Extended Concavifications and Exact Games

M. Alimohammady ${ }^{1 *}$ and V. Dadashi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Basic Sciences,University of Mazandaran, Babolsar, Iran,
${ }^{2}$ Islamiz Azad University-Sari Branch, Sari, Iran

Abstract

In this paper we propose new version of cooperative games. In fact the notion of cooperative games and their concavifications are extended. As a consequence, in this new setting it turn out that coreV $\neq \emptyset$ if and only if $\operatorname{cav}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$.

2000 Mathematics Subject Classifications: 46M35, 54H25, 47 H 10.
Key Words and Phrases: concavification, game, exact game, balanced game.

1. Introduction

Usually, a game V with a continum players is a bounded real valued function defined on \sum the Borel subsets of $I=[0,1]$ such that $V(\emptyset)=0$. Any member of \sum is interpreted as coalition of player, $V(R)$ gives the maximum payoff achieved by efforts of all members in the coalition R. Of course with this interpretation usually it is assumed that V is non-negative and not identically zero. In [1] a cooperative game is viewed as a real valued function u defined on a finite set of points in the unit simplex, also a concavification of u used to characterize well-known classes of games.

2. Preliminaries

Let X be a normed space. The space of all continuous linear functionals defined on X is called the dual space of X and denoted by X^{*}. Let $\langle.,\rangle:. X \times X^{*} \rightarrow \mathbb{R}$ be the duality pairing in $X \times X^{*}$. The weakest topology on X that make continuous all elements of $x^{*} \in X^{*}$ is called the weak topology on X. Let $\phi: X \rightarrow X^{* *}$ defined by $\phi(x)=g_{x}$ where $g_{x}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle, x^{*} \in X^{*}$ and $\left\|g_{x}\right\|=\|x\|$. The weakest topology on X^{*} that make continuous all $\phi(x)$ is called the weak* topology on X^{*}. The weak topology on X and the weak* topology on X^{*} are usually denoted by $\sigma\left(X, X^{*}\right)$ and $\sigma\left(X^{*}, X\right)$ respectively.

[^0]Definition 1. Let X be a normed space,
(a) a net $\left\{x_{n}\right\}$ in X is called weak* convergent in X, if there exists an element $x \in X$ such that $\lim _{n \rightarrow \infty}\left|x^{*}\left(x_{n}\right)-x^{*}(x)\right|=0, \forall x^{*} \in X^{*} ;$
(b) a subset A of X is called compact in weak ${ }^{*}$ topology or weak* compact set if every net in A contains a subnet which is weak ${ }^{*}$ convergent in A.
Definition 2. A game V is called a balanced game if

$$
\sup \sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) \leq u\left(C_{\Omega}\right),
$$

where sup is taken over all finite sums $\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right), \alpha_{R} \geq 0$ and $\sum_{(R)} \alpha_{R} \mu(R)=1$.
Definition 3. Given such a function u, we consider the concavification of u, denoted by $\mathbf{c a v}(u)$, which is a function defined on

$$
\Delta=\left\{g: g \geq 0, g \text { is simple measurable function and } \int_{\Omega} g d \mu=1\right\}
$$

as the infimum of all concave functions that are greater than or equal to u.
Since the infimum of a family of concave functions is concave, so cav (u) is concave and is greater than or equal to u as it is shown in Lemma 2 .
Definition 4. In the extended version of cooperative game, we consider a non-empty set Ω and a finite measure space $\left(\Omega, \sum, \mu\right)$, a game V is a bounded real valued function on \sum such that $V(\emptyset)=0$.

For $R \in \sum$, we denote by χ_{R} the characteristic function of R. Let B be the Banach space spanned by the set $\left\{\chi_{R}: R \in \sum\right\}$ with the sup norm, where χ_{R} is the characteristic function of R. Then the space of all bounded additive functions on \sum is denoted by $B A$ would be isometrically isomorphic to the norm-dual of B. A payoff μ of V is an element of $B A$ with $\mu(\Omega)=V(\Omega)$. The core of V consists of all payoffs μ such that $\mu(R) \geq V(R)$ for each $R \in \sum$. We can also identify the coalition $R C_{R}=\frac{\chi_{R}}{\mu(R)}$. Thus, the coalition will be identified with the uniform distribution over the members of R. A game V is converted a function u defined over the points C_{R} for $R \in \sum^{\prime}$, where $\sum^{\prime}=\left\{R \in \sum: \mu(R) \neq 0\right\}$. The value of u at C_{R} is the average of the worth of R, that is, $u\left(C_{R}\right)=\frac{V(R)}{\mu(R)}$.
We set

