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Abstract. In this paper we propose new version of cooperative games. In fact the notion of cooperative

games and their concavifications are extended. As a consequence, in this new setting it turn out that

coreV 6= ; if and only if cav(u)(CΩ) = u(CΩ).
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1. Introduction

Usually, a game V with a continum players is a bounded real valued function defined on
∑

the Borel subsets of I = [0,1] such that V (;) = 0. Any member of
∑

is interpreted as

coalition of player, V (R) gives the maximum payoff achieved by efforts of all members in the

coalition R. Of course with this interpretation usually it is assumed that V is non-negative and

not identically zero. In [1] a cooperative game is viewed as a real valued function u defined

on a finite set of points in the unit simplex, also a concavification of u used to characterize

well-known classes of games.

2. Preliminaries

Let X be a normed space. The space of all continuous linear functionals defined on X is

called the dual space of X and denoted by X ∗. Let 〈., .〉 : X × X ∗→ R be the duality pairing in

X ×X ∗. The weakest topology on X that make continuous all elements of x∗ ∈ X ∗ is called the

weak topology on X . Let φ : X → X ∗∗ defined by φ(x) = gx where gx(x
∗) = 〈x∗, x〉, x∗ ∈ X ∗

and ‖gx‖ = ‖x‖. The weakest topology on X ∗ that make continuous all φ(x) is called the

weak∗ topology on X ∗. The weak topology on X and the weak∗ topology on X ∗ are usually

denoted by σ(X , X ∗) and σ(X ∗, X ) respectively.
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Definition 1. Let X be a normed space,

(a) a net {xn} in X is called weak∗ convergent in X , if there exists an element x ∈ X such that

lim
n→∞
|x∗(xn)− x∗(x)|= 0, ∀x∗ ∈ X ∗;

(b) a subset A of X is called compact in weak∗ topology or weak∗ compact set if every net in A

contains a subnet which is weak∗ convergent in A.

Definition 2. A game V is called a balanced game if

sup
∑

(R)

αRµ(R)u(CR)≤ u(CΩ),

where sup is taken over all finite sums
∑

(R)αRµ(R)u(CR), αR ≥ 0 and
∑

(R)αRµ(R) = 1.

Definition 3. Given such a function u, we consider the concavification of u, denoted by cav(u),

which is a function defined on

∆= {g : g ≥ 0, g is simple measurable f unction and

∫

Ω

gdµ= 1},

as the infimum of all concave functions that are greater than or equal to u.

Since the infimum of a family of concave functions is concave, so cav(u) is concave and is

greater than or equal to u as it is shown in Lemma 2.

Definition 4. In the extended version of cooperative game, we consider a non-empty set Ω and

a finite measure space (Ω,
∑

,µ), a game V is a bounded real valued function on
∑

such that

V (;) = 0.

For R ∈
∑

, we denote by χR the characteristic function of R. Let B be the Banach space

spanned by the set {χR : R ∈
∑

} with the sup norm, where χR is the characteristic function

of R. Then the space of all bounded additive functions on
∑

is denoted by BA would be

isometrically isomorphic to the norm-dual of B. A payoff µ of V is an element of BA with

µ(Ω) = V (Ω). The core of V consists of all payoffs µ such that µ(R) ≥ V (R) for each R ∈
∑

.

We can also identify the coalition R CR =
χR

µ(R)
. Thus, the coalition will be identified with the

uniform distribution over the members of R. A game V is converted a function u defined over

the points CR for R ∈
∑′

, where
∑′
= {R ∈
∑

: µ(R) 6= 0}. The value of u at CR is the average

of the worth of R, that is, u(CR) =
V (R)

µ(R)
.

We set

H = { f :△→ R | f is concave and f ≥ u on ∆′}

where, ∆′ = {CR : R ∈
∑′}. For any g ∈∆ we set

Lg = {
∑

(R)αRµ(R)u(CR) : g =
∑

(R) αRχR and αR > 0,
∑

(R)αRµ(R) = 1}.

