied by the entries of the n × n inverse
matrix, Qn of the n× n symmetric Pascal matrix, Pn is obtained. Moreover, a new proof for El-Mikkawy
conjecture [14] is investigated. Finally, some identities are discovered.
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1. Introduction and Basic Definitions

Matrices play an important role in all branches of science, engineering, social science and

management. Matrices are used for data classification by which many problems are solved us-

ing computers. There are many special types of matrices such as the Pascal [1], Vandermonde

[10], Stirling [12], and others. These matrices are of specific importance in many scientific

and engineering applications. For example the Pascal matrix, which has been known since

1303, but has been studied carefully only recently [1], appears in combinatorics, image pro-

cessing, signal processing, numerical analysis, probability and surface reconstruction. Much

researches has been devoted to deal with such matrices and relations between them (see for

instance, [3–5, 7, 9, 19, 21–25, 29–37]). The main objectives of the current paper is to intro-

duce a recurrence relation for the inverse of the symmetric Pascal matrix, Pn of order n, some

new identities and to give another proof for El-Mikkawy conjecture [14]. The paper is orga-

nized as follows: The main results are given in the next section. In Section 3, we present a new

proof for El-Mikkawwy conjecture [14]. Moreover, new identities are obtained. Throughout

this paper, δi j is the Kronecker delta which is equal to 1 or 0 according as i = j or not. Also
!

n

r

"

denotes the binomial coefficient and X denotes the set {x1, x2, . . . , xn}.
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Definition 1. [6]. For integer numbers n and k with n≥ k ≥ 0, the Stirling numbers of the first

kind, s(n, k) and of the second kind, S(n, k) are defined respectively by:

(x)n = [x − n+ 1]n =

n
∑

k=0

s(n, k)xk, (1)

and

xn =

n
∑

k=0

S(n, k)(x)k, (2)

where the falling factorial of x, (x)n and the rising factorial of x, [x]n are given respectively by:

(x)n =

$

1 if n= 0,

x(x − 1)(x − 2) . . . (x − n+ 1) if n≥ 1,
(3)

and

[x]n =

$

1 if n= 0,

x(x + 1)(x + 2) . . . (x + n− 1) if n≥ 1
. (4)

It is well known that for integers n, k ≥ 0, the s(n, k) and S(n, k) satisfy the following

Pascal-type recurrence relations:

s(n, k) = s(n− 1, k− 1)− (n− 1)s(n− 1, k), (5)

and

S(n, k) = S(n− 1, k− 1) + kS(n− 1, k), (6)

subject to:

s(k, k) = S(k, k) = 1,1≤ k ≤ n (7)

and

s(n, k) = S(n, k) = δnk, if k = 0 or n= 0. (8)

Replace x by −x in (1) gives

[x]n =

n
∑

k=0

c(n, k)xk, (9)

where c(n, k) = (−1)n−ks(n, k) is called the unsigned or signless Stirling number of the first

kind. It can be shown that the rising factorial, [x]n and the falling factorial, (x)n are also

related by:

[x]n =

n
∑

k=0

H(n, k)(x)k, (10)

where

H(n, k) =
n!

k!

!

n− 1

k− 1

"

. (11)
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The coefficients, H(n, k) in (10) are called the Lah numbers. These numbers satisfy the fol-

lowing Pascal-type recurrence relation:

H(n, k) = H(n− 1, k− 1) + (n+ k− 1)H(n− 1, k). (12)

The Lah numbers also satisfy:

H(i, j) =

n
∑

k=1

(−1)i+ks(i, k)S(k, j), 1≤ i, j ≤ n. (13)

Definition 2 ([6]). The Stirling matrix of the first kind, sn and of the second kind, Sn are defined

respectively by:

sn =

$

s(i, j) for i ≥ j,

0 otherwise
, (14)

and

Sn =

$

S(i, j) for i ≥ j,

0 otherwise
. (15)

For example

s5 =













1 0 0 0 0

−1 1 0 0 0

2 −3 1 0 0

−6 11 −6 1 0

24 −50 35 −10 1













and S5 =













1 0 0 0 0

1 1 0 0 0

1 3 1 0 0

1 7 6 1 0

1 15 25 10 1













.

