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Regularity of the Rees and Associated Graded Modules
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Abstract. Let A be a Noetherian ring and b be an ideal of A. Let E be a finitely generated A-module.
It is shown that there is a close relationship between the cohomological invariants of the associated
graded module of E with respect to b and the Rees module of E associated to b. Also a formula for the
regularity of the Rees module of E associated to b will be given.
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1. Introduction

Let S = ®,50S, be a finitely generated standard graded algebra over a Noetherian commu-
tative ring Sy,. We denote by S, = @,51S,, the ideal generated by the homogeneous elements
of positive degree of S. For a graded S-module L, the homogeneous part of degree n of L,
is denoted by L,,, and L(t) is the same module L shifted by t. The end of L is defined by
end(L) = max{n : L, # 0}, and end(0) = —oo by convention. For each i > 0, the ith local
cohomology module H §+ (L) of a graded S-module L supported in S, is also a graded S-module

in a natural way and H §+ (L), is a finitely generated S,-module for all i > 0 and all n, and it is

zero for for large values of n (see [1, Chapter 15]). Following [3], we put a;(L) = end(H;+ (L)).
Then the regularity of L is defined by reg(L) = max{a;(L) +1i:i > 0}.

Let A be a Noetherian commutative ring and b an ideal of A. Let E be a finitely gener-
ated A-module. We denote by R,(E) = &,5b"E the Rees module of E associated to b and
by Go(E) = ®,50b"E /6" E = R,(E)/bR,(E) the associated graded module of E with respect
to b. In the case E = A, these modules are denoted by R(b) and G(b) = R(b)/bR(b) respectively.

Recall from [2, Definition 4.6.4] that an ideal a C b is called a reduction of b with respect
to E if Ry(E) is a finitely generated R(a)-module, or equivalently, if b"*'E = ab"E for some
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r > 0. The least such r is denoted by r,(b, E).

This paper is divided into 3 sections. In section 2 we prepare some results related to the
Castelnuovo regularity of a graded module, from which we prove in theorem 1 that reg(L) can
be characterized in terms of a minimal reduction of S, with respect to L, which is generated by
an S_ -filter regular sequence of homogeneous elements of degree 1, for L. In section 3, using
the ideas of [ 5], we will show that there is a close relationship between the invariants a;(R,(E))
and a;(Gy(E)), from which we can easily derive the formula reg(R,(E)) = reg(Gy(E)). Also
we give a formula for the number reg(R,(E)) in Corollary 4.

2. Preliminaries

From now on assume that L is finitely generated. Let f = f;,...,f; be a sequence of
homogeneous elements of S. We call fq,...,f, an S, filter regular sequence for L if for all
i=1,...,h

fi ¢ U P,
pEAssg(L/(f1,-- i1 )LV (S4)
where V(S,) is the set of all prime ideals of S containing S, and for an S-module X, Assg(X)
denotes the set of all associated prime ideals of X. We define

e(f9 L) = Sup{end(((fl) LR in—l)L ‘L fi)/(fl: v in—l)L) = 1: LR ,h}
Then by [1, 18.3.8], fi,..., f3 is an S, -filter regular sequence on L if and only if e(f, L) < co.
It will be crucial to understand how the invariants a;(L) behave with respect to S, -filter

regular sequences for L. This relationship was illuminated by Trung in the following lemma.
Because of its importance in our argument, we supply the proof along the statement.

Lemma 1 ([6, Lemma 2.3]). Let f € S, be a homogeneous S -filter regular element for L. Then
foralli>0,
aiy1(L)+1<a(L/fL) <max{a;(L),a;;,(L)+1}.

Proof. Note that by the statement after the definition of an S, -filter regular sequence for L,
H&(O ;1 f)=(0:; f) and hence H§+(0 ;1 f)=0foralli > 1. Then from the exact sequence

0—(0: f)—L—L/(0: f)—0,

we see that H§+(L) = H§+ (L/(0:; f)) foralli> 1. Now, from the exact sequence

0— /(03 f) =5 LA) — L(1) — 0,
we obtain the exact sequence
Hg (L)1 = H (L/f L)1 = Hg N (L) = Hg (L,

for each i > 0 and n € Z. Analyzing these sequences easily yields the desired inequalities. [
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Lemma 2. Let f= fi,..., f; be an S_ -filter regular sequence of homogeneous elements of degree
1 for L. Then:

