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1. Introduction

Since their introduction into the mathematical literature in the early 1950s, inverse semi-
groups have become one of the most-studied classes of semigroups, with entire monographs
[51, 72] devoted to their understanding. Such important objects of study have naturally given
rise to a number of different methods for their investigation. In this article, I provide a his-
torical survey, together with an intuitive sketch, of the three main approaches, as identified
by Fountain [20, p. 12]: those via inductive groupoids, the Munn representation, and proper
inverse semigroups. The present article is a companion piece to my earlier articles [36, 40],
and can also be read as a technical addendum to [41, Chapter 10].

The investigation of inverse semigroups by means of their corresponding inductive group-
oids (on the history of which, I have already written in detail in [40]) goes back to the his-
torical roots of the notion of an inverse semigroup. The problem arose in the 1930s of giving
an abstract characterisation of systems of partial transformations of a set equipped with a
partially-defined binary operation. Many mathematicians sought to ‘complete’ this operation
to an everywhere-defined one before axiomatising, eventually giving rise to the abstract notion
of an inverse semigroup. If, on the other hand, we are content to retain the original partial
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operation, then the abstract object that results is a so-called inductive groupoid. The funda-
mental connection between inverse semigroups and inductive groupoids is enshrined in the
celebrated Ehresmann–Schein–Nambooripad Theorem, which, at its simplest, states that any
inverse semigroup gives rise to a (unique) inductive groupoid, and vice versa, thus enabling us
to use the structure of the corresponding groupoid to inform our investigation of the original
inverse semigroup (or, indeed, to use the structure of the inverse semigroup to assist in the
study of the inductive groupoid). The order relations in inverse semigroups and in inductive
groupoids have a key role to play here.

The second approach to inverse semigroups is that via the so-called Munn representation.
Here, an inverse semigroup S is represented not merely by partial bijections of an arbitrary set
but by partial bijections of its semilattice of idempotents. Intimately connected with the notion
of a Munn representation are those of fundamental inverse semigroups, and also idempotent-

separating congruences and morphisms. As the name suggests, fundamental inverse semigroups
may be used, in conjunction with the other notions mentioned here, as a basis for the charac-
terisation of any given class of inverse semigroups.

The third and final of our three approaches to inverse semigroups — that via P-semigroups
and related concepts, as espoused by McAlister — is, at its heart, an attempt to adapt to inverse
semigroups certain methods that had proved particularly useful in the early theory of semi-
groups. In the early 1940s, both Rees [80] and Clifford [6] had characterised certain classes of
regular semigroups in terms of (amongst other things) groups and semilattices — structures
that, at least from the semigroup theorist’s point of view, are simple and known (on the work
of Rees and Clifford, see [37] or [41, Chapter 6]). McAlister thus attempted to characterise
inverse semigroups in similar terms; his structure theorem (the so-called P-Theorem) does
not in fact characterise all inverse semigroups, but an important subclass termed E-unitary

(or proper) inverse semigroups. Just as Rees had given a simple recipe for what we now term
Rees matrix semigroups and proved that any one of his semigroups of interest is isomorphic
to an appropriate one of these, McAlister gave a slightly more involved recipe for a so-called
P-semigroup and proved that any E-unitary inverse semigroup is isomorphic to one of these.
Once again, the natural order relation in an inverse semigroup has an important role to play
in McAlister’s construction, as indeed it does in the other approaches to inverse semigroups
that are discussed here. The philosophy of McAlister’s approach is, however, rather different
from that of Munn’s, for whilst, via so-called ‘covers’ (see Section 5.2), McAlister compared
his inverse semigroups to other semigroups that are, in a sense, ‘larger’, Munn took the oppo-
site tack by considering quotients, hence semigroups that are ‘smaller’ than those under initial
consideration.

The present article is structured as follows. In Section 2, I give a very brief sketch of those
details of the development of the notion of an inverse semigroup that it will be useful for us
to bear in mind as we proceed through the rest of the article. The three approaches to inverse
semigroups outlined above are then dealt with in turn in Sections 3, 4 and 5. At the end of the
article (in Section 6), I give a rough indication of the ways in which these approaches have been
adapted to some classes of semigroups more general than inverse semigroups (specifically,
those described in [36]). I assume that the reader is familiar with the basic concepts of the
theories of inverse semigroups and partial bijections; further details of these may be found in
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[44, Chapter 5] and [51].