It is known that snSn = Snsn = In, where In is the n× n identity matrix. In other words, the

matrices, sn and Sn are inverse to each other. If fi(x) = x i , 1≤ i ≤ n, then

S(i, k) = fi[0,1,2, . . . , k] =
∆k fi(0)

k! , where fi[0,1,2, . . . , k] is the k-th divided difference of the

function fi(x) = x i which lies on the top of each column and ∆ is the forward difference

operator. For example, for f5(x) = x5, we have:

Table 1: Divided Differences and Stirling Numbers of the Second Kind

x f5(x) First DD Second DD Third DD Fourth DD Fifth DD

0 0 1=S(5,1) 15=S(5,2) 25=S(5,3) 10=S(5,4) 1=S(5,5)

1 1 31 90 65 15

2 32 211 285 125

3 243 781 660

4 1024 2101

5 3125

Thus,

f5(x) = x5 = (x)1 + 15(x)2 + 25(x)3 + 10(x)4 + (x)5
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and

∆ f5(0) = 1,∆2 f5(0) = 30,∆3 f5(0) = 150,∆4 f5(0) = 240,

and

∆5 f5(0) = 120.

Definition 3 ([16]). The elementary symmetric polynomial σ(n)r and the complete symmetric

polynomial τ(n)r in x1, x2, . . . , xn are defined respectively by:

σ(n)r (x) :=













0 if r > n or n< 0 or r < 0,

1 if r = 0,
∑

1≤i1<i2<...<ir≤n

xi1
xi2

. . . xir
if 1≤ r ≤ n.

(16)

and

τ(n)r (X) :=













0 if r < 0 or n< 0 or (n= 0 and r > 0),

1 if r = 0,
∑

1≤i1≤i2≤...≤ir≤n

xi1
xi2

. . . xir
if r ≥ 1.

(17)

It should be noticed that eachσ(n)r has

!

n

r

"

terms and each τ(n)r has

!

n+ r − 1

r

"

terms.

Moreover these polynomials can be expressed as:

σ(n)r (x) :=
∑

k1+k2+...+kn=r

k1,k2,...,kn∈{0,1}

x
k1

1 x
k2

2 . . . xkn
n , 0≤ r ≤ n. (18)

and

τ(n)r (X) :=
∑

d1+d2+...+dn=r

d1,d2,...,dn∈{0,1,...,r}

x
d1

1 x
d2

2 . . . xdn
n , r ≥ 0. (19)

The falling factorial (x)n in (3) can be written in the form:

(x)n =

n
∑

k=0

(−1)n−kσ
(n)
n−k
(0,1, . . . , n− 1)xk. (20)

Comparing the coefficients of xk in (1) and (20), yields

c(n, k) = σ
(n)
n−k
(0,1, . . . , n− 1) = σ

(n−1)
n−k

(1,2, . . . , n− 1). (21)

It can also be shown that

S(n, k) = τ
(k)
n−k
(1,2, . . . , k). (22)

Also,

S(n, k) =
1

k!

k
∑

j=0

(−1)k− j

!

k

j

"

jn. (23)



M. El-Mikkawy, F. Atlan / Eur. J. Pure Appl. Math, 8 (2015), 135-151 139

For any x j ∈ X, we have

σ
(n)
i (x1, x2, . . . , xn) =σ

(n−1)
i (x1, x2, . . . , x j−1, x j+1, . . . , xn)

+ x jσ
(n−1)
i−1 (x1, x2, . . . , x j−1, x j+1, . . . , xn). (24)

Partial differentiation for both sides of (24) with respect to x j , j ∈ {1,2, . . . , n} gives

∂

∂ x j

σ
(n)
i = σ

(n)
i, j = σ

(n−1)
i−1 (x1, x2, . . . , x j−1, x j+1, . . . , xn). (25)

Therefore by using (16), we obtain

σ
(n)
i j (X) =















0 if i > n or i < 0 or n< 0,

1 if i = 1,
∑

1≤r1<r2<...<ri−1≤n

r1,r2...,ri−1 (= j

xr1
xr2

. . . xri−1
if 2≤ i ≤ n.

