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Abstract. For a Banach algebra A, its second dual A′′ is (-1)-weakly amenable if A′ is a Banach A′′-

bimodule and the first cohomology group of A′′ with coefficients in A′ is zero i.e. H1(A′′,A′) = {0}. We

first show that under certain conditions A′ is a Banach A′′-bimodule. We then consider the relationships

between (-1)-weak amenability of A and A#, where A# is the unitization of A.
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1. Introduction

Let A be a Banach algebra and E be a Banach A-bimodule, then a bounded derivation from

A into E is a bounded linear mapping D : A −→ E such that D(a · b) = Da · b + a · Db, for

each a, b ∈ A. For example let x ∈ X and define δx : A −→ E by δx a = a · x − x · a, then

δx is a bounded derivation which is called an inner derivation. Let Z1(A, E) be the space of

all bounded derivations from A into E, N1(A, E) be the space of all inner derivations from

A into E and the first cohomology group of A with coefficients in E be the quotient space

H1(A, X ) = Z1(A, X )/N1(A, X ).

A Banach algebra A is amenable if H1(A, E′) = {0} for each Banach A-bimodule E, this

concept was introduced by B. E. Johnson in [8].

The notion of weak amenability for commutative Banach algebras was introduced by W. G.

Bade, P. C. Curtis and H. G. Dales in [2]. Later Johnson defined weak amenability for arbitrary

Banach algebras in [9], in fact a Banach algebra A is weakly amenable if H1(A,A′) = {0}.
In [10], A. Medghalchi and T. Yazdanpanah introduced the notion of (-1)-weak amenability.

A Banach algebra A is (-1)-weakly amenable if A′ is a Banach A′′-bimodule and

H1(A′′,A′) = {0}.
There are some examples of non (-1)-weakly amenable Banach algebras. For instance, in

[7] we proved that (LipαK)′′ for α ∈ (0,1) and infinite compact metric space K is not
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(-1)-weakly amenable. The space lp for 1 < p <∞ is reflexive and weakly amenable, so is

(-1)-weakly amenable which is not amenable since it doesn’t factor. Furthermore, the second

dual of a C∗-algebra is (-1)-weakly amenable and in the case A′′ is a non-nuclear C∗-algebra,

we can conclude that A′′ is (-1)-weakly amenable which is not amenable. Therefore, the notion

of (-1)-weak amenability is different from amenability. For more examples see [7] and [9].

Although there are some main theorems and examples which may suggest that the notion

of (-1)-weak amenability is close to the notion of weak amenability, there are some examples

which prove that these two notions are different, see [8].

Let A be a Banach algebra and A′′ be its second dual, for each a, b ∈ A, f ∈ A′ and F, G ∈ A′′

we define f · a, a · f and F · f , f · F ∈ A′ by

f · a(b) = f (a · b), a · f (b) = f (b · a)

F · f (a) =F( f · a), f · F(a) = F(a · f ).

Now we define F · G, F × G ∈ A′′ as follows

F · G( f ) = F(G · f ), F × G( f ) = G( f · F).

Then A′′ is a Banach algebra with respect to either of the products · and ×. These products are

called the first and the second Arens products on A′′, respectively. A is called Arens regular if

F · G = F × G, for all F, G ∈ A′′.

Let E be a Banach A-bimodule, then the iterated conjugates of E, denoted by E′, E′′, E′′′, . . .

are Banach A-bimodules, and the map ρ : E′′′ −→ E′ with ρ(Γ) = Γ |Â is an A-bimodule

homomorphism which is called natural projection.

All concepts and definitions which are not defined in this paper may be found in [4].

2. When A′ is a Banach A′′-bimodule?

In the notion of (-1)-weak amenability, a necessary condition is that "A′ is a Banach A′′-

bimodule". Throughout this paper, we shall consider the second dual A′′ with the first Arens

product. For the relations between (-1)-weak amenability of (A′′, ·) and (A′′,×), see [9].

Theorem 1. Let A be a Banach algebra. Then in each of the following cases, A′ is a Banach

A′′-bimodule:

(1) A is Arens regular;

(2) Â is a left ideal in A′′;

(3) Â is a right ideal in A′′ and A′′ = A′′ · A.

Proof. (1) and (2) are proved in [6].

(3) Let Â be a right ideal in A′′ and A′′ · A= A′′. Let a ∈ A, F, G ∈ A′′ and f ∈ A′, then there

exist F1 ∈ A′′ and b, c ∈ A such that F = F1 · b and b · G = ĉ, so we have

( f · F) · G(a) =
�

f · (F1 · b)
�
· G(a) = ( f · F1) · (b · G)(a) = ( f · F1) · ĉ(a)
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=ĉ(a · ( f · F1)) = f · F1(c · a) = F1 · c(a · f )

=
�
F1 · (b · G)
�
(a · f ) = F · G(a · f ) = f · (F · G)(a)

So A′ is a right A′′-module.