2. A Sketch of the Development of Inverse Semigroups

In order to set the scene for what follows, it is necessary first to give a brief indication
of the origins of the notion of an inverse semigroup. However, since I have already done
this elsewhere, I endeavour to keep this section as short as possible. For a considerably more
detailed treatment, see [41, Chapter 10]; the present account consists largely of a shortened
version of [40, §2].

Although the fully-formed notion of an inverse semigroup did not emerge until the 1950s,
the story of its development begins in the nineteenth century with the Erlanger Programm: the
principle, advocated by Felix Klein, that every geometry can be viewed as the theory of invari-
ants of a particular group of transformations, and, conversely, that any such group defines a
corresponding geometry (see [2, 34]). The inextricable link between groups and the geomet-
rical notion of symmetry, which we now take for granted, was thus forged. However, it was
quickly realised that the scheme provided by the Erlanger Programm was not entirely useful
in all cases, for there exist geometries (for example, Riemannian geometries) whose groups of
automorphisms are trivial. Nevertheless, the earlier success of the Erlanger Programm meant
that it was not simply discarded: efforts were made to extend it to these other geometries
by using a different algebraic structure, necessarily more general than a group, to describe
their symmetries. In the case of differential geometry, the problem was addressed by Oswald
Veblen (1880–1960) and J. H. C. Whitehead (1904–1960), in their 1932 text The foundations

of differential geometry, with the introduction of the notion of a pseudogroup. This was based,
in part, upon the concept of a ‘continuous transformation group’, as introduced by Sophus Lie
(1842–1899) [53] (on the history of these, see [7]).

Definition 1 ([95, p. 38]). A pseudogroup Γ is a collection of partial homeomorphisms between

open subsets of a topological space such that Γ is closed under composition and inverses, where

we compose α,β ∈ Γ only if im α= dom β .

In the nineteenth century, the study of groups of permutations had gradually given rise to
the notion of an abstract group. It was natural, therefore, for mathematicians next to seek the
corresponding abstract structure for a pseudogroup. As I have discussed elsewhere (see, for
example, [40]), there turned out to be two distinct (though closely connected) solutions to
this problem: one where we retain the partial composition present in Definition 1, and one
where we complete it to a fully-defined composition. In the case of a partial composition,
we arrive at the notion of an inductive groupoid, which I will discuss further in Section 3.
For a fully-defined composition, however, the problem took rather more effort to solve, for it
was not immediately clear to researchers how they should go about ‘completing’ the partial
composition above: a psychological bar appears to have existed with regard to the admission
of the empty transformation into consideration (see [41, §10.2]). This obstacle was finally
overcome in the early 1950s by the Russian mathematician V. V. Wagner (1908–1981), who
defined the notion of what he called a ‘generalised group’ [96–98]: an axiomatisation of the
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collection of all partial bijections of a set, under the now-familiar (left to right) composition
of such functions:

domαβ =
�

imα∩ domβ
�

α−1, x(αβ) = (xα)β , for any x ∈ domαβ . (1)

The same notion was arrived at independently by the British mathematician G. B. Preston
(1925–2015) at around the same time [74–77]; it was Preston who dubbed them ‘inverse
semigroups’. For a more detailed account of the development of inverse semigroups, see [41,
Chapter 10]; other (shorter) accounts may be found in [79, 91, 92].

3. Inverse Semigroups and Inductive Groupoids

Our first approach to the study of inverse semigroups is that via inductive groupoids, which
has its origins in the work of the French mathematician Charles Ehresmann (1905–1979).
This approach has been exploited, and indeed championed, by Lawson [51] in particular. It is
also the central theme of [40], although that earlier article focused largely upon the so-called
Ehresmann–Schein–Nambooripad Theorem; the present article takes a slightly broader view.

As noted in Section 2, the drive to ‘complete’ the partial operation of Definition 1 and then
axiomatise the resulting system led to the notion of an inverse semigroup. However, if we
axiomatise with the partial operation still in place (and take into account the natural ordering
possessed by a pseudogroup: that by restriction of mappings), the abstract description of a
pseudogroup that we arrive at is an inductive groupoid: a special type of small ordered category
in which all arrows are invertible. As one might expect, given their common origin, inverse
semigroups and inductive groupoids are very closely connected; it is largely via the ordering
on each that we may make the link.