(26)

Definition 4 ([17]). The Vandermonde matrix V of order n is a matrix of the form:

V =
0

x i−1
j

1n

i, j=1
. (27)

The Vandermonde determinant formula is well known, see for instance [26], in many text

books and articles. It is given by:

det(V ) =
2

2

2x i−1
j

2

2

2

n

i, j=1
=
∏

1≤ j<i≤n

(xi − x j). (28)

From (28), we see that if the xi are distinct, then this determinant, det(V ) is nonzero and hence

V is invertible. The explicit form of the inverse matrix, V−1 = (αi j)
n
i, j=1 of the Vandermonde

matrix V is given by [11]:

αi j =(−1)n− j
σ
(n)
n− j+1,i(x1, x2, . . . , xn)

Fi

(29)

= (−1)n− j
σ
(n−1)
n− j (x1, x2, . . . , xi−1, xi+1, . . . , xn)

Fi

, 1≤ i, j ≤ n, (30)

where

Fi =

n
∏

r=1
r (=i

(xi − xr), i = 1,2, . . . , n. (31)

Consequently, the cost of the solution of the Vandermonde linear system

V [u1u2 . . . un]
T = [d1d2 . . . dn]

T (32)
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is O(n2). Setting xk = k, 1≤ k ≤ n, in (30), yields:

αi j =
(−1)i+ j

(n− 1)!

!

n− 1

i − 1

"

σ
(n−1)
n− j (1,2, . . . , i − 1, i + 1, . . . , n), 1≤ i, j ≤ n. (33)

The Vandermonde matrix, V in (27) satisfies:

V = LU , (34)

where L = (Li j)
n
i, j=1 is an n× n lower triangular matrix given by:

Li j =

4

τ
( j)
i− j(x1, x2, . . . , x j) for i ≥ j

0 for i < j
, 1≤ i, j ≤ n (35)

and U = (Ui j)
n
i, j=1 is an n× n upper triangular matrix given by:

Ui j =







0 for i > j,
i−1
∏

r=1

(x j − xr) for i ≤ j
, 1≤ i, j ≤ n (36)

The inverse matrices L−1 and U−1 of the matrices L and U in (35) and (36) are given respec-

tively by:

L−1 =

6

(−1)i− jσ
(i−1)
i− j (x1, x2, . . . , xi−1)

7n

i, j=1
(37)

and

U−1 =

6

1
j
∏

r=1
r (=i

(xi − xr)

7n

i, j=1
. (38)

In particular, if xk = k, 1≤ k ≤ n, then we have [6]:

V = Sn L̃T ,

where Sn is the Stirling matrix of the second kind and L̃ = ( L̃i j)
n
i, j=1 is an n×n lower triangular

matrix given by:

L̃i j =

$

[i − 1] j−1 for i ≥ j

0 for i < j
, 1≤ i, j ≤ n (39)

The inverse of the matrix L̃ is given by:

L̃−1 =

6

(−1)i− j 1

(i − 1)!

!

i − 1

j − 1

"
7n

i, j=1
.

Definition 5 ([18]). An n× n matrix A is called totally positive if all its minors of all sizes are

positive.
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Definition 6 ([8]). The symmetric matrix A= (ai j)
n
i, j=1 is called positive definite if and only if

xT Ax> 0, for all x ∈ !n, x (= 0.

Definition 7. The n× n permutation matrix, J is defined by:

J =
8

en, en−1, . . . , e1

9

, (40)

where ei =
8

δi1,δi2, . . . ,δin

9T
, and δi j is the kronecker delta.

The permutation matrix J of order n enjoys the following properties:

• J = J T = J−1.

• Jk =

$

In k even

J k odd
, where In is the identity matrix of order n.

• det(J) = (−1)
n(n−1)

2 =

$

1 if n≡ 0 or 1 mod(4)

−1 if n≡ 2 or 3 mod(4).
.

Lemma 1. For nonnegative integer numbers n and k, we have

n
∑

r=1

!

r

k

"

=

!

n+ 1

k+ 1

"

−δk0. (41)

Proof. By using the following Pascal’s rule:

!

r

k

"

=

!

r + 1

k+ 1

"

−

!

r

k+ 1

"

,

we get:

n
∑

r=1

!

r

k

"

=

n
∑

r=1

6
!

r + 1

k+ 1

"

−

!

r

k+ 1

"
7

=

!

n+ 1

k+ 1

"

−

!

1

k+ 1

"

=

!

n+ 1

k+ 1

"

−δk0,

having used the telescoping sum.

Definition 8 ([20]). A real n× n matrix A= (ai j)
n
i, j=1 is called row stochastic matrix if

(i) ai j ≥ 0, for 1≤ i, j ≤ n

(ii)
∑n

j=1 ai j = 1, for 1≤ i ≤ n
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Note that (ii) is equivalent to AE = E, where E = [1,1, . . . , 1]T .