We can define two functions w : ∆→ R and cavu : ∆→ R by w(g) = sup Lg and cavu(g) =

inf H(g).
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3. Main Results

Theorem 1. For any game V , core(V ) is bounded and weak∗ compact.

Proof. For each λ ∈ core(V ), 0 ≤ λ(R) ≤ λ(Ω) = V (Ω), (∀R ∈
∑

). Therefore, core(V ) is

bounded. For each net (λα)⊆ core(V ), since bounded sets in B are relatively weak∗ compact,

so (λα) has a subnet (λαβ )β∈I which converges in weak∗ topology to λ0 ∈ B. But λ0(Ω) =

limλαβ (Ω) = V (Ω) and λαβ (R) ≥ V (R) (∀R ∈
∑

), it shows that λ0(R) ≥ V (R). Both implies

that λ0 ∈ core(V ). These facts imply that core(V ) is weak∗ compact.

Lemma 1. w is a concave map.

Proof. For ε > 0 there are two elements
∑

(R) αRµ(R)u(CR) and
∑

(R′) βR′µ(R
′)u(CR′) such

that

tw(g) + (1− t)w(h)− ε = t[w(g)− ε] + (1− t)[w(h)− ε]

< t
∑

(R)

αRµ(R)u(CR)

+ (1− t)
∑

(R′)

βR′µ(R
′)u(CR′)

≤ w(t g + (1− t)h).

Lemma 2. cav(u)(CR)≥ u(CR).

Proof. By concavity of cav(u) and f ∈ H it follows that f ≥ u. Hence cav(u) ∈ H and

cav(u)(CR)≥ u(CR), for any R ∈
∑

.

Proposition 1. w(g) =cav(u)(g) for any g ∈ △.

Proof. Suppose
∑

(R) αRµ(R)u(CR) ∈ Lg . Choosing g =
∑

(R) αRχR such that αR ≥ 0 and
∑

(R) αRµ(R) = 1. Then

cav(u)(g) = cav(u)(
∑

(R)

αRχR)

= cav(u)(
∑

(R)

αRµ(R)
χR

µ(R)
)

≥
∑

(R)

αRµ(R)cav(u)(
χR

µ(R)
)

≥
∑

(R)

αRµ(R)u(CR).

This shows that w(g) ≤ cav(u)(g). For the converse, we note that w is concave from Lemma

1, w(CR)≥ u(CR). Therefore, cav(u)≤ w.
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Definition 5. λ ∈ BA is called linear support of f :△→ R at g ∈△ if

f (g) =

∫

Ω

gdλ and f (g′)≤

∫

Ω

g′dλ (∀g′ ∈ △).

Proposition 2. cav(u)(CΩ) = u(CΩ) if coreV 6= ;.

Proof. coreV 6= ; implies that there is λ ∈ BA which satisfies λ(Ω) = V (Ω) and λ(R) ≥
V (R) (∀R ∈
∑′
). Set f : △ → R by f (g) =

∫

Ω
gdλ. It is clear that f would be a concave

map. On the other hand, f (CR) ≥ u(CR). Therefore, f ∈ H, so cav(u)(CR) ≤ f (CR) for any

R ∈
∑′

. But f (CΩ) = u(CΩ) which implies that, cav(u)(CΩ) ≤ u(CΩ). So from lemma 2

cav(u)(CΩ) = u(CΩ).

Corollary 1. λ is a linear support for cav(u) at CΩ if λ ∈ core(V ).

Proposition 3. V is balanced game if core(V ) 6= ;.

Proof. Assuming coreV 6= ; by proposition 2 yields cav(u)(CΩ) = u(CΩ). Since

cav(u)(CΩ) = w(CΩ)

= sup{
∑

(R)

αRµ(R)u(CR) : ΣαRµ(R) = 1,αR ≥ 0,
∑

(R)

αRχR = CΩ},

so
∑

(R) αRµ(R)u(CR)≤ cav(u)(CΩ) = u(CΩ). Hence, sup
∑

(R) αRµ(R)u(CR)≤ u(CΩ).