$$
H=\left\{f: \Delta \rightarrow \mathbb{R} \mid \text { f is concave and } f \geq u \text { on } \Delta^{\prime}\right\}
$$

where, $\Delta^{\prime}=\left\{C_{R}: R \in \sum^{\prime}\right\}$. For any $g \in \Delta$ we set

$$
L_{g}=\left\{\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right): g=\sum_{(R)} \alpha_{R} \chi_{R} \text { and } \alpha_{R}>0, \quad \sum_{(R)} \alpha_{R} \mu(R)=1\right\}
$$

We can define two functions $w: \Delta \rightarrow \mathbb{R}$ and $\operatorname{cav} u: \Delta \rightarrow \mathbb{R}$ by $w(g)=\sup L_{g}$ and $\operatorname{cav} u(g)=$ $\inf H(g)$.

3. Main Results

Theorem 1. For any game V, core (V) is bounded and weak* compact.
Proof. For each $\lambda \in \operatorname{core}(V), 0 \leq \lambda(R) \leq \lambda(\Omega)=V(\Omega),\left(\forall R \in \sum\right)$. Therefore, $\operatorname{core}(V)$ is bounded. For each net $\left(\lambda_{\alpha}\right) \subseteq \operatorname{core}(V)$, since bounded sets in B are relatively weak* compact, so $\left(\lambda_{\alpha}\right)$ has a subnet $\left(\lambda_{\alpha_{\beta}}\right)_{\beta \in I}$ which converges in weak ${ }^{*}$ topology to $\lambda_{0} \in B$. But $\lambda_{0}(\Omega)=$ $\lim \lambda_{\alpha_{\beta}}(\Omega)=V(\Omega)$ and $\lambda_{\alpha_{\beta}}(R) \geq V(R)\left(\forall R \in \sum\right)$, it shows that $\lambda_{0}(R) \geq V(R)$. Both implies that $\lambda_{0} \in \operatorname{core}(V)$. These facts imply that core (V) is weak* compact.

Lemma 1. w is a concave map.
Proof. For $\epsilon>0$ there are two elements $\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right)$ and $\sum_{\left(R^{\prime}\right)} \beta_{R^{\prime}} \mu\left(R^{\prime}\right) u\left(C_{R^{\prime}}\right)$ such that

$$
\begin{aligned}
t w(g)+(1-t) w(h)-\epsilon & =t[w(g)-\epsilon]+(1-t)[w(h)-\epsilon] \\
& <t \sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) \\
& +(1-t) \sum_{\left(R^{\prime}\right)} \beta_{R^{\prime}} \mu\left(R^{\prime}\right) u\left(C_{R^{\prime}}\right) \\
& \leq w(t g+(1-t) h) .
\end{aligned}
$$

Lemma 2. $\operatorname{cav}(u)\left(C_{R}\right) \geq u\left(C_{R}\right)$.
Proof. By concavity of $\mathbf{c a v}(u)$ and $f \in H$ it follows that $f \geq u$. Hence $\mathbf{c a v}(u) \in H$ and $\operatorname{cav}(u)\left(C_{R}\right) \geq u\left(C_{R}\right)$, for any $R \in \sum$.

Proposition 1. $w(g)=\mathbf{c a v}(u)(g)$ for any $g \in \triangle$.
Proof. Suppose $\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) \in L_{g}$. Choosing $g=\sum_{(R)} \alpha_{R} \chi_{R}$ such that $\alpha_{R} \geq 0$ and $\sum_{(R)} \alpha_{R} \mu(R)=1$. Then

$$
\begin{aligned}
\operatorname{cav}(u)(g) & =\operatorname{cav}(u)\left(\sum_{(R)} \alpha_{R} \chi_{R}\right) \\
& =\operatorname{cav}(u)\left(\sum_{(R)} \alpha_{R} \mu(R) \frac{\chi_{R}}{\mu(R)}\right) \\
& \geq \sum_{(R)} \alpha_{R} \mu(R) \operatorname{cav}(u)\left(\frac{\chi_{R}}{\mu(R)}\right) \\
& \geq \sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) .
\end{aligned}
$$

This shows that $w(g) \leq \boldsymbol{c a v}(u)(g)$. For the converse, we note that w is concave from Lemma $1, w\left(C_{R}\right) \geq u\left(C_{R}\right)$. Therefore, $\boldsymbol{\operatorname { c a v }}(u) \leq w$.