On the other hand, there exists d ∈ A such that a · F = d̂ and we have

�
F · f ) · G
�

a) =G(a · (F · f )) = G((a · F) · f ) = G(d · f )

=d̂( f · G) = (a · F)( f · G) = F · ( f · G)(a).

Therefore A′ is a Banach A′′-bimodule.

Remark 1. Dales, Rodrigues-palacios and Velasco in [5] proved that for a Banach algebra A, A′

is an A′′-submodule of A′′′ if and only if A is Arens regular. So under the condition ”A′ is a Banach

A′′-bimodule” we can consider a larger class of Banach algebras.

Example 1. In each of the following cases by using Theorem 1, A′ is a Banach A′′-bimodule.

(1) Let A be a C∗-algebra, then A is Arens regular and A′ is a Banach A′′-bimodule [3].

(2) Let A= l1(N) with product f · g = f (1)g . Then A is a Banach algebra with l1-norm and

A is a left ideal in A′′. So A′ is a Banach A′′-bimodule [6].

(3) Let S be an infinite set with product s · t = t for all s, t ∈ S. Then l1(S) is a left ideal in

(l1(S))′′ and so (l1(S))′ is a Banach (l1(S))′′ -bimodule. But l1(S) is not a right ideal in

(l1(S))′′ [6] (so the third condition in Theorem 1 is not a necessary condition).

(4) We know that for each semisimple annihilator Banach algebra A, A is an ideal in A′′ [13].

So A′ is a Banach A′′-bimodule and we have the following assertion:

• Let G be an infinite compact group, then L1(G) is not Arens regular but L1(G) is an

ideal in
�
L1(G)
�′′

. So
�
L1(G)
�′

is a Banach
�
L1(G)
�′′

-bimodule, whereas L1(G) is not

Arens regular (so the first condition in Theorem 1 is not a necessary condition).

• Let G be an finite group then M(G) is an ideal in M(G)′′. So M(G)′ is a Banach

M(G)′′-bimodule [11] and [12].

(5) Let X be a reflexive Banach space and K L(X ) be the algebra of compact operators on X .

Then K L(X ) is an ideal in K L(X )′′ and so (K L(X ))′ is a Banach (K L(X ))′′-bimodule. Note

that in the case X has not approximation property K L(X ) is not an annihilator algebra [1].

Now we give an example of a Banach algebra A for which A′ is not a Banach A′′-bimodule.

Example 2. Consider A = (l1,∗) for n, m ∈ N. Set an = δ22n , bm = δ22m+1−1 and x = δ1 that

(an)n, (bm)m are bounded sequences in l1. There are F, G ∈ A′′ for which F = w∗ − limn ân,

G = w∗ − limm b̂m. Now, let

S =
�
22n + 22m+1 : n, m ∈ N, n< m
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and set λ = χS, where χS is characteristic function on S. So (bm ∗ x) ∗ an = δ22n+22m+1 and we

have

lim
n→∞

λ(bm ∗ x ∗ an) = 0, lim
m→∞

λ(bm ∗ x ∗ an) = 1.

So,

(F ·λ) · G(x) =G(x · (F ·λ)) = lim
m

F(λ · (bm ∗ x))

= lim
m

lim
n
λ(bm ∗ x ∗ an) = 0.

On the other hand,

F · (λ · G)(x) =F((λ · G) · x) = lim
n
λ · G(x ∗ an)

= lim
n

lim
m
λ(bm ∗ x ∗ an) = 1.

Therefore A′ is not a Banach A′′-bimodule and so A′′ is not (-1)-weakly amenable.

Question. Is there any Banach algebra A such that A is amenable but A′ is not A′′-bimodule?

3. Unitization

Let A has not unit element and A# = A⊕Ce be the unitization of A.

For e ∈ A#, by Hahn-Banach Theorem there exists e′ ∈ A#′ such that e′(e) = 1 and e′(a) = 0

for each a ∈ A, and we can extend λ ∈ A′ to an element of A#′ with λ(e) = 1. So A#′ = Ce′⊕∞A′

and ‖αe′+λ‖=max{|α|,‖λ‖} for α ∈ C and λ ∈ A′. Moreover, A#′ is a Banach space and is a

Banach A#-bimodule by module multiplications

(αe+ a) · (γe′ +λ) =(αγ+λ(a))e′ +αλ+ a ·λ

(γe′ +λ) · (αe+ a) =(αγ+λ(a))e′ +αλ+λ · a

where α,γ ∈ C, a ∈ A and λ ∈ A′.