(D e(f,L) =max{q;(L)+i:i=0,...,h—1},
(ii) forall0<t<h,
max{a;(L)+i:i=0,...,t} =max{end(((f1,...,f)L 1 S:)/(f1,-. -, f)L):i=0,...,t}.
Proof. (i) We prove by induction on h > 1. Since (0:; f;) CU,>1(0:; S,™) and
fiHg, (L)ayw) S Hg, (Lay(rys1 =0,

'Ehus_e(fl,L_) = ay(L) and the case h = 1 is immediate. So let h > 1. Let L = L/f;L and
f=f,,...,f,in S =S/(f;). By induction and using Lemma 1, we have

max{a;(L)+i:i=1,...,h—1} <e(f,L) = max{aq;(L/f;L)+i:i=0,...,h—2}
<max{q;(L)+i:i=0,...,h—1}.

Now since e(f, L) = max{e(f;, L), e(f, L)}, the result follows.
(ii) Using Lemma 1 repeatedly, we deduce that
a;(L)+i<aog(L/(f1,...,f;)L) <max{a;(L)+j:j=0,...,i}.
From this it follows that for t < h,
max{a;(L)+i:i=0,...,t} =max{ay(L/(f1,...,f;)L) :i=0,...,t}.
Set a =ay(L/(fi,---,fi)L). We have

Hg+(L/(f1) . ’fl)L) = U((fli "fi)L ‘L S+n)/(f1,' . 7f1)L

n>1
Therefore
Hg (L/(fr,- - f)L)a € (1o, fOL 21, 82/ (frs -, fOL S HG (L/(fi, ., L)
Hence a(((fy,..-,fi)L ;1 S.)/(f1,--.,fi)L) = a, and the result follows. O

The following corollary generalizes [5, Corollary 2.3] to the module case.
Corollary 1. Let g = grade(S,, L). Then:
(1) a;(L)=—o0 fori<g.
(i) a (L) = —g.
(iii) IfH;+(L) #0, then a;(L) > —1.
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Proof. We may assume that the base ring S, is local with infinite residue field. Then from
the graded version of prime avoidance theorem (see for example [2, Proposition 1.5.12]) there
exists an L-sequence f,..., f, of homogeneous elements of S;. Since

(fl:""fg)L ‘L S+:(f1:"':fg)L

fori=1,..., g; hence Lemma 2(ii) implies that max{a;(L)+j: j=1,...,i—1} = —00. Hence
a;(L)y=—oo fori=0,...,g—1. As a consequence,

ag(L)+ g =max{a;(L)+i:i=0,...,8} =a(((f1,..-, f)L 1 S{)/(f1,.--, fg)L) = 0.

Therefore, ag(L) > —g and (i) and (ii) have been proved.

To prove (iii), set S = S/Hg+ (S)and L = L/Hg+ (L). Then it is easy to see that
grade(S,,L)>1 and H; (L) = H;+(L) # 0. Therefore a;(L) = a;(L) > —1 by (ii). O
+

Theorem 1. Letf= f; € S4,..., f, €S; bean S, filter regular sequence for L. Let b = (f1,..., f)
be a reduction of S, with respect to L. Then

reg(L) = max{e(f, L), ry(S,, L)}.
Proof By Lemma 2 we have
e(f, L) = max{end(((fy, ..., fOL 11 S1)/(fir-.n fi)L) 11 =0,...,h—1}.
Furthermore, (S, L) = end(L/bL) = end((f1, ..., f)L 11 S+)/(fu, .-, fu)L). Therefore

max{e(f, L), r,(S4, L)} = max{end(((f1,---,fi)L ;1 S4)/(f1,---,fi)L):i=0,...,h}
=max{q;(L)+i:i=0,...,h}.