Definition 5. $\lambda \in B A$ is called linear support of $f: \Delta \rightarrow \mathbb{R}$ at $g \in \Delta$ if

$$
f(g)=\int_{\Omega} g d \lambda \text { and } f\left(g^{\prime}\right) \leq \int_{\Omega} g^{\prime} d \lambda \quad\left(\forall g^{\prime} \in \triangle\right)
$$

Proposition 2. $\operatorname{cav}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$ if $\operatorname{coreV} \neq \emptyset$.
Proof. coreV $\neq \emptyset$ implies that there is $\lambda \in B A$ which satisfies $\lambda(\Omega)=V(\Omega)$ and $\lambda(R) \geq$ $V(R) \quad\left(\forall R \in \sum^{\prime}\right)$. Set $f: \Delta \rightarrow \mathbb{R}$ by $f(g)=\int_{\Omega} g d \lambda$. It is clear that f would be a concave map. On the other hand, $f\left(C_{R}\right) \geq u\left(C_{R}\right)$. Therefore, $f \in H$, so $\operatorname{cav}(u)\left(C_{R}\right) \leq f\left(C_{R}\right)$ for any $R \in \sum^{\prime}$. But $f\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$ which implies that, $\operatorname{cav}(u)\left(C_{\Omega}\right) \leq u\left(C_{\Omega}\right)$. So from lemma 2 $\operatorname{cav}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$.

Corollary 1. λ is a linear support for $\operatorname{cav}(u)$ at C_{Ω} if $\lambda \in \operatorname{core}(V)$.
Proposition 3. V is balanced game if $\operatorname{core}(V) \neq \emptyset$.
Proof. Assuming coreV $\neq \emptyset$ by proposition 2 yields $\boldsymbol{\operatorname { c a v }}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$. Since

$$
\begin{aligned}
\operatorname{cav}(u)\left(C_{\Omega}\right) & =w\left(C_{\Omega}\right) \\
& =\sup \left\{\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right): \Sigma \alpha_{R} \mu(R)=1, \alpha_{R} \geq 0, \sum_{(R)} \alpha_{R} \chi_{R}=C_{\Omega}\right\}
\end{aligned}
$$

so $\sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) \leq \operatorname{cav}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$. Hence, $\sup \sum_{(R)} \alpha_{R} \mu(R) u\left(C_{R}\right) \leq u\left(C_{\Omega}\right)$.
Lemma 3. Suppose that S is the set of all simple functions on $\left(\Omega, \sum, \mu\right)$ and $f: \triangle \rightarrow \mathbb{R}$ is the concave map. Then for any $g \in S$, there is a linear map G such that

$$
G(g)=f(g) \text { and } f(h) \leq G(h),(\forall h \in S)
$$

Proof. The function $-f$ is a convex function. Now applying Hahn Banach Theorem for $L=<\{g\}>$ and $-f$, there is a linear function $F: S \rightarrow \mathbb{R}$ such that

$$
F(g)=-f(g) \text { and } F(h) \leq-f(h),(\forall h \in S) .
$$

Set $G=-F$, then $G(g)=f(g)$ and $f(h) \leq G(h),(\forall h \in S)$.
Theorem 2. coreV $\neq \emptyset$ if $\operatorname{cav}(u)\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$ (Here, we have not assumed that the elements of core (V) are bounded).