Let ê ∈ A′′ with ê(λ) = λ(e), then (A#)′′ = A′′ ⊕Cê. For more details see [4].

Lemma 1. Let A be an Arens regular Banach algebra. Then A′ and A#′ are Banach A#′′-bimodule.

Proof. The proof is straightforward.

Theorem 2. Let A be an Arens regular Banach algebra and A′′2 = A′′. If A′′ is (-1)-weakly

amenable, Then A′′# is (-1)-weakly amenable.

Proof. Suppose that A has not unit element and A# = A⊕ Ce be its unitization. By the

previous Lemma, A′ is a Banach A′′-bimodule and A#′ is a Banach A#′′-bimodule.

Since A′′# is a unital Banach algebra and A′# is a unital A′′#-bimodule and A′′ is a maximal

ideal of codimension one in A′′#, by 2.8.23 (iii) in [4] we can conclude that

H1(A#′′,A#′) = H1(A′′,A#′). Let D : A′′ −→ A#′ be a bounded derivation. We define
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D : A′′ −→ A′ by D(F) = DF |A×{0}, for each F ∈ A′′. Then D is a bounded derivation (Note that

DF(a) = DF(a+ 0e). So DF ∈ A′). By (-1)-weakly amenability of A′′, there exists f0 ∈ A′ such

that for each F ∈ A′′, DF = δ f0
F . Let D1 = D − D, then D1 is a bounded derivation. Now we

show that D1 = 0 (Consider DF as an element in A′ with its extension).

For F, G ∈ A′′, there is (b j) j in A with b̂ j

w∗

−→ G, then

e′ · G(a+αe) = G((a+αe)(0+ e′)) = G(αe′) = lim
j

b̂ j(αe′) = lim
j
αe′(b j) = 0.

On the other hand, since D : A′′ −→ A#′ and A#′ = A′ ⊕ Ce′, for each F ∈ A′′ there are

unique elements, λF ∈ A′ and αF ∈ C such that DF = λF + αF e′. Since DF = DF |A×{0}, and

DF = λF then D1F = αF e′. So we have

D1(F · G) = D1F · G + F · D1G = αF (e
′ · G) +αG(F · e

′) = 0.

Since D1 is bounded then D1|A′′2 = 0. So by the essentiality of A′′, D1 = 0, so D = δ f0
where

f0 = f0 + 0e′ ∈ A′ ⊕Ce′ = A#′. Therefore H1(A#′′,A#′) = H1(A′′,A#′) = {0}.

Theorem 3. Let A be an Arens regular Banach algebra, A#′′ be (-1)-weakly amenable and

H2(A′′,C0) = (0). Then A′′ is (-1)-weakly amenable.

Proof. We may suppose that A has not unit element and A# = A⊕C0e. Then

Σ : 0 −→ A−→ A# −→ C0 −→ 0

is an admissible short exact sequence and hence so is its dual,

Σ′ : 0 −→ C0 −→ A#′ −→ A′ −→ 0.

Using 2.8.25 in [4] we have exact sequence

S : . . . −→ H1(A′′,C0) −→ H1(A′′,A#′) −→ H1(A′′,A′) −→ H2(A′′,C0) −→ . . . ,

from 2.8.23 (iii) in [4], H1(A′′,A#′) = H1(A′′#,A#′) = (0), since A′′# is (-1)-weakly amenable.

Moreover H2(A′′,C0) = (0), so in the exact sequence S, H1(A′′,A#′) = H2(A′′,C0) = (0) then

H1(A′′,A′) = (0).

Remark 2. The condition H2(A′′,C0) = (0) in Theorem 3 is not trivial. To this end, let

B =
�

f ∈ A(D) : f (0) = f ′(0) = 0
	

then B is a closed subalgebra of the disc algebra A(D). Con-

sider C0 as the annihilator B-module i.e. B acts trivially on the left and right on C0. Now we

define µ : B × B −→ C0, by ( f , g) 7→ f ′′′(0)g ′′′(0). Then µ is a continuous functional for which

µ( f , g) = µ(g, f ). If H2(B,C0) = {0}, then for some λ ∈ B′ we have µ= δ1(λ) where

δ1(λ)( f , g) = f ·λg −λ( f · g) +λ f · g. (1)
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If for z ∈ D we define f , g,h ∈ B by f (z) = z2, g(z) = z4 and h(z) = z3 then f ′′′(z) = 0,

g ′′′(z) = 24z, h′′′(z) = 6 and we have µ( f , g) = f ′′′(0)g ′′′(0) = 0 and µ(h,h) = 36. Since C is

an annihilator B-module then f ·λg = λ f · g = 0. On the other hand by (1) we have

µ( f , g) =δ1(λ)( f , g) = −λ( f · g),

µ(h,h) =δ1(λ)(h,h) = −λ(h · h).

