EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 2, 2010, 187-193 ISSN 1307-5543 – www.ejpam.com

Extended Concavifications and Exact Games

M. Alimohammady^{1*} and V. Dadashi ²

¹ Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran,

² Islamiz Azad University–Sari Branch, Sari, Iran

Abstract. In this paper we propose new version of cooperative games. In fact the notion of cooperative games and their concavifications are extended. As a consequence, in this new setting it turn out that $coreV \neq \emptyset$ if and only if $cav(u)(C_{\Omega}) = u(C_{\Omega})$.

2000 Mathematics Subject Classifications: 46M35, 54H25, 47H10.

Key Words and Phrases: concavification, game, exact game, balanced game.

1. Introduction

Usually, a game *V* with a continum players is a bounded real valued function defined on \sum the Borel subsets of I = [0, 1] such that $V(\emptyset) = 0$. Any member of \sum is interpreted as coalition of player, V(R) gives the maximum payoff achieved by efforts of all members in the coalition *R*. Of course with this interpretation usually it is assumed that *V* is non-negative and not identically zero. In [1] a cooperative game is viewed as a real valued function *u* defined on a finite set of points in the unit simplex, also a concavification of *u* used to characterize well-known classes of games.

2. Preliminaries

Let *X* be a normed space. The space of all continuous linear functionals defined on *X* is called the dual space of *X* and denoted by X^* . Let $\langle ., . \rangle : X \times X^* \to \mathbb{R}$ be the duality pairing in $X \times X^*$. The weakest topology on *X* that make continuous all elements of $x^* \in X^*$ is called the weak topology on *X*. Let $\phi : X \to X^{**}$ defined by $\phi(x) = g_x$ where $g_x(x^*) = \langle x^*, x \rangle$, $x^* \in X^*$ and $||g_x|| = ||x||$. The weakest topology on *X*^{*} that make continuous all $\phi(x)$ is called the weak^{*} topology on *X*^{*}. The weak topology on *X* and the weak^{*} topology on *X*^{*} are usually denoted by $\sigma(X, X^*)$ and $\sigma(X^*, X)$ respectively.

http://www.ejpam.com

© 2010 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: amohsen@umz.ac.ir (M. Alimohammady), v.dadashi@iausari.ac.ir (V. Dadashi)

Definition 1. Let X be a normed space,

- (a) a net $\{x_n\}$ in X is called weak^{*} convergent in X, if there exists an element $x \in X$ such that $\lim_{n \to \infty} |x^*(x_n) x^*(x)| = 0, \ \forall x^* \in X^*;$
- (b) a subset A of X is called compact in weak^{*} topology or weak^{*} compact set if every net in A contains a subnet which is weak^{*} convergent in A.

Definition 2. A game V is called a balanced game if

$$\sup\sum_{(R)}\alpha_R\mu(R)u(C_R)\leq u(C_\Omega),$$

where sup is taken over all finite sums $\sum_{(R)} \alpha_R \mu(R) u(C_R)$, $\alpha_R \ge 0$ and $\sum_{(R)} \alpha_R \mu(R) = 1$.

Definition 3. Given such a function u, we consider the concavification of u, denoted by cav(u), which is a function defined on

$$\Delta = \{g : g \ge 0, g \text{ is simple measurable function and } \int_{\Omega} g d\mu = 1\},$$

as the infimum of all concave functions that are greater than or equal to u.

Since the infimum of a family of concave functions is concave, so cav(u) is concave and is greater than or equal to u as it is shown in Lemma 2.

Definition 4. In the extended version of cooperative game, we consider a non-empty set Ω and a finite measure space (Ω, \sum, μ) , a game V is a bounded real valued function on \sum such that $V(\emptyset) = 0$.

For $R \in \sum$, we denote by χ_R the characteristic function of R. Let B be the Banach space spanned by the set $\{\chi_R : R \in \sum\}$ with the sup norm, where χ_R is the characteristic function of R. Then the space of all bounded additive functions on \sum is denoted by BA would be isometrically isomorphic to the norm-dual of B. A payoff μ of V is an element of BA with $\mu(\Omega) = V(\Omega)$. The core of V consists of all payoffs μ such that $\mu(R) \ge V(R)$ for each $R \in \sum$. We can also identify the coalition $R \ C_R = \frac{\chi_R}{\mu(R)}$. Thus, the coalition will be identified with the uniform distribution over the members of R. A game V is converted a function u defined over the points C_R for $R \in \sum'$, where $\sum' = \{R \in \sum : \mu(R) \neq 0\}$. The value of u at C_R is the average of the worth of R, that is, $u(C_R) = \frac{V(R)}{\mu(R)}$.