Proof. Since $\operatorname{cav}(u)$ is a concave map, so from lemma 1, there is a linear map $G: S \rightarrow \mathbb{R}$ such that $\operatorname{cav}(u)\left(C_{\Omega}\right)=G\left(C_{\Omega}\right)$ and $\operatorname{cav}(u)\left(C_{R}\right) \leq G\left(C_{R}\right)$. Then $G\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)=\frac{V(\Omega)}{\mu(\Omega)}$ and $u\left(C_{R}\right) \leq \boldsymbol{\operatorname { c a v }}(u)\left(C_{R}\right) \leq G\left(C_{R}\right)$. Define $\lambda: \sum \rightarrow \mathbb{R}$ by $\lambda(R)=G\left(\chi_{R}\right)$. It easy to see that λ is a finitely additive measure. Moreover,

$$
\lambda(\Omega)=G\left(\chi_{\Omega}\right)=\mu(\Omega) G\left(\frac{\chi_{\Omega}}{\mu(\Omega)}\right)
$$

$$
\begin{aligned}
& =\mu(\Omega) G\left(C_{\Omega}\right)=\mu(\Omega) \frac{V(\Omega)}{\mu(\Omega)} \\
& =V(\Omega)
\end{aligned}
$$

Also

$$
\begin{aligned}
\lambda(R) & =G\left(\chi_{R}\right)=\mu(R) G\left(\frac{\chi_{R}}{\mu(R)}\right) \\
& =\mu(R) G\left(C_{R}\right) \geq \mu(R) u\left(C_{R}\right) \\
& =\mu(R) \frac{V(R)}{\mu(R)}=V(R) .
\end{aligned}
$$

Therefore, $\lambda \in \operatorname{core}(V)$ which it completes the proof.
Definition 6. [4] A game V is called an exact game if for each coalition R there is $\lambda \in \operatorname{core}(V)$ such that $\lambda(R)=V(R)$.

Theorem 3. Suppose V is an exact game. Then u is continuous at C_{Ω} if and only if each $\lambda \in \operatorname{core}(V)$ is countably additive.

Proof. It is well known that $\lambda \in B A$ is countably additive if and only if it is continuous at Ω. Assume $\lambda \in \operatorname{core}(V), u$ is continuous at C_{Ω} and $\left(R_{n}\right)_{n}$ is a monotone sequence in Ω such that $\bigcup R_{n}=\Omega$. We must show that $\lambda\left(R_{n}\right) \rightarrow \lambda(\Omega)$. From the assumption $u\left(C_{R_{n}}\right) \rightarrow u\left(C_{\Omega}\right)$. But $u\left(C_{R_{n}}\right)=\frac{V\left(R_{n}\right)}{\mu\left(R_{n}\right)} \leq \frac{\lambda\left(R_{n}\right)}{\mu\left(R_{n}\right)} \leq \frac{\lambda(\Omega)}{\mu\left(R_{n}\right)}=\frac{V(\Omega)}{\mu\left(R_{n}\right)}$. Tending $n \rightarrow \infty$ and since $u\left(C_{R_{n}}\right)$ and $\frac{V(\Omega)}{\mu\left(R_{n}\right)} \rightarrow$ $u\left(C_{\Omega}\right)$, so $\frac{\lambda\left(R_{n}\right)}{\mu\left(R_{n}\right)} \rightarrow u\left(C_{\Omega}\right)=\frac{V(\Omega)}{\mu(\Omega)}$. But μ is a measure so $\mu\left(R_{n}\right) \rightarrow \mu(\Omega)$. This shows that $\lambda\left(R_{n}\right) \rightarrow V(\Omega)=\lambda(\Omega)$. For the converse, we assume that $\lambda \in \mathrm{coreV}$ is countably additive, $\left(R_{n}\right) \subseteq \sum^{\prime}, \bigcup R_{n}=\Omega$ and a is a limit point for $\left(u\left(C_{R_{n}}\right)\right)_{n}$. Without loss of generality one can assume that $u\left(C_{R_{n}}\right) \rightarrow a$ (otherwise we can pass to a subsequence). From exactness of V for each R_{n} there is $\lambda_{n} \in \operatorname{coreV}$ such that $\lambda_{n}\left(R_{n}\right)=V\left(R_{n}\right)$. From the compactness of core (V), one can assume $\lambda_{n} \rightarrow \lambda$, where $\lambda \in$ coreV. Assume $\epsilon>0$, there is $k \in \mathbb{N}$ satisfying in $\lambda\left(R_{n}\right)>\lambda(\Omega)-\epsilon \mu(\Omega)$ for any $n \geq k$. There is $m^{\prime} \in \mathbb{N}$ such that $\left|\lambda_{m}\left(R_{n}\right)-\lambda\left(R_{n}\right)\right|<\epsilon$ and so $\lambda\left(R_{n}\right)<\lambda_{m}\left(R_{n}\right)+\epsilon$ for each $m \geq m^{\prime}$. Consider $n \geq k$ and $l^{\prime} \geq \max \left\{n, m^{\prime}\right\}$, now for each $l \geq l^{\prime}$,