Since reg(L) = max{a;(L) +1i : i = 0}, it is enough to show that H§+(L) =0 forall i > h.
If h = 0, then L is annihilated by some power of S, and so Hé+(L) =O0foralli> 0. So let
h > 1. By induction, we have H§+(L/f1L) =0 foralli >h—1. Hence a;(L/f;L) = —oo for
alli > h—1. By Lemma 1, this implies a;, (L) = —oo and Hétl(L) =0 foralli> h. O

3. Regularity results

In this section, using the ideas of [5], we will show that there is a close relationship be-
tween the invariants a;(R,(E)) and a;(G,(E)), from which we can easily derive the formula
reg(R(E)) = reg(G(E)) which is a generalization of that of Ooishi [4] and [5, Theorem 3.1].
For simplicity we shall denote R,(E) by R(E), G,(E) by G(E), R(b),. by R, and G(b), by G,.
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Theorem 2. Let the notation be as in above. Then:
(i) Foreachi# 1, a;(R(E)) < a;(G(E)).
(i) a;(R(E)) = a;(G(E)) if a;1(G(E)) < a;(G(E)), i # 1.
(i) IfHéJG(E)) #0o0rif b C /(04 E), the statements (i) and (ii) hold for i = 1.

(iv) I)cHé+(G(E)) =0and b € /(0 :4 E) then a;(R(E)) = —1.

Proof. We consider the exact sequence
0— R(E), —R(E)—E—0, (D

where E is considered as a graded R-module concentrated in degree zero.

Since H§+(E)n =0 for n # 0 and H}ih(E) = 0 for i > 1, so from the exact sequence (1)
we deduce that H£+(R(E)+)n = HA(R(E))H forn=0,i> 2, and forn # 0, i > 0. Since
HiG+(G(E)) = H;L(G(E)), the exact sequence

0 — R(E)4(1) — R(E) — G(E) — 0, (2)
induces the exact sequence
Hy (R(E))ny1 = Hy (R(E)), — Hy (G(E)), = Hy (R(E) Dt 3)

Replacing H}iz+ (R(E){)ns1 by Hlfz+ (R(E)), 41 and setting Hfh(G(E)) = 0 whenever that is pos-
sible, we get an epimorphism H}i{+ (R(E))pq1 — H1iz+ (R(E)), for all n > max{0, a;(G(E)) + 1} if

i=0,1, and for n > q;(G(E)) + 1 if i > 2. Since HA(R(E))H = 0 for large values of n, so we
deduce that _
H}, (R(E)), =0

for n > max{0,a;(G(E))+ 1} if i = 0,1 and for n = a;(G(E))+ 1 if i > 2. From the above
formula immediately we have a;(R(E)) < a;(G(E)) for i > 2.

For i = 0 we consider two cases. If H&(G(E)) = 0, then ay(G(E)) = —oo. There-
fore by (4) H& (R(E)),, = 0 for all n > 0. From this it follows that Hg+ (R(E)) = 0. Hence
ao(R(E)) = —00 = ao(G(E)). If H&(G(E)) # 0, ap(G(E)) = 0. Hence HRO+(R(E)),1 = 0 for
n > ay(G(E)) + 1 by (4), which implies ay(R(E)) < ay(G(E)). So (i) is proved.

If H}%+(G(E)) # 0, then a,(G(E)) = —1 by Corollary 1(iii). Hence by (4) H}h(R(E))n =0
for n > a;(G(E)) which implies a;(R(E)) < a;(G(E)). If b € 4/(0:4 E), then Hziz+(R(E)) =0

and Hlih(G(E)) =0 foralli > 1. Hence a;(R(E)) = a;(G(E)) = —o0. So the first part of (iii)
is proved.
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Now we prove (ii) and the second part of (iii). It is sufficient to show that
a;(G(E)) < a;(R(E)) for i > 0. We may assume that a;(G(E)) # —oo. Fori = 0, we have either
a1(R(E)) < —1 or a;(R(E)) < a;(G(E)) by (4). For i > 1, we have a;1(R(E)) < a;41(G(E))
by (i). Hence the assumption a;,1(G(E)) < a;(G(E)) implies that a;,(R(E)) < a;(G(E)). Put
n = a;(G(E)). Then H}i;:l (R(E) )ps1 = Hfil (R(E)), 41 = 0. Using this in the exact sequence
(3), we get an epimorphism

Hy, (R(E)), — Hy (G(E))p.

Since H£+(G(E))n #0, so H;+(R(E))n # 0. Therefore, a;(G(E)) < a;(R(E)).

To prove (iv) we assume that HA(G(E)) = 0. Then a;(G(E)) = —oo. Hence
a;(R(E)) < —1 by (4). If a;(R(E)) < —1, H}§+ (R(E))_; = 0. Since H&(G(E))_l =0, from the
exact sequence (2) we can deduce that H}é (R(E);)o = 0. Now, using the exact sequence (1)
we get the exact sequence

Hp (R(E);)o — Hg (R(E)) — Hy (E) — 0.