 $H = \{f : \Delta \to \mathbb{R} \mid \text{f is concave and } f \ge u \text{ on } \Delta'\}$

where, $\Delta' = \{C_R : R \in \Sigma'\}$. For any $g \in \Delta$ we set

$$L_{g} = \{ \sum_{(R)} \alpha_{R} \mu(R) u(C_{R}) : g = \sum_{(R)} \alpha_{R} \chi_{R} \text{ and } \alpha_{R} > 0, \sum_{(R)} \alpha_{R} \mu(R) = 1 \}.$$

We can define two functions $w : \Delta \to \mathbb{R}$ and $\mathbf{cav}u : \Delta \to \mathbb{R}$ by $w(g) = \sup L_g$ and $\mathbf{cav}u(g) = \inf H(g)$.

3. Main Results

Theorem 1. For any game V, core(V) is bounded and weak^{*} compact.

Proof. For each $\lambda \in core(V)$, $0 \leq \lambda(R) \leq \lambda(\Omega) = V(\Omega)$, $(\forall R \in \Sigma)$. Therefore, core(V) is bounded. For each net $(\lambda_{\alpha}) \subseteq core(V)$, since bounded sets in B are relatively weak^{*} compact, so (λ_{α}) has a subnet $(\lambda_{\alpha_{\beta}})_{\beta \in I}$ which converges in weak^{*} topology to $\lambda_0 \in B$. But $\lambda_0(\Omega) =$ $\lim \lambda_{\alpha_{\beta}}(\Omega) = V(\Omega)$ and $\lambda_{\alpha_{\beta}}(R) \geq V(R)$ ($\forall R \in \Sigma$), it shows that $\lambda_0(R) \geq V(R)$. Both implies that $\lambda_0 \in core(V)$. These facts imply that core(V) is weak^{*} compact.

Lemma 1. w is a concave map.

Proof. For $\epsilon > 0$ there are two elements $\sum_{(R)} \alpha_R \mu(R) u(C_R)$ and $\sum_{(R')} \beta_{R'} \mu(R') u(C_{R'})$ such that

$$tw(g) + (1-t)w(h) - \epsilon = t[w(g) - \epsilon] + (1-t)[w(h) - \epsilon]$$

$$< t\sum_{(R)} \alpha_R \mu(R)u(C_R)$$

$$+ (1-t)\sum_{(R')} \beta_{R'} \mu(R')u(C_{R'})$$

$$\leq w(tg + (1-t)h).$$

Lemma 2. $cav(u)(C_R) \ge u(C_R)$.

Proof. By concavity of cav(u) and $f \in H$ it follows that $f \ge u$. Hence $cav(u) \in H$ and $cav(u)(C_R) \ge u(C_R)$, for any $R \in \Sigma$.

Proposition 1. w(g) = cav(u)(g) for any $g \in \Delta$.

Proof. Suppose $\sum_{(R)} \alpha_R \mu(R) u(C_R) \in L_g$. Choosing $g = \sum_{(R)} \alpha_R \chi_R$ such that $\alpha_R \ge 0$ and $\sum_{(R)} \alpha_R \mu(R) = 1$. Then

$$cav(u)(g) = cav(u)(\sum_{(R)} \alpha_R \chi_R)$$

=
$$cav(u)(\sum_{(R)} \alpha_R \mu(R) \frac{\chi_R}{\mu(R)})$$

$$\geq \sum_{(R)} \alpha_R \mu(R) cav(u)(\frac{\chi_R}{\mu(R)})$$

$$\geq \sum_{(R)} \alpha_R \mu(R) u(C_R).$$

This shows that $w(g) \leq \mathbf{cav}(u)(g)$. For the converse, we note that w is concave from Lemma 1, $w(C_R) \geq u(C_R)$. Therefore, $\mathbf{cav}(u) \leq w$.

Definition 5. $\lambda \in BA$ is called linear support of $f : \Delta \to \mathbb{R}$ at $g \in \Delta$ if

$$f(g) = \int_{\Omega} g d\lambda \text{ and } f(g') \leq \int_{\Omega} g' d\lambda \quad (\forall g' \in \Delta).$$

Proposition 2. $cav(u)(C_{\Omega}) = u(C_{\Omega})$ if $coreV \neq \emptyset$.