Definition 9 ([15]). The symmetric Pascal matrix Pn = (Pi j)
n
i, j=1 of order n is a matrix of integers

defined by:

Pi j =

!

i + j − 2

i − 1

"

, 1≤ i, j ≤ n. (42)

The Pascal matrix Pn enjoys the following properties:

(i) Pn is totally positive;

(ii) Pn is positive definite;

(iii) The eigenvalues of the matrix Pn are real and positive;

(iv) If λ (= 0 is an eigenvalue of Pn, then 1
λ is also an eigenvalue of Pn;

(v) det(Pn) = 1;

(vi) The Cholesky’s factorization [2] of the matrix, Pn is given by:

Pn = AAT ,

where A is the Pascal matrix defined by:

A=

6
!

i − 1

j − 1

"
7n

i, j=1
; (43)

(vii) The explicit form of the inverse matrix, P−1
n =Qn = (βi j)

n
i, j=1 is given by [15]:

βi j = (−1)i+ j
n
∑

k=max(i, j)

!

k− 1

i − 1

"!

k− 1

j − 1

"

; (44)

(viii) The matrix, Pn satisfies:

Pn = AB−1snV = T V, (45)

where T = (Ti j)
n
i, j=1 is an n× n lower triangular stochastic matrix given by:

Ti j =
1

(i − 1)!
c(i − 1, j − 1), 1≤ i, j ≤ n, i ≥ j, (46)

V =
:

ji−1
;n

i, j=1
, A is given in (43) and B = diag(0!, 1!, 2!, . . . , (n− 1)!) (for more details,

see [13, 14, 27, 28]);

(ix) The entries of the matrix, Pn satisfy the recurrence relation:

Pi1 = P1 j = 1, (47)

and

Pi j = Pi, j−1 + Pi−1, j . (48)

(x) Let Rn be the matrix obtained from the Pascal matrix Pn by subtracting one from the

element in position (n, n) of Pn, then det(Rn) = 0.
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2. Main Results

This section is mainly devoted to study the n× n inverse matrix Qn, in (44), of the n× n

symmetric Pascal matrix Pn in (42). The main object is to find a recurrence relation satisfied

by the entries of Qn. Setting j = 1 in (44), we obtain:

βi1 = (−1)i+1

!

n

i

"

= β1i , 1≤ i ≤ n, (49)

having used Lemma 1. Putting j = n in (44), yields:

βin = (−1)i+n

!

n− 1

i − 1

"

= βni , 1≤ i ≤ n. (50)

At this point we may formulate the following result.

Theorem 1. The entries of the inverse matrix Qn = P−1
n = (βi j)

n
i, j=1, in (44), satisfy:

βi, j = βi, j+1 + βi+1, j + (−1)i+ j

!

n

i

"!

n

j

"

, 1≤ i, j ≤ n. (51)

Proof. It is well-known that

!

m

n

"

=

!

m− 1

n− 1

"

+

!

m− 1

n

"

. (52)

From (44), we have

βi, j = (−1)i+ j
n
∑

k=1

!

k− 1

i − 1

"!

k− 1

j − 1

"

. (53)

By using the identity (52), we get

βi, j =(−1)i+ j

6 n
∑

k=1

<!

k

i

"

−

!

k− 1

i

"=<!

k

j

"

−

!

k− 1

j

"=
7

=(−1)i+ j

6 n
∑

k=1

!

k

i

"!

k

j

"

−
n
∑

k=1

!

k

i

"!

k− 1

j

"

−
n
∑

k=1

!

k− 1

i

"!

k

j

"

+

n
∑

k=1

!

k− 1

i

"!

k− 1

j

"
7

=(−1)i+ j

6
!

n

i

"!

n

j

"

+

n−1
∑

k=1

!

k

i

"!

k

j

"

−
n
∑

k=1

!

k

i

"!

k− 1

j

"

−
n
∑

k=1

!

k− 1

i

"!

k

j

"

+

n
∑

k=1

!

k− 1

i

"!

k− 1

j

"
7
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=(−1)i+ j

6
!

n

i

"!

n

j

"

+

n
∑

k=1

!

k− 1

i

"!

k− 1

j

"

−
n
∑

k=1

!

k

i

"!

k− 1

j

"

−
n
∑

k=1

!

k

j

"!

k− 1

i

"

+

n
∑

k=1

!

k− 1

i

"!

k− 1

j

"
7

=(−1)i+ j

6
!

n

i

"!

n

j

"

−
n
∑

k=1

!