But since (R(E),), =0, so H 2+ (R(E),)o = 0. Furthermore, H £+ (R(E))o = HY(E) and
H& (E) = E. Therefore, HS(E ) = E which is equivalent to the condition b‘E = 0 for some
t > 1. Thus if, b € 4/(0 :4 E), we must have a;(R(E)) = —1. Now, the proof of the theorem is

complete. O
Corollary 2. Let £ := max{i : HiG+(G(E)) # 0}. Then:

(i) a,(R(E)) = a,(G(E)),

(i) IfbC 4/(0:4E)or £ =1, then £ = max{i : H}ih(R(E)) # 0}.

Proof. For i = £, we have q;(G(E)) = a;,,(G(E)) = —oo. Therefore, a;(R(E)) = a;(G(E))
if i # 1 by Theorem 2(ii). Hence (i) and(ii) are obvious if £ > 1. It remains to show that
a;(R(E)) = a,(G(E))if £ =1orif £ =0and b C 4/(0:4 E). But this follows from Theorem
2 (iif). .

Corollary 3. With the notation as in above we have

reg(R(E)) = reg(G(E)).

Proof. By Theorem 2(i) we have a;(R(E)) +i < a;(G(E)) + i for i # 1. By Theorem 2(iii)
and (iv), either a;(R(E))+1 < a;(G(E))+1 or a;(R(E)) +1 =0 < reg(G(E)). Therefore,

reg(R(E)) = max{a;(R(E))+i:i> 0} < max{a;(G(E))+i:i >0} =reg(G(E)).

To prove reg(G(E)) < reg(R(E)), let i be maximal such that reg(G(E)) = a;(G(E)) +i. Then
Hl (G(E)) # 0 and a;,,(G(E)) < a;(G(E)). Now, using Theorem 2(ii), (iii), we get
a; (R(E)) = a;(G(E)). Hence reg(G(E)) = a;(R(E)) +i < reg(R(E)). O

In the following we consider R(b) as a subring of the polynomial ring A[t].
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Proposition 1. Let fi,..., f; be a sequence of elements of b. Then f:= fit,..., fyt is an R(b),-
filter regular sequence for R(E) if and only if for all large n > 1,

[(fi,-- s fima)O"E :p fiINB"E = (f1,..., fiu)b" 'Efori=1,...,h. 4)
If this is the case, then e(f,R(E)) is the least integer r such that (4) holds foralln>r + 1.

Proof. The sequence f= ft,..., fit is an R(b), -filter regular sequence for R(E) if and only
if [(fit,..., fisit)R(E) gy fit], is equal to [(f1t,..., fi_1t)R(E)], for all large n > 1 and all
i =1,...,h. But the first module is equal to [(fi,...,f;_1)b"E :g f;] N b"E and the second is
equal to (fi,..., fi_1)b" LE. We note that e(f, R(E)) is the least integer r such that the equality
[(fit,..., fis1 OR(E) gy fitln = [(fat, ..., fiiat)R(E)], holds for all n > r + 1. O

Corollary 4. Let a = (f,..., fy) be a reduction of b with respect to E. Suppose that
f=fit,..., fut is an R(b), filter regular sequence for R(E). Then

reg(R(E)) =min{r > 0:r >r,(b,E) and (4) holds for alln > r + 1}.

Proof. Let Q = (fit,..., fyt). Since a is a reduction of b relative to E, then Q is a reduction
of R(b), relative to R(E). Moreover if ab"E = b™*!, then QR(b)"R(E) = R(b)"*'R(E) and
rq(b,E) =ro(R(b),,R(E)). By Theorem 1,

reg(R(E)) = max{e(f,R(E)), r,(b,E)}.

Therefore, the result follows from Proposition 1. O

Similarly as for Proposition 1, we can prove the following characterization of a homoge-
neous G(b), filter regular sequence of degree 1 for G(E). If x € A then x* denotes the initial
form of x in G(b).

Proposition 2. Let f,..., f be elements of b. Then £ = f',..., f* is an G(b),filter regular
sequence for G(E)) if and only if for large values of n,

[(fi,-- > fis)B"E+ 0" 2E] i finb"E = ((fy,..., fiu 6" 'E+6™'E)

fori=1,...,s. If this is the case, e(f*, G(E)) is the least number r such that the above equality
holds forn>r +1.
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