Proof. $coreV \neq \emptyset$ implies that there is $\lambda \in BA$ which satisfies $\lambda(\Omega) = V(\Omega)$ and $\lambda(R) \geq V(R)$ $(\forall R \in \Sigma')$. Set $f : \Delta \to \mathbb{R}$ by $f(g) = \int_{\Omega} g d\lambda$. It is clear that f would be a concave map. On the other hand, $f(C_R) \geq u(C_R)$. Therefore, $f \in H$, so $cav(u)(C_R) \leq f(C_R)$ for any $R \in \Sigma'$. But $f(C_{\Omega}) = u(C_{\Omega})$ which implies that, $cav(u)(C_{\Omega}) \leq u(C_{\Omega})$. So from lemma 2 $cav(u)(C_{\Omega}) = u(C_{\Omega})$.

Corollary 1. λ is a linear support for cav(u) at C_{Ω} if $\lambda \in core(V)$.

Proposition 3. *V* is balanced game if $core(V) \neq \emptyset$.

Proof. Assuming *coreV* $\neq \emptyset$ by proposition 2 yields **cav**(*u*)(C_{Ω}) = *u*(C_{Ω}). Since

$$\operatorname{cav}(u)(C_{\Omega}) = w(C_{\Omega})$$

=
$$\sup\{\sum_{(R)} \alpha_{R}\mu(R)u(C_{R}) : \Sigma \alpha_{R}\mu(R) = 1, \alpha_{R} \ge 0, \sum_{(R)} \alpha_{R}\chi_{R} = C_{\Omega}\},\$$

so $\sum_{(R)} \alpha_R \mu(R) u(C_R) \le cav(u)(C_\Omega) = u(C_\Omega)$. Hence, $\sup \sum_{(R)} \alpha_R \mu(R) u(C_R) \le u(C_\Omega)$.

Lemma 3. Suppose that S is the set of all simple functions on (Ω, \sum, μ) and $f : \Delta \to \mathbb{R}$ is the concave map. Then for any $g \in S$, there is a linear map G such that

$$G(g) = f(g)$$
 and $f(h) \le G(h), (\forall h \in S)$

Proof. The function -f is a convex function. Now applying Hahn Banach Theorem for $L = \langle \{g\} \rangle$ and -f, there is a linear function $F : S \to \mathbb{R}$ such that

$$F(g) = -f(g)$$
 and $F(h) \leq -f(h), (\forall h \in S).$

Set G = -F, then G(g) = f(g) and $f(h) \le G(h), (\forall h \in S)$.

Theorem 2. $coreV \neq \emptyset$ if $cav(u)(C_{\Omega}) = u(C_{\Omega})$ (Here, we have not assumed that the elements of core(V) are bounded).

Proof. Since cav(u) is a concave map, so from lemma 1, there is a linear map $G : S \to \mathbb{R}$ such that $cav(u)(C_{\Omega}) = G(C_{\Omega})$ and $cav(u)(C_R) \leq G(C_R)$. Then $G(C_{\Omega}) = u(C_{\Omega}) = \frac{V(\Omega)}{\mu(\Omega)}$ and $u(C_R) \leq cav(u)(C_R) \leq G(C_R)$. Define $\lambda : \sum \to \mathbb{R}$ by $\lambda(R) = G(\chi_R)$. It easy to see that λ is a finitely additive measure. Moreover,

$$\lambda(\Omega) = G(\chi_{\Omega}) = \mu(\Omega)G(\frac{\chi_{\Omega}}{\mu(\Omega)})$$

$$= \mu(\Omega)G(C_{\Omega}) = \mu(\Omega)\frac{V(\Omega)}{\mu(\Omega)}$$
$$= V(\Omega).$$

Also

$$\begin{aligned} \lambda(R) &= G(\chi_R) = \mu(R)G(\frac{\chi_R}{\mu(R)}) \\ &= \mu(R)G(C_R) \ge \mu(R)u(C_R) \\ &= \mu(R)\frac{V(R)}{\mu(R)} = V(R). \end{aligned}$$

Therefore, $\lambda \in core(V)$ which it completes the proof.

Definition 6. [4] A game V is called an exact game if for each coalition R there is $\lambda \in core(V)$ such that $\lambda(R) = V(R)$.

Theorem 3. Suppose V is an exact game. Then u is continuous at C_{Ω} if and only if each $\lambda \in core(V)$ is countably additive.