k− 1

j

"<!

k

i

"

−

!

k− 1

i

"=

−
n
∑

k=1

!

k− 1

i

"<!

k

j

"

−

!

k− 1

j

"=
7

=(−1)i+ j

6
!

n

i

"!

n

j

"

−
n
∑

k=1

!

k− 1

j

"!

k− 1

i − 1

"

−
n
∑

k=1

!

k− 1

i

"!

k− 1

j − 1

"
7

=(−1)i+ j

6
!

n

i

"!

n

j

"

+ (−1)i+ jβi, j+1 + (−1)i+ jβi+1, j

7

. (54)

Therefore

βi, j = βi, j+1 + βi+1, j + (−1)i+ j

!

n

i

"!

n

j

"

. (55)

Using (49), (50) and (55), we see that in order to obtain Qn, we only need to compute

the 1
2(n− 1)(n− 2) elements β22,β32, . . . ,βn−1,n−1 and taking into account the fact that Qn is

symmetric. Also, the solution of the linear system of the Pascal type

Pn[u1u2 . . . un]
T = [ f1 f2 . . . fn]

T (56)

may be obtained in O(n2) operations by using (49), (50) and (55). The following is a MAPLE

code to compute the inverse matrix of the Pascal matrix, Pn for n= 6, as an example.

MAPLE Code for Inverting Pascal Matrix.

> r e s t a r t :

> n:=6: Q:= array ( 1 . . n , 1 . . n , symmetric ) :

> f o r i to n do

Q[ i , n]:=(−1)^(n+ i )∗ binomial (n−1, i −1):

Q[ i ,1]:=(−1)^( i+1)∗binomial (n , i ) :

od :

> f o r i from n−1 by −1 to 2 do

f o r j from i by −1 to 2 do

Q[ i , j ]:=Q[ i , j+1]+Q[ i+1, j ]+(−1)^( i+ j )∗ binomial (n , i )∗ binomial (n , j ) :

od :

od :

> Q:=evalm (Q) :

># Check using the l i n a l g package .

> P:= l i n a l g [ i nve r s e ] (Q) :
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The results are printed as shwon.

Q =

















6 −15 20 −15 6 −1

−15 55 −85 69 −29 5

20 −85 146 −127 56 −10

−15 69 −127 117 −54 10

6 −29 56 −54 26 −5

−1 5 −10 10 −5 1

















P =

















1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252

















3. Applications

In this section we are going to give a new proof for El-Mikkawy conjecture [14]. Moreover,

some new identities will be obtained.

3.1. A New Proof for El-Mikkawy Conjecture [14]

Theorem 2. Let G be the n× n matrix whose (i, j) entry is given by σ
(n)
i, j (x1, x2, . . . , xn) and let

V be the n× n Vandermonde matrix defined by (27). Then we have

det(G) = (−1)
n(n−1)

2 det(V ) =

$

det(V ) if n≡ 0 or 1 mod(4),

−det(V ) if n≡ 2 or 3 mod(4).
(57)

Proof. For i = 1,2, . . . , n, let Fi as given in (31), D and D̃ are n× n diagonal matrices given

by: D = diag( 1
F1

, 1
F2

, . . . , 1
Fn
) and D̃ = diag((−1)n−1, (−1)n−2, . . . , (−1)0).

It can be shown that for the matrices D, J and D̃, we have

det(D) =
1

n
∏

i=1

Fi

=
1

:

(−1)
n(n−1)

2

6

det(V )

72

)

, (58)

having used (28) and (31),

det(J) = (−1)
n(n−1)

2 and det(D̃) = (−1)
n(n−1)

2 . (59)

By noticing that the matrix V−1 in (30) can be written in the form:

V−1 = DGJ D̃, (60)

the result follows.
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3.2. New Identities

In [13] it is shown that the Pascal matrix, Pn and the Vandermonde matrix, V = ( ji−1)ni, j=1
are related by:

Pn = T V. (61)

From (61), we get:

Qn = (βi j)
n
i, j=1 = P−1

n = V−1T−1, (62)

where

T−1 = (γi j)
n
i, j=1, (63)

with

γi j = (−1)i+ j( j − 1)!S(i − 1, j − 1), 1≤ i, j ≤ n, i ≥ j. (64)

Thus

βi j =

n
∑

k=1

αikγk j =

n
∑

k=1

6

(−1)i+k

(n− 1)!