So λ( f · g) = 0 and λ(h ·h) = −36. But f · g(z) = z2 ·z4 = z6 = h ·h(z), which is a contradiction.

So H2(B,C0) 6= {0}.

Now consider µ′′ : B′′×B′′ −→ C0, and suppose that for some Λ ∈ B′′′ we have µ′′ = δ1(Λ)

and soΛ(Õf · g) = 0 andΛ( ˆh · h) = −36, but f ·g = h·h. So there is noΛ ∈ B′′′ with µ′′ = δ1(Λ).

Therefore H2(B′′,C0) 6= {0}.
The ext example shows that the converse of Theorem 1 is not true.

Example 3. By 4.1.42 in [4], H2(lp,C0) 6= {0} for p > 1 and lp is weakly amenable and reflexive.

So lp is (-1)-weakly amenable.

Since lp has an approximate identity, then lp = (lp)2 and by Theorem 2, (lp)# is (-1)-weakly

amenable (note that (lp)#
′′
= (lp)′′# ≃ lp#).

A normed algebra A has π-property if there is a constant c > 0 with 9a9π ≤ c‖a‖, for

a ∈ A2, where 9a9π = inf
¦∑∞

j=1 ‖a j‖‖b j‖ : a =
∑∞

j=1 a j b j

©
, for more details see [4]. By

2.8.21 in [4], a Banach algebra with H2(A,C0) = {0} hasπ-property. Now, by using Theorem 3

we have the following corollary.

Corollary 1. Let A be a Banach algebra for which A′′ has π-property. If A#′′ is (-1)-weakly

amenable, then A′′ is (-1)-weakly amenable.

Theorem 4. Let A be an Arens regular Banach algebra and A′′# is (-1)-weakly amenable. If

G(DF) = −F(DG), for each D ∈ Z1(A′′,A′) and each F, G ∈ A′′. Then A′′ is (-1)-weakly amenable.

Proof. Let D ∈ Z1(A′′,A′). We define

D# : A′′ −→A#′

D#(F)(αe+ a) :=D(F)(a).

We prove D# is a derivation. Let F, G ∈ A′′, then there are nets (ai)i and (b j) j in A such that

ai

w∗

−→ F and b j

w∗

−→ G and for each α ∈ C, a ∈ A we have

D#F · G(αe+ a) =G((αe+ a) · D#F) = lim
j

�
(αe+ a) · D#F
�
(b j)

= lim
j

DF(αb j + b ja) = lim
j
α · b̂ j(DF) + lim

j
b̂ j(a · DF).

So
�
D#F · G)
�
αe+ a) = αG(DF) + G(a · DF) and similarly

�
F · D#G
�
(αe+ a) = αF(DG) + F(DG · a).
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Then we have

�
D#F · G + F · D#G

�
(αe+ a) =αG(DF) + G(a · DF) +αF(DG) + F(DG · a)

=α (G(DF) + F(DG)) + F · DG(a) + DF · G(a)

=(F · DG + DF · G)(a) = D#(F · G)(a+αe).

Therefore D# is a bounded derivation and there exists λ1 = λ0 + α0e′ ∈ A#′ such that

D#(F) = δλ1
(F), for F ∈ A′′ (Note that since A#′ = A′ ⊕Ce′, λ0 ∈ A′ and α0 ∈ C are unique

and H1(A′′,A#′) = H1(A′′#,A#′) = (0)). We show that D = δλ0
. Toward this end, let F ∈ A′′

and a ∈ A, we have

(DF)(a) =D#F(a+ 0e) = δλ1
(F)(a+ 0e) = (F ·λ1 −λ1 · F)(a+ 0e)

=F(λ1 · (a+ 0e)− (a+ 0e) ·λ1)

=F
�
(λ0 +α0e′)(a+ 0e)− (a+ 0e)(λ0 +α0e′)

�

=F(λ0 · a− a ·λ0) = (F ·λ0 −λ0 · F)(a) = δλ0
(F)(a).

So D = δλ0
. Therefore A′′ is (-1)-weakly amenable.

The following example shows that the condition in Theorem 4, is not trivial.