Proof. It is well known that $\lambda \in BA$ is countably additive if and only if it is continuous at Ω . Assume $\lambda \in core(V)$, u is continuous at C_{Ω} and $(R_n)_n$ is a monotone sequence in Ω such that $\bigcup R_n = \Omega$. We must show that $\lambda(R_n) \to \lambda(\Omega)$. From the assumption $u(C_{R_n}) \to u(C_{\Omega})$. But $u(C_{R_n}) = \frac{V(R_n)}{\mu(R_n)} \leq \frac{\lambda(R_n)}{\mu(R_n)} \leq \frac{\lambda(\Omega)}{\mu(R_n)} = \frac{V(\Omega)}{\mu(R_n)}$. Tending $n \to \infty$ and since $u(C_{R_n})$ and $\frac{V(\Omega)}{\mu(R_n)} \to u(C_{\Omega})$, so $\frac{\lambda(R_n)}{\mu(R_n)} \to u(C_{\Omega}) = \frac{V(\Omega)}{\mu(\Omega)}$. But μ is a measure so $\mu(R_n) \to \mu(\Omega)$. This shows that $\lambda(R_n) \to V(\Omega) = \lambda(\Omega)$. For the converse, we assume that $\lambda \in coreV$ is countably additive, $(R_n) \subseteq \sum', \bigcup R_n = \Omega$ and a is a limit point for $(u(C_{R_n}))_n$. Without loss of generality one can assume that $u(C_{R_n}) \to a$ (otherwise we can pass to a subsequence). From exactness of V for each R_n there is $\lambda_n \in coreV$ such that $\lambda_n(R_n) = V(R_n)$. From the compactness of core(V), one can assume $\lambda_n \to \lambda$, where $\lambda \in coreV$. Assume $\epsilon > 0$, there is $k \in \mathbb{N}$ satisfying in $\lambda(R_n) > \lambda(\Omega) - \epsilon \mu(\Omega)$ for any $n \ge k$. There is $m' \in \mathbb{N}$ such that $|\lambda_m(R_n) - \lambda(R_n)| < \epsilon$ and so $\lambda(R_n) < \lambda_m(R_n) + \epsilon$ for each $m \ge m'$. Consider $n \ge k$ and $l' \ge \max\{n, m'\}$, now for each $l \ge l'$,

$$\begin{split} u(C_{\Omega}) &= \frac{V(\Omega)}{\mu(\Omega)} = \frac{\lambda(\Omega)}{\mu(\Omega)} < \frac{\lambda(R_n) + \epsilon\mu(\Omega)}{\mu(\Omega)} \\ &= \frac{\lambda(R_n)}{\mu(\Omega)} + \epsilon < \frac{\lambda_l(R_n)}{\mu(\Omega)} + 2\epsilon \\ &\leq \frac{\lambda_l(R_l)}{\mu(\Omega)} + 2\epsilon = \frac{V(R_l)}{\mu(\Omega)} + 2\epsilon \\ &\leq \frac{V(R_l)}{\mu(R_l)} + 2\epsilon = u(C_l) + 2\epsilon \\ &= a + 2\epsilon. \end{split}$$

Therefore, $u(C_{\Omega}) \leq a$. On the other hand, $u(C_{R_n}) = \frac{V(R_n)}{\mu(R_n)} \leq \frac{\lambda(\Omega)}{\mu(R_n)} \leq \frac{\lambda(\Omega)}{\mu(R_n)}$. Let $n \to \infty$, then $a \leq \frac{\lambda(\Omega)}{\mu(\Omega)} = \frac{V(\Omega)}{\mu(\Omega)} = u(C_{\Omega})$. Hence, $a = u(C_{\Omega})$.

Set $BA_R = \{\lambda \in BA, \lambda(R) = V(R)\}$. Then if $\lambda \in BA_R$ we can define $f_{\lambda}(g) = \int_{\Omega} g d\lambda$. So we define $core_R V = \{\lambda \in core(V); \lambda(R) = V(R)\}$.

Lemma 4. $BA_R \neq \emptyset$ if $R \in \sum$ and $R \neq \emptyset$.

Proof. It is easy to see that, there is $\lambda_0 \in BA$, such that $\lambda_0(S) \neq 0$. Set $\lambda = \frac{V(S)}{\lambda_0(S)}\lambda_0$. Then $\lambda \in BA_R$.