$$
\begin{aligned}
u\left(C_{\Omega}\right) & =\frac{V(\Omega)}{\mu(\Omega)}=\frac{\lambda(\Omega)}{\mu(\Omega)}<\frac{\lambda\left(R_{n}\right)+\epsilon \mu(\Omega)}{\mu(\Omega)} \\
& =\frac{\lambda\left(R_{n}\right)}{\mu(\Omega)}+\epsilon<\frac{\lambda_{l}\left(R_{n}\right)}{\mu(\Omega)}+2 \epsilon \\
& \leq \frac{\lambda_{l}\left(R_{l}\right)}{\mu(\Omega)}+2 \epsilon=\frac{V\left(R_{l}\right)}{\mu(\Omega)}+2 \epsilon \\
& \leq \frac{V\left(R_{l}\right)}{\mu\left(R_{l}\right)}+2 \epsilon=u\left(C_{l}\right)+2 \epsilon \\
& =a+2 \epsilon .
\end{aligned}
$$

Therefore, $u\left(C_{\Omega}\right) \leq a$. On the other hand, $u\left(C_{R_{n}}\right)=\frac{V\left(R_{n}\right)}{\mu\left(R_{n}\right)} \leq \frac{\lambda\left(R_{n}\right)}{\mu\left(R_{n}\right)} \leq \frac{\lambda(\Omega)}{\mu\left(R_{n}\right)}$. Let $n \rightarrow \infty$, then $a \leq \frac{\lambda(\Omega)}{\mu(\Omega)}=\frac{V(\Omega)}{\mu(\Omega)}=u\left(C_{\Omega}\right)$. Hence, $a=u\left(C_{\Omega}\right)$.

Set $B A_{R}=\{\lambda \in B A, \lambda(R)=V(R)\}$. Then if $\lambda \in B A_{R}$ we can define $f_{\lambda}(g)=\int_{\Omega} g d \lambda$. So we define $\operatorname{core}_{R} V=\{\lambda \in \operatorname{core}(V) ; \lambda(R)=V(R)\}$.

Lemma 4. $B A_{R} \neq \emptyset$ if $R \in \sum$ and $R \neq \emptyset$.
Proof. It is easy to see that, there is $\lambda_{0} \in B A$, such that $\lambda_{0}(S) \neq 0$. Set $\lambda=\frac{V(S)}{\lambda_{0}(S)} \lambda_{0}$. Then $\lambda \in B A_{R}$.

Lemma 5. (a) Let $\lambda \in B A_{R}$ and $f_{\lambda}: \Delta \rightarrow \mathbb{R}$ by $f_{\lambda}(g)=\int_{\Omega} g d \lambda$. Then $f_{\lambda}\left(C_{R}\right)=u\left(C_{R}\right)$.
(b) Let $\lambda \in \operatorname{core}_{R}(V)$, then $f_{\lambda}\left(C_{R}\right)=u\left(C_{R}\right)$ and $f_{\lambda}\left(C_{S}\right) \geq u\left(C_{S}\right),\left(\forall S \in \sum\right)$.

Proof.
(a) $f_{\lambda}\left(C_{R}\right)=\int_{\Omega} C_{R} d \lambda=\frac{\lambda(R)}{\mu(R)}=\frac{V(R)}{\mu(R)}=u\left(C_{R}\right)$.
(b) It is similar to (a) $f_{\lambda}\left(C_{R}\right)=u\left(C_{R}\right)$. For an arbitrary element $S \in \sum, f_{\lambda}\left(C_{S}\right)=\int_{\Omega} C_{S} d \lambda=$ $\frac{\lambda(S)}{\mu(S)} \geq \frac{V(S)}{\mu(S)}=u\left(C_{S}\right)$.

