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Abstract. In this paper we propose new version of cooperative games. In fact the notion of cooperative
games and their concavifications are extended. As a consequence, in this new setting it turn out that
coreV # @ if and only if cav(u)(Cq) = u(Cq).
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1. Introduction

Usually, a game V with a continum players is a bounded real valued function defined on
> the Borel subsets of I = [0,1] such that V(#) = 0. Any member of ) is interpreted as
coalition of player, V(R) gives the maximum payoff achieved by efforts of all members in the
coalition R. Of course with this interpretation usually it is assumed that V' is non-negative and
not identically zero. In [1] a cooperative game is viewed as a real valued function u defined
on a finite set of points in the unit simplex, also a concavification of u used to characterize
well-known classes of games.

2. Preliminaries

Let X be a normed space. The space of all continuous linear functionals defined on X is
called the dual space of X and denoted by X™. Let (.,.) : X X X* — R be the duality pairing in
X x X*. The weakest topology on X that make continuous all elements of x* € X* is called the
weak topology on X. Let ¢ : X — X™* defined by ¢(x) = g, where g,(x*) = (x*,x), x* € X*
and ||g,|| = ||x||. The weakest topology on X* that make continuous all ¢ (x) is called the
weak™ topology on X*. The weak topology on X and the weak™ topology on X* are usually
denoted by o(X,X*) and o (X*,X) respectively.
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Definition 1. Let X be a normed space,

(a) anet {x,}in X is called weak™ convergent in X, if there exists an element x € X such that
lim |x*(x,)—x*(x)|=0, Vx* € X%
n—oo

(b) a subset A of X is called compact in weak™ topology or weak™ compact set if every net in A
contains a subnet which is weak® convergent in A.

Definition 2. A game V is called a balanced game if

sup Y app(R)u(Cr) < u(Co),
(®)

where sup is taken over all finite sums Z(R) agu(R)u(Cgr), ag = 0 and Z(R) agu(R) =1.

Definition 3. Given such a function u, we consider the concavification of u, denoted by cav(u),
which is a function defined on

A={g:g>0,g is simple measurable function and J gdu =1},
Q

as the infimum of all concave functions that are greater than or equal to u.

Since the infimum of a family of concave functions is concave, so cav(u) is concave and is
greater than or equal to u as it is shown in Lemma 2.

Definition 4. In the extended version of cooperative game, we consider a non-empty set Q and
a finite measure space (2, Y., u), a game V is a bounded real valued function on Y. such that
V(D) =0.

For R € )., we denote by yp the characteristic function of R. Let B be the Banach space
spanned by the set {yy : R € Y.} with the sup norm, where yjy is the characteristic function
of R. Then the space of all bounded additive functions on »_ is denoted by BA would be
isometrically isomorphic to the norm-dual of B. A payoff u of V is an element of BA with
u(Q) = V(£2). The core of V consists of all payoffs u such that u(R) > V(R) for eachR € >..
We can also identify the coalition R Cg = %. Thus, the coalition will be identified with the
uniform distribution over the members of R. A game V is converted a function u defined over
the points Cy for R € Z/, where Z/ ={R €D : u(R) # 0}. The value of u at Cg is the average
of the worth of R, that is, u(Cg) = VR)

u(R) "
We set
H={f:A—>R|fisconcave and f >uon A’}
where, A’={Cr:R € Z/}. For any g € A we set
Lg = {2 (r) @rMRIU(CR) : & = X gy @rxr and ag >0, ;) agu(R) = 1}.

We can define two functions w : A — R and cavu : A — R by w(g) = supL, and cavu(g) =
infH(g).
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3. Main Results

Theorem 1. For any game V, core(V) is bounded and weak™ compact.

Proof. For each A € core(V), 0 < A(R) < A(Q) = V(Q), (VR € ). Therefore, core(V) is
bounded. For each net (1,) C core(V), since bounded sets in B are relatively weak* compact,
so (A,) has a subnet (A, 5 )per Which converges in weak™ topology to Ao € B. But 14(Q) =

limkaﬁ(ﬂ) = V(Q) and Aaﬁ(R) > V(R) (VR € ))), it shows that A4(R) > V(R). Both implies
that A, € core(V). These facts imply that core(V) is weak™ compact.

Lemma 1. w is a concave map.