Lemma 3. Suppose that S is the set of all simple functions on (Ω,
∑

,µ) and f : △ → R is the

concave map. Then for any g ∈ S, there is a linear map G such that

G(g) = f (g) and f (h)≤ G(h), (∀h ∈ S)

Proof. The function − f is a convex function. Now applying Hahn Banach Theorem for

L =< {g} > and − f , there is a linear function F : S→ R such that

F(g) = − f (g) and F(h) ≤ − f (h), (∀h∈ S).

Set G = −F , then G(g) = f (g) and f (h)≤ G(h), (∀h ∈ S).

Theorem 2. coreV 6= ; if cav(u)(CΩ) = u(CΩ)(Here, we have not assumed that the elements of

core(V ) are bounded).

Proof. Since cav(u) is a concave map, so from lemma 1, there is a linear map G : S → R
such that cav(u)(CΩ) = G(CΩ) and cav(u)(CR) ≤ G(CR). Then G(CΩ) = u(CΩ) =

V (Ω)

µ(Ω)
and

u(CR) ≤ cav(u)(CR) ≤ G(CR). Define λ :
∑

→ R by λ(R) = G(χR). It easy to see that λ is a

finitely additive measure. Moreover,

λ(Ω) = G(χΩ) = µ(Ω)G(
χΩ

µ(Ω)
)
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= µ(Ω)G(CΩ) = µ(Ω)
V (Ω)

µ(Ω)

= V (Ω).

Also

λ(R) = G(χR) = µ(R)G(
χR

µ(R)
)

= µ(R)G(CR)≥ µ(R)u(CR)

= µ(R)
V (R)

µ(R)
= V (R).

Therefore, λ ∈ core(V ) which it completes the proof.

Definition 6. [4] A game V is called an exact game if for each coalition R there is λ ∈ core(V )

such that λ(R) = V (R).

Theorem 3. Suppose V is an exact game. Then u is continuous at CΩ if and only if each

λ ∈ core(V ) is countably additive.

Proof. It is well known that λ ∈ BA is countably additive if and only if it is continuous at

Ω. Assume λ ∈ core(V ), u is continuous at CΩ and (Rn)n is a monotone sequence in Ω such

that
⋃

Rn = Ω. We must show that λ(Rn) → λ(Ω). From the assumption u(CRn
) → u(CΩ).

But u(CRn
) =

V (Rn)

µ(Rn)
≤ λ(Rn)

µ(Rn)
≤ λ(Ω)

µ(Rn)
=

V (Ω)

µ(Rn)
. Tending n → ∞ and since u(CRn

) and
V (Ω)

µ(Rn)
→

u(CΩ), so
λ(Rn)

µ(Rn)
→ u(CΩ) =

V (Ω)

µ(Ω)
. But µ is a measure so µ(Rn) → µ(Ω). This shows that

λ(Rn) → V (Ω) = λ(Ω). For the converse, we assume that λ ∈ coreV is countably additive,

(Rn) ⊆
∑′

,
⋃

Rn = Ω and a is a limit point for (u(CRn
))n. Without loss of generality one can

assume that u(CRn
)→ a (otherwise we can pass to a subsequence). From exactness of V for

each Rn there is λn ∈ coreV such that λn(Rn) = V (Rn). From the compactness of core(V ),

one can assume λn → λ, where λ ∈ coreV . Assume ε > 0, there is k ∈ N satisfying in

λ(Rn) > λ(Ω)− εµ(Ω) for any n ≥ k. There is m′ ∈ N such that |λm(Rn)− λ(Rn)| < ε and

so λ(Rn) < λm(Rn) + ε for each m ≥ m′. Consider n ≥ k and l′ ≥ max{n, m′}, now for each

l ≥ l′,

u(CΩ) =
V (Ω)