Lemma 5. (a) Let $\lambda \in BA_R$ and $f_{\lambda} : \Delta \to \mathbb{R}$ by $f_{\lambda}(g) = \int_{\Omega} g d\lambda$. Then $f_{\lambda}(C_R) = u(C_R)$.

(b) Let $\lambda \in core_R(V)$, then $f_{\lambda}(C_R) = u(C_R)$ and $f_{\lambda}(C_S) \ge u(C_S)$, $(\forall S \in \Sigma)$.

Proof.

(a)
$$f_{\lambda}(C_R) = \int_{\Omega} C_R d\lambda = \frac{\lambda(R)}{\mu(R)} = \frac{V(R)}{\mu(R)} = u(C_R).$$

(b) It is similar to (a) $f_{\lambda}(C_R) = u(C_R)$. For an arbitrary element $S \in \sum$, $f_{\lambda}(C_S) = \int_{\Omega} C_S d\lambda = \frac{\lambda(S)}{u(S)} \ge \frac{V(S)}{u(S)} = u(C_S)$.

Theorem 4. Suppose that V is an exact game. Then $u = \inf\{f_{\lambda} : \lambda \in core_R V, R \in \Sigma\}$.

Proof. For each $\lambda \in core_R V$, then $f_{\lambda}(C_R) \ge u(C_R)$. Therefore, $\inf\{f_{\lambda} : \lambda \in core_R(V), R \in \sum\} \ge u$. Since *V* is an exact game so for each $R \in \sum$, there is a $\lambda \in core_R(V)$. It follows by Lemma 3 $f_{\lambda}(C_R) = u(C_R)$. Hence, $u = \inf\{f_{\lambda} : \lambda \in core_R(V), R \in \sum\}$.

Theorem 5. Let $u = \inf\{f_{\lambda} : S \in \sum, \lambda \in BA_S, \lambda(\Omega) = V(\Omega)\}$. Then the equation $\sum \alpha_R C_R = \beta C_T + (1 - \beta)C_\Omega$ implies $\sum \alpha_R u(C_R) \le \beta u(C_T) + (1 - \beta)u(C_\Omega)$, where $\alpha_R > 0, \sum \alpha_R = 1, \beta \in [0, 1]$ and T is a coalition.

Proof. Consider $R \in \sum$. Then $u(C_R) = f_{\lambda}(C_R)$ where, $\lambda \in BA_R$ is suitable element with $\lambda(\Omega) = V(\Omega)$. It is easy to see that $f_{\lambda}(C_{\Omega}) = u(C_{\Omega})$. Suppose that *L* denotes the segment connecting $(C_R, u(C_R))$ to $(C_{\Omega}, u(C_{\Omega}))$. Then *L* lies on the graph of f_{λ} . Since **cav**(*u*) is concave, *L* is below the graph of **cav**(*u*). As **cav**(*u*) $\leq f_{\lambda}$, *L* is above the graph of **cav**(*u*). Thus, *L* is on the graph **cav**(*u*). Now by concavity of **cav**(*u*),

$$\sum_{R} \alpha_{R} cav(u)(C_{R}) \leq \mathbf{cav}(u)(\sum_{R} \alpha_{R}C_{R})$$

= $\mathbf{cav}(u)(\beta C_{T} + (1 - \beta)C_{\Omega})$
= $\beta u(C_{T}) + (1 - \beta)u(C_{\Omega}).$

That is $\sum_{R} \alpha_{R} u(C_{R}) \leq \beta u(C_{T}) + (1 - \beta) u(C_{\Omega}).$

References

- [1] Y Azrieli and E Lehrer. *On concavification and convex games*. Game Theory and Information 0408002, Economics Working Paper Archive at WUSTL.
- [2] G B Foland. *Real Analysis: Modern Techniques and Their Applications* (2nd edition). Wiley-Interscience/John Wiley Sons, Inc, 1999.
- [3] W Rudin. Functional analysis. McGraw-Hill Inc. Book company, New York, 1991.
- [4] D Schmeidler. Cores of exact games. J. Math. Anal. Appl 40: 214–225 1972.
- [5] D Schmeidler. *Subjective probabilities without additivity*. Econometrica 57: 571–587 1989.
- [6] L S Shapley. Cores of convex games. Int. J. Game Theory 1: 11–26 1971.
- [7] A W Tuker.*Contributions to the theory of games*. Princeton University press. Princeton, NJ, 307317.