Proof. For € > 0 there are two elements Z(R) apu(R)u(Cg) and Z(R/) Bru(Ru(Cg) such
that
tw(@)+A-owh)—e = t[w(g)—e]l+(1—-0)[w(h)—¢€]

<t apu(R)u(Cy)
®)

+ (1=0)) Pru(®R)u(Cr)
(R")
< w(tg+(1-1t)h).

Lemma 2. cav(u)(Cg) > u(Cg).

Proof. By concavity of cav(u) and f € H it follows that f > u. Hence cav(u) € H and
cav(u)(Cg) > u(Cg), foranyRe >_.
Proposition 1. w(g) =cav(u)(g) for any g € /.

Proof. Suppose Z(R) agu(R)u(Cg) € L,. Choosing g = Z(R) arxr such that ap > 0 and
Z(R) aru(R) =1. Then

cav(u)()_ agir)
®)

X
= cav(u)(% aRu(R)u(—;))

XR
> %aRu(R)cav(u)(@)

> D apu(®u(Cr):
®)

cav(u)(g)

This shows that w(g) < cav(u)(g). For the converse, we note that w is concave from Lemma
1, w(Cg) = u(Cg). Therefore, cav(u) < w.
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Definition 5. A € BA is called linear support of f : A >R at g € A if

f(g)=f gd2 and f(g") SJ g'dr (Vg e ).
Q Q

Proposition 2. cav(u)(Cq) =u(Cq) if coreV #0.

Proof. coreV # () implies that there is A € BA which satisfies A(Q2) = V(Q2) and A(R) >
V(R) (VRe Z/). Set f : A > Rby f(g) = fQ gdA. It is clear that f would be a concave
map. On the other hand, f(Cg) > u(Cg). Therefore, f € H, so cav(u)(Cg) < f(Cg) for any
R e Z/. But f(Cq) = u(Cq) which implies that, cav(u)(Cq) < u(Cq). So from lemma 2
cav(u)(Cqp) = u(Cp).

Corollary 1. A is a linear support for cav(u) at Cg, if A € core(V).
Proposition 3. V is balanced game if core(V) # 0.
Proof. Assuming coreV # ) by proposition 2 yields cav(u)(Cq) = u(Cg). Since

cav(u)(Cq) = w(Cq)

= SUP{Z agu(R)u(Cg) : Zagu(R) =1,az > O,Z arxr = Ca},
(R) (R)

S0 Z(R) aru(R)u(Cr) < cav(u)(Cq) = u(Cq). Hence, sup Z(R) aru(R)u(Cr) < u(Cq).

Lemma 3. Suppose that S is the set of all simple functions on (Q,Y,,u) and f : A — R is the
concave map. Then for any g € S, there is a linear map G such that

G(g)=f(g) and f(h) <G(h),(VheS)

Proof. The function —f is a convex function. Now applying Hahn Banach Theorem for
L =< {g} > and —f, there is a linear function F : S — R such that

F(g)=—f(g) and F(h) < —f(h),(VheS).
Set G = —F, then G(g) = f(g) and f(h) <G(h),(VheSs).

Theorem 2. coreV # 0 if cav(u)(Cq) = u(Cq)(Here, we have not assumed that the elements of
core(V) are bounded).

Proof. Since cav(u) is a concave map, so from lemma 1, there is a linear map G : S = R
such that cav(u)(Cq) = G(Cq) and cav(u)(Cg) < G(Cg). Then G(Cy) = u(Cq) = % and
u(Cg) < cav(u)(Cg) < G(Cg). Define A : >. — R by A(R) = G(yg). It easy to see that A is a

finitely additive measure. Moreover,

y 49
u()

AQ) = G(xa)=u)G( )
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V()
= u(G(Co) = u()—=

u(Q)
= V().

Also

— LRYG(E
Grn) = WRIG(2s)
HRIG(CR) = p(RU(Cy)

®Y® _ )
P ~

Therefore, A € core(V) which it completes the proof.

A(R)

Definition 6. [4] A game V is called an exact game if for each coalition R there is A € core(V)
such that A(R) = V(R).

Theorem 3. Suppose V is an exact game. Then u is continuous at Cgq if and only if each
A € core(V) is countably additive.