Example 4. Let T be the unit circle and A= l ipαT. Let (F̂(n))n∈Z and ( ĝ(n))n∈Z are the Fourier

coefficients of F ∈ LipαT and g ∈ l ipαT. We define D as follows

D :A′′→ A′

DF(g) =

+∞∑

n=−∞

nĝ(n)F̂(n).

So D is a derivation which is not inner.

Since (l ipαT)
′′ = LipαT, then for F, G ∈ LipαT there are ( fα)α and (gβ)β in l ipαT such that

F = w∗ − limα f̂α and G = w∗ − limβ ĝβ . Then we have

DFα(gβ) =

+∞∑

n=−∞

nĝβ (n) f̂α(−n) =

+∞∑

n=−∞

(−n) ĝβ(−n) f̂α(n)

=−
+∞∑

n=−∞

nĝβ (−n) · f̂α(n) = −(Dgβ )( fα).

On the other hand

lim
β

lim
α

D fα(gβ) = lim
β

DF(gβ ) = lim
β

ĝβDF = G(DF),

lim
β

lim
α

Dgβ ( fα) = lim
α

lim
β

Dgβ ( fα) = lim
α

DG( fα) = F(DG).

So F(DG) = −G(DF) where D is a non-inner derivation.
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Theorem 5. Let A be a unital Banach algebra and A′′ is commutative and (-1)-weakly amenable.

Then Z1(A′′, E) = (0), for each Banach A′′-module E.

Proof. Let E be a Banach left A′′-module and define x · F =: F · x for each F ∈ A′′ and

x ∈ E. Then E is a Banach right A′′-module and commutativity of A′′ implies that E is a

Banach A′′-bimodule (of course E is an A-bimodule and E′ is an A′′-bimodule).

Let e be the unit element in A, and let D be a non-zero derivation in Z1(A′′, E). Then for

some F0 ∈ A′′, we have DF0 6= 0, so there exists λ ∈ E′ such that λ(DF0) = 1. We define

R : E −→A′

R(x)(a) =λ(â · x), (a ∈ A, x ∈ X ).

R is a bounded linear map. Now R ◦ D : A′′ −→ A′ is a bounded derivation since

R ◦ D(F · G)(a) =R(DF · G + F · DG)(a) = λ(â · (DF · G) + â · (F · DG))

=G ·λ(â · DF) + F ·λ(â · DG).

On the other hand for G = w∗− limα b̂α and x ∈ E, the net ( b̂α · x)α is a bounded net in E′′, so

×bα · x
w∗

−→ G · x , especially λ(G · x) = limλ( b̂α · x) and we have

(R(DF) · G) (a) = lim
α
(R(DF) · a)(bα)

= lim
α

R(DF)(a · bα) = lim
α
λ(Ôa · bα · DF)

=λ · G(â · DF) = G ·λ(â · DF).

Similarly (F · R(DG)) (a) = F ·λ(a · DG).

Therefore R ◦ D is a derivation in Z1(A′′,A′). Now, since A′′ is (-1)-weakly amenable and

commutative then R ◦ D = 0. But R ◦ D(F0)(e) = R(DF0)(e) = λ(e · DF0) = 1, which is a

contradiction. So D = 0 and we have Z1(A′′, E) = 0

Now we recall some Theorems which are used in the following corollaries.

Theorem 6. For a commutative Banach algebra A, if A is weakly amenable, then Z1(A, E) = (0)

for each Banach A-module E.

Theorem 7. Let A be a commutative Banach algebra. Then A is weakly amenable if and only if

A# is weakly amenable.

See [2] and [4] for proofs of Theorems 6 and 7, respectively.

Corollary 2. Let A be an Arens regular commutative Banach algebra. Then A#′′ is (-1)-weakly

amenable if and only if A′′ is weakly amenable.

Proof. Let A′′ be weakly amenable then by Theorem 7, A# is weakly amenable. Since A is

Arens regular then by Lemma 1, A#′ is a Banach A#′′-bimodul, so H1(A#′′,A#′) = {0}.
For the converse, let A#′′ is (-1)-weakly amenable. Using Theorem 5, A#′′ is weakly amenable,

so by Theorem 7, A′′ is weakly amenable.
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Corollary 3. Let A be a Banach algebra and A′′ be commutative and (-1)-weakly amenable, for

which A′′ · A= A′′. Then A′′ is (-1)-weakly amenable if and only if A#′′ is (-1)-weakly amenable.

Proof. If A′′ is commutative and (-1)-weakly amenable, and also A′′ ·A= A′′ then it is proved

that Z1(A′′, E) = 0 for each Banach A′′-module E. Now use Theorems 6 and 7.
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