As indicated above, the leading light in the development of the inductive groupoid concept
was Ehresmann, who realised that the ordering of a pseudogroup (that is, by restriction of
mappings — just as in a symmetric inverse semigroup) has a crucial role to play. Lawson [51,
p. 9] puts it succinctly when he observes that both Wagner and Preston axiomatised (IX ,◦),
where ◦ is the composition of (1), whilst Ehresmann axiomatised (IX , ·,⊆), where · is Veblen
and Whitehead’s partial composition, and ⊆ denotes the ordering of partial transformations
by restriction.

The motivation for Ehresmann’s work came from the study of so-called local structures:
structures defined on topological spaces by using pseudogroups in a manner analogous to the
way in which groups are used to define geometries. We therefore begin with a brief intro-
duction to local structures. The discussion here is based upon that of [51, §1.2]; however, in
contrast to [51], we will compose functions from left to right, for consistency with the rest of
the article.

3.1. Local Structures

Let X and Y be topological spaces. We call X our model space — so-called because our goal
is to build ‘structures’ on Y which look locally like pieces of X , and thereby use X to ‘model’
Y . We define a chart from X to Y (hereafter, X → Y ) to be a homeomorphism φ : U → V
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between open subsets of X and Y . An atlas A (X → Y ) is a collection of charts X → Y such
that

1Y =
⋃

φ∈A

φ−1φ. (2)

A partial atlas is a collection of charts which lacks property (2). Let Z be a third topological
space and suppose thatA is a partial atlas X → Y and thatB is a partial atlas Y → Z . Then
we may compose atlases to obtain a new partial atlas X → Z , given by

AB = {φψ : φ ∈A , ψ ∈B}.

We may also ‘invert’ the partial atlas A to obtain A −1 = {φ−1 : φ ∈ A}: a partial atlas
Y → X . Lawson [51, pp. 10–11] comments:

Intuitively, the existence of an atlas from X to Y means that Y can be described by
a family of overlapping sets each of which looks like a piece of X . An atlas, in the
geographical sense, provides a good example of an atlas in our sense from Rn to a
sphere. . . . The problem now arises of dealing with the overlaps between different
charts, and it is here that pseudogroups get into the picture.

Let φi : Ui → Vi and φ j : U j → Vj be charts in a (partial) atlas X → Y . We compose φi with
φ−1

j
to obtain the partial homeomorphism

φiφ
−1
j : (Vi ∩ Vj)φ

−1
i → (Vi ∩ Vj)φ

−1
j .

Lawson calls this a transition function of the atlas A . We see that the collection of all such
transition functions of a (partial) atlas A is contained in the pseudogroup Γ(X ) of all partial
homeomorphisms between open subsets of X , that is, AA −1 ⊆ Γ(X ). In the specific case of
differential geometry, we would take X to beRn and Y to be some n-dimensional differentiable
manifold M . We would then be able to use pieces of Rn to ‘model’ pieces of M , hence the
following comment from Lawson [51, p. 10]:

[a]t its simplest, differential geometry concerns spaces which look locally like
pieces of Rn and pseudogroups provide the glue to hold these pieces together.

Remaining in the general setting, we now let f , g be arbitrary partial bijections on a set A. We
attempt to define a new partial bijection f ∪ g on dom f ∪dom g ⊆ A. However, f ∪ g may fail
to be a partial bijection for two reasons:

(1) if dom f ∩ dom g 6= ;, then f and g may differ on this set, in which case ‘ f ∪ g ’ simply
does not make sense;

(2) f may map x ∈ dom f \ (dom f ∩ dom g) to the same value as g maps
y ∈ dom g \ (dom f ∩ dom g), in which case f ∪ g fails to be one-one.

If, however, f ∪ g does form a partial bijection, we say that f and g are compatible, and
denote the fact by f ∼ g. A set of partial bijections is said to be compatible if its elements
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are pairwise compatible. The compatibility relation will appear again in Section 5. Returning
to considerations of pseudogroups, we define a complete pseudogroup on a set X to be an
inverse subsemigroup Γ′ of Γ(X ) such that the union of every non-empty compatible subset of
Γ′ belongs to Γ′.