Proof. 1t is well known that A € BA is countably additive if and only if it is continuous at
Q. Assume A € core(V), u is continuous at Cq and (R,,), is a monotone sequence in Q such
that | JR, = Q. We must show that A(R,) — A(2). From the assumption u(Cg,) — u(Cgp).

_ VR < AR) o MQ) _ V@) , , V@)
But u(Cg ) R = aR) S wR) S MR Tending n — oo and since u(Cg ) and Ry
u(Cq), so ﬁg”i — u(Cq) = % But u is a measure so u(R,) — u(€2). This shows that

AMR,) — V(Qn) = A(Q). For the converse, we assume that A € coreV is countably additive,
(R, € Z/, |JR, = Q and a is a limit point for (u(Cg,))n- Without loss of generality one can
assume that u(Cg_ ) — a (otherwise we can pass to a subsequence). From exactness of V for
each R, there is A,, € coreV such that A,(R,) = V(R,). From the compactness of core(V),
one can assume A, — A, where A € coreV. Assume € > 0, there is k € N satisfying in
AR,) > A(Q2) — eu(Q) for any n > k. There is m’ € N such that |A,,(R,) — A(R,)| < € and
so A(R,,)) < A,,(R,,) + € for each m > m’. Consider n > k and I’ > max{n,m’}, now for each
(>

3

V() A AR, +eu(Q)

o) = ST~ w@
_ A'(Rn) A'I(Rn)
T @ S e
M(Ry) _ V(R
S M(Q) + 2e = m + 2e
< V(R;) _
< +2e =u(Cy)+2¢

u(R;)
= a+ 2e.
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VR, o MRy AQ)
< = < < —
Ther;e(fg)re, 1‘1/((;9) < a. On the other hand, u(Cg) B S R S wRy Let n — oo, then

as OO u(Cq). Hence, a = u(Cq).

Set BAp = {4 € BA, A(R) = V(R)}. Then if A € BAg we can define f;(g) = fQ gdA. So we
define coregV = {A € core(V); A(R) = V(R)}.

Lemma 4. BAg #0ifR€ Y, and R # 0.

Proof. Tt is easy to see that, there is A, € BA, such that 1,(S) # 0. Set A = X(—(‘?)Ao. Then
0
A € BAg.

Lemma5. (a) Let A€BAgand f; : A —Rby f,(g) = fQ gdA. Then f;(Cr) =u(Cg).

(b) Let A € coreg(V), then f;(Cg) = u(Cg) and f;(Cs) = u(Cs), (VS € Y)).
Proof.

A
(@) fo(C) = [, Crd2 = 555 = 708 = u(Ch).

(b) It is similar to (a) f,(Cg) = u(Cg). For an arbitrary element S € >, f;(Cs) = fQ CedA =
M) 5 V(S)

) 2 sy = ulGs).

Theorem 4. Suppose that V is an exact game. Then u = inf{f, : A € coregV,R € >_}.

Proof. For each A € coregV, then f;(Cgr) = u(Cg). Therefore, inf{f; : A € coreg(V),R €
>’} > u. Since V is an exact game so for each R € Y, there is a A € coreg(V). It follows by
Lemma 3 f;(Cg) = u(Cg). Hence, u = inf{f, : A € coreg(V),R€ > }.

Theorem 5. Let u = inf{f; : S € D.,A € BAg, A(Q2) = V(Q)}. Then the equation Y, arCp =
BCr + (1= B)Cq implies 3. agu(Ce) < Pu(Cr)+ (1 — Plu(Cy), where ag >0, ag = 1,B €
[0,1] and T is a coalition.

Proof. Consider R € >.. Then u(Cg) = f,(Cr) where, A € BAy is suitable element with
A(Q2) = V(Q). It is easy to see that f;(Cq) = u(Cq). Suppose that I denotes the segment
connecting (Cr, u(Cg)) to (Cq, u(Cq)). Then L lies on the graph of f;. Since cav(u) is concave,
L is below the graph of cav(u). As cav(u) < f,, L is above the graph of cav(u). Thus, L is on
the graph cav(u). Now by concavity of cav(u),

Y ancav@(Cr) < cavw(Q anCr)
R R

= cav(u)(BCr + (1 - B)Cp)
= Pu(Cr)+ (1 - Blu(Cy).

That is Y agu(Cg) < Bu(Cr) + (1 — Bu(Cq).
R
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