µ(Ω)
=
λ(Ω)

µ(Ω)
<
λ(Rn) + εµ(Ω)

µ(Ω)

=
λ(Rn)

µ(Ω)
+ ε <

λl(Rn)

µ(Ω)
+ 2ε

≤
λl(Rl)

µ(Ω)
+ 2ε=

V (Rl)

µ(Ω)
+ 2ε

≤
V (Rl)

µ(Rl)
+ 2ε= u(Cl)+ 2ε

= a+ 2ε.
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Therefore, u(CΩ) ≤ a. On the other hand, u(CRn
) =

V (Rn)

µ(Rn)
≤ λ(Rn)

µ(Rn)
≤ λ(Ω)

µ(Rn)
. Let n →∞, then

a ≤ λ(Ω)
µ(Ω)

=
V (Ω)

µ(Ω)
= u(CΩ). Hence, a = u(CΩ).

Set BAR = {λ ∈ BA,λ(R) = V (R)}. Then if λ ∈ BAR we can define fλ(g) =
∫

Ω
gdλ. So we

define coreRV = {λ ∈ core(V );λ(R) = V (R)}.

Lemma 4. BAR 6= ; if R ∈
∑

and R 6= ;.

Proof. It is easy to see that, there is λ0 ∈ BA, such that λ0(S) 6= 0. Set λ =
V (S)

λ0(S)
λ0. Then

λ ∈ BAR.

Lemma 5. (a) Let λ ∈ BAR and fλ :△→ R by fλ(g) =
∫

Ω
gdλ. Then fλ(CR) = u(CR).

(b) Let λ ∈ coreR(V ), then fλ(CR) = u(CR) and fλ(CS)≥ u(CS), (∀S ∈
∑

).

Proof.

(a) fλ(CR) =
∫

Ω
CRdλ=

λ(R)

µ(R)
=

V (R)

µ(R)
= u(CR).

(b) It is similar to (a) fλ(CR) = u(CR). For an arbitrary element S ∈
∑

, fλ(CS) =
∫

Ω
CSdλ=

λ(S)

µ(S)
≥ V (S)

µ(S)
= u(CS).

Theorem 4. Suppose that V is an exact game. Then u = inf{ fλ : λ ∈ coreRV,R ∈
∑

}.

Proof. For each λ ∈ coreRV , then fλ(CR) ≥ u(CR). Therefore, inf{ fλ : λ ∈ coreR(V ),R ∈
∑

} ≥ u. Since V is an exact game so for each R ∈
∑

, there is a λ ∈ coreR(V ). It follows by

Lemma 3 fλ(CR) = u(CR). Hence, u = inf{ fλ : λ ∈ coreR(V ),R ∈
∑

}.

Theorem 5. Let u = inf{ fλ : S ∈
∑

,λ ∈ BAS ,λ(Ω) = V (Ω)}. Then the equation
∑

αRCR =

βCT + (1− β)CΩ implies
∑

αRu(CR) ≤ βu(CT ) + (1− β)u(CΩ), where αR > 0,
∑

αR = 1,β ∈
[0,1] and T is a coalition.

Proof. Consider R ∈
∑

. Then u(CR) = fλ(CR) where, λ ∈ BAR is suitable element with

λ(Ω) = V (Ω). It is easy to see that fλ(CΩ) = u(CΩ). Suppose that L denotes the segment

connecting (CR,u(CR)) to (CΩ,u(CΩ)). Then L lies on the graph of fλ. Since cav(u) is concave,

L is below the graph of cav(u). As cav(u) ≤ fλ, L is above the graph of cav(u). Thus, L is on

the graph cav(u). Now by concavity of cav(u),
∑

R

αRcav(u)(CR) ≤ cav(u)(
∑

R

αRCR)

= cav(u)(βCT + (1− β)CΩ)

= βu(CT ) + (1− β)u(CΩ).

That is
∑

R

αRu(CR)≤ βu(CT ) + (1− β)u(CΩ).
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