Theorem 4. Suppose that V is an exact game. Then $u=\inf \left\{f_{\lambda}: \lambda \in \operatorname{core}_{R} V, R \in \sum\right\}$.
Proof. For each $\lambda \in \operatorname{core}_{R} V$, then $f_{\lambda}\left(C_{R}\right) \geq u\left(C_{R}\right)$. Therefore, $\inf \left\{f_{\lambda}: \lambda \in \operatorname{core}_{R}(V), R \in\right.$ $\left.\sum\right\} \geq u$. Since V is an exact game so for each $R \in \sum$, there is a $\lambda \in \operatorname{core}_{R}(V)$. It follows by Lemma $3 f_{\lambda}\left(C_{R}\right)=u\left(C_{R}\right)$. Hence, $u=\inf \left\{f_{\lambda}: \lambda \in \operatorname{core}_{R}(V), R \in \sum\right\}$.

Theorem 5. Let $u=\inf \left\{f_{\lambda}: S \in \sum, \lambda \in B A_{S}, \lambda(\Omega)=V(\Omega)\right\}$. Then the equation $\sum \alpha_{R} C_{R}=$ $\beta C_{T}+(1-\beta) C_{\Omega}$ implies $\sum \alpha_{R} u\left(C_{R}\right) \leq \beta u\left(C_{T}\right)+(1-\beta) u\left(C_{\Omega}\right)$, where $\alpha_{R}>0, \sum \alpha_{R}=1, \beta \in$ [0,1] and T is a coalition.

Proof. Consider $R \in \sum$. Then $u\left(C_{R}\right)=f_{\lambda}\left(C_{R}\right)$ where, $\lambda \in B A_{R}$ is suitable element with $\lambda(\Omega)=V(\Omega)$. It is easy to see that $f_{\lambda}\left(C_{\Omega}\right)=u\left(C_{\Omega}\right)$. Suppose that L denotes the segment connecting ($C_{R}, u\left(C_{R}\right)$) to ($C_{\Omega}, u\left(C_{\Omega}\right)$). Then L lies on the graph of f_{λ}. Since $\boldsymbol{c a v}(u)$ is concave, L is below the graph of $\operatorname{cav}(u)$. As $\operatorname{cav}(u) \leq f_{\lambda}$, L is above the graph of $\operatorname{cav}(u)$. Thus, L is on the graph $\mathbf{c a v}(u)$. Now by concavity of $\mathbf{c a v}(u)$,

$$
\begin{aligned}
\sum_{R} \alpha_{R} \operatorname{cav}(u)\left(C_{R}\right) & \leq \operatorname{cav}(u)\left(\sum_{R} \alpha_{R} C_{R}\right) \\
& =\operatorname{cav}(u)\left(\beta C_{T}+(1-\beta) C_{\Omega}\right) \\
& =\beta u\left(C_{T}\right)+(1-\beta) u\left(C_{\Omega}\right)
\end{aligned}
$$

That is $\sum_{R} \alpha_{R} u\left(C_{R}\right) \leq \beta u\left(C_{T}\right)+(1-\beta) u\left(C_{\Omega}\right)$.

References

[1] Y Azrieli and E Lehrer. On concavification and convex games. Game Theory and Information 0408002, Economics Working Paper Archive at WUSTL.
[2] G B Foland. Real Analysis: Modern Techniques and Their Applications (2nd edition). Wiley-Interscience/John Wiley Sons, Inc, 1999.
[3] W Rudin. Functional analysis. McGraw-Hill Inc. Book company, New York, 1991.
[4] D Schmeidler. Cores of exact games. J. Math. Anal. Appl 40: 214-225 1972.
[5] D Schmeidler. Subjective probabilities without additivity. Econometrica 57: 571-587 1989.
[6] L S Shapley. Cores of convex games. Int. J. Game Theory 1: 11-26 1971.
[7] A W Tuker.Contributions to the theory of games. Princeton University press. Princeton, NJ, 307317.

[^0]: *Corresponding author.

 Email addresses: amohsen@umz.ac.ir (M. Alimohammady), v.dadashi@iausari.ac.ir (V. Dadashi)
 http://www.ejpam.com 187 (c) 2010 EJPAM All rights reserved.