We are now finally in a position to define the notion of a local structure. Let X and Y be
topological spaces, with X our model space, and let Γ′ be a complete pseudogroup on X . An
atlasA (X → Y ) is compatible with Γ′ ifAA −1 ⊆ Γ′, that is, we require all transition functions
to belong to Γ′. LetA ,B be atlases X → Y which are both compatible with Γ′. IfAB−1 ⊆ Γ′,
we say thatA andB are compatible modulo Γ′. Let Γ′(X , Y ) denote the collection of all atlases
X → Y which are compatible with Γ′. It is possible to show that ‘compatibility modulo Γ′’ is an
equivalence relation on Γ′(X , Y ), and that every equivalence class has a maximum element [51,
Proposition 1.2.2]. This maximum element is called a complete atlas compatible with Γ′ and is
said, finally, to define a Γ′-structure (or local structure) on Y . Any atlasA (X → Y ) determines
a local structure on Y in this way, namely, that determined by the maximum element of the
equivalence class containingA . Lawson [51, p. 14] says of local structures that they

are analogues of the geometries in the Erlanger Programm and the pseudogroup
Γ′ replaces the group.

Lawson gives two examples of local structures on the same page. It was the abstract study of
such notions that led Ehresmann to the concept of an inductive groupoid, beginning in around
1947 (see [14], together with [3–5] on the history of groupoids).

3.2. Inductive Groupoids

I have so far made repeated use of the term ‘inductive groupoid’ without actually defining
it. In fact, I am not going to give a precise definition (since this may be found elsewhere;
see, for example, [51] and [40]), but attempt rather to give a more intuitive idea of what an
inductive groupoid is.

As I stated earlier, an inductive groupoid is a special type of small ordered category in
which all arrows are invertible. Let us start with the notion of a category. There are a couple
of different ways of viewing a category (contrast those of [45] and [51], for example), but
we will adopt a particularly algebraic point of view, which also enables us to view a category
as a directed graph. From this viewpoint, a category is a class upon which there is given a
partially-defined binary operation. A category which is based upon a set rather than a class
is termed a small category. All categories considered from here on will be small categories.
Within a category, we distinguish two types of elements: identities (or objects) on the one hand,
and arrows (or morphisms) on the other. In the representation of a category as a directed
graph, the identities become the vertices, whilst the arrows become the edges. Thus, there
are two identities associated with each arrow, namely, its initial and terminal vertices. For an
arrow x , the initial vertex/identity is denoted by d(x) (‘d’ for ‘domain’), whilst the terminal
vertex/identity is denoted by r(x) (‘r’ for ‘range’). We see that in Figure 1, f = d(y), g = r(y),
and so on. We note that the composition of two arrows is defined only when the range of
the first coincides with the domain of the second (cf. Definition 1). Thus, for example, in
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Figure 1, we may compose y with z and z with u, but we may not compose y with u. The
pictorial representation of a category breaks down slightly when we consider the composition
of identities. That we may not compose distinct identities is reasonably clear from the diagram,
but what is not obvious is that we may compose any identity j with itself, and that j · j = j.
Furthermore, we may compose any arrow with its domain on the left, and with its range on
the right; the domain serves as a left identity for the arrow, and the range as a right identity.
Thus, again referring to Figure 1, we have that the composition f · y exists and is equal to y;
similarly, we may compose y with g, with y as the result, and so on — by the above comments,
e · e exists and is equal to e. Furthermore, one of the features of composition in a category is
that it must be associative wherever it is defined, such as in the case of the composition y ·z ·u
in Figure 1; it is also clear from the diagram that a composition a · b · c is defined precisely
when the compositions a · b and b · c are defined.

•e

• •

• •f g

hi

y

z

u

v

Figure 1: Part of a small category represented as a directed graph, featuring identities e, f , g, h, i and
arrows y, z, u, v

Now that we have an intuitive idea of what constitutes a category, it is an easy next step to
grasp the notion of a groupoid, for a groupoid is simply a small category in which all arrows
are invertible. More precisely, for any arrow a with domain d and range r, there must exist an
arrow a−1 with domain r and range d such that the compositions a ·a−1 and a−1 ·a are defined,
and are equal to d and r, respectively.∗ We see that in Figure 1, u and v may be inverses for
each other (we require additional information in order to say whether or not they are in fact
inverses), but y and z do not have inverses; e and all the other identities are self-inverse.