!

n− 1

i − 1

"

σ
(n)
n−k+1,i

76

(−1) j+k( j − 1)!S(k− 1, j − 1)

7

=(−1)i+ j ( j − 1)!

(i − 1)!(n− i)!

n
∑

k=1

σ
(n)
n−k+1,i

S(k− 1, j − 1).

(65)

Rewriting (44) in the form:

βi j = (−1)i+ j
n
∑

k=1

!

k− 1

i − 1

"!

k− 1

j − 1

"

, (66)

then using (65) and (66), yields:

n
∑

k=max (i, j)

!

k− 1

i − 1

"!

k− 1

j − 1

"

=
( j − 1)!

(i − 1)!(n− i)!

n
∑

k= j

σ
(n)
n−k+1,i

S(k− 1, j − 1). (67)

Setting i = n on both sides of (67) gives

!

n− 1

j − 1

"

=
( j − 1)!

(n− 1)!0!

n
∑

k= j

σ
(n)
n−k+1,n

S(k− 1, j − 1)

=
( j − 1)!

(n− 1)!

n
∑

k= j

σ
(n−1)
n−k

(1,2, . . . , n− 1)S(k− 1, j − 1)

=
( j − 1)!

(n− 1)!

n
∑

k= j

c(n, k)S(k− 1, j − 1)

=
1

(n− j)!

!

n− 1

j − 1

"

n
∑

k= j

c(n, k)S(k− 1, j − 1).

(68)
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Hence

n
∑

k= j

c(n, k)S(k− 1, j − 1) =(n− j)!

!

n− 1

j − 1

"2

=(n− 1)n− j

!

n− 1

n− j

"

. "

(69)

From (61), we see that

!

i + j − 2

i − 1

"

=

n
∑

k=1

>

1

(i − 1)!
c(i − 1, k− 1)

?>

jk−1

?

.

Then
!

i + j − 2

i − 1

"

=

n
∑

k=1

jk−1

(i − 1)!
c(i − 1, k− 1). (70)

Setting j = 2 in (70), we obtain

n
∑

k=1

2k−1c(i − 1, k− 1) = (i − 1)!

!

i

i − 1

"

= i!. (71)

Therefore, for any positive integers n and 1≤ i ≤ n, we have

n
∑

k=1

2k−1c(i − 1, k− 1) = i!. " (72)

We list the following additional identities, without proof, for the sake of space require-

ments. In all cases n is a positive integer and i, j are integers such that 1≤ i, j ≤ n.

•
n
∑

r=1

(−1)r+1

!

i + r − 2

i − 1

"!

n

r

"

= δi1.

•
n
∑

k=1

(−1)k+1ki−1

!

n

k

"

= δi1.

•
n
∑

k=1

(−1)k+1σ
(n−1)
n−k

(2,3, . . . , n) = (n− 1)!.

•
n
∑

k=1

s(n, k) jk−1 = (n− 1)!δn j .

•
n
∑

r= j

!

n− 1

n− r

"

(n− 1)n−r s(r − 1, j − 1) = c(n, j).

•
n
∑

r= j

n
∑

k=1

(−1) j+k

!

n− 1

k− 1

"

σ
(n)
n−r+1,k

S(r − 1, j − 1) = 0.
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•
n
∑

r=1

n
∑

k=1

(−1)k
!

n− 1

k− 1

"!

i + k− 2

k− 1

"

σ
(n)
n−r+1,k

=











−(n− 1)! if i = 1

(n− 1)! if i = 2

0 otherwise

.

•
n
∑

r=1

n
∑

k=1

(−1)kk2

!

n

k

"

σ
(n)
n−r+1,k

= n!.

•
n
∑

k=max(i, j)





k

i





k! c(k, j) =





n

i





n! σ
(n−1)
n− j (1,2, . . . , i − 1, i + 1, . . . , n);

•
n
∑

k=max(i, j)

(n− i)n−kc(k, j) = σ
(n−1)
n− j (1,2, . . . , i − 1, i + 1, . . . , n);

•
n
∑

k=i





n− i

n− k









n− 1

n− k





=
n
∑

k=i

(n−i)n−k

(n−1)n−k
= n

i ;

•
n
∑

k=i





k

i





k =
n
∑

k=i

(k−1)i−1

i! =





n

i





i ;

•
n
∑

k=i

(k)i
k =

(n)i
i .

•
n
∑

k=1

ks(n+ 1, k+ 1) = (−1)n−1(n− 1)!= s(n, 1).
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