An inductive groupoid is a special type of ordered groupoid, that is, a groupoid whose un-
derlying set is endowed with a partial ordering which satisfies certain conditions. For example,

∗Note that we differ here from Lawson [51]: the fact that he composes functions from right to left means that, for
him, d(a) = a−1 · a and r(a) = a · a−1.
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we demand that the ordering be compatible with composition wherever the latter is defined.
Another condition on the ordering deals, intuitively, with ‘restriction’ of domains. Suppose
that a is an arrow in a category and that a has domain d. Suppose also that e is some other
identity in the category, with e ≤ d. Then there exists a unique arrow b ≤ a whose domain is
e; such an arrow b is usually denoted by e|a (see Figure 2).

≤

•

•

•

•
d

e

a

e|a

Figure 2: Illustration of the ‘restriction’ of domains in an ordered category

Other similarly natural conditions are also required for an ordered groupoid. An inductive

groupoid is an ordered groupoid in which every pair of identities has a greatest lower bound
(which is also an identity).

The intuitive definition that we have given for an inductive groupoid may seem a little
contrived upon first glance. However, when we remember where this idea comes from, it
begins to seem much more natural. Recall Lawson’s observation that inductive groupoids
emerged as a result of Ehresmann’s axiomatisation of (IX , ·,⊆). It is not too difficult to see
that (IX , ·,⊆) does indeed form an inductive groupoid, often denoted by GX and termed the
symmetric groupoid on X — see [22], for example. The identities in GX are none other than the
partial identity transformations IA, for A⊆ X . Thus, the fact that the composition α·β is defined
only if imα = domβ corresponds to the abstract condition r(α) = d(β), where r(α) = Iimα

and d(β) = Idomβ . Moreover, restriction of mappings can be shown to satisfy the various
properties required of the partial ordering in the abstract definition. The ‘inductive’ condition
holds because IA∩B is the greatest lower bound of IA and IB. Under the Ehresmann–Schein–
Nambooripad Theorem (see below), GX corresponds to the symmetric inverse semigroup IX .

The development of this abstract, category-theoretic description of partial bijections of a
set has its origins in a 1957 paper by Ehresmann [13], in which the notion of a local structure
was treated rigorously: Schein [90, p. 194] comments that
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Ehresmann was probably the first to recognize the importance of category theory
for differential geometry.

However, Ehresmann’s ‘inductive’ condition was slightly more stringent than that given above
(see [51, §§1.6 and 4.4] for more details on Ehresmann’s publications). Nevertheless, Ehres-
mann achieved an axiomatisation of a pseudogroup of local transformations and it is in this
abstract form that he employed a pseudogroup to define the local structures described in Sec-
tion 3.1. Further work on the axiomatics of pseudogroups was carried out in [11, 12, 55], for
example.

3.3. The Ehresmann–Schein–Nambooripad Theorem

The theories of inverse semigroups and inductive groupoids developed separately for some
time following the definition of the relevant concepts. It seems that Ehresmann was aware of
the connection between his work and that of Wagner (see [51, p. 131]). However, it was
left to Schein to make the connection explicit [87, 89]. By relaxing Ehresmann’s original
conditions for ‘inductivity’, Schein proved that to any inverse semigroup there corresponds
an inductive groupoid and vice versa [89, p. 109 and Theorem 3.4]. Schein’s name for the
groupoids obtained from inverse semigroups was replenishable Croisot groupoids. In essence,†

the ‘replenishable’ part of the name expresses the inductive and ordering conditions; ‘Croisot
groupoid’ (in fact, simply a groupoid in our sense) was used for the underlying unordered
structure since such objects had appeared previously in a brief paper by Robert Croisot [10],
whose own name for them had been partial groups (groupes partiels). Croisot had arrived at
these objects by generalising Brandt groupoids (on which, see [37, §4] or [41, §6.2]).

As Schein observed, constructing an inductive groupoid from an inverse semigroup is rea-
sonably straightforward; we simply need to ‘restrict’ the semigroup’s multiplication in such a
way that we obtain an inductive groupoid from the same underlying set. The natural partial
order of the inverse semigroup (as defined, for example, in [44, §5.2]) then serves as the or-
dering in the inductive groupoid. The opposite construction is slightly trickier: we somehow
have to take a partial product and construct a fully-defined one. The key to this, however, had
appeared earlier in Ehresmann’s work, where the partial ordering in an inductive groupoid
had always played a central role. Indeed, Ehresmann observed that the partial order contains
the information lacking in the partial multiplication; together, they may be used to construct a
fully-defined, associative multiplication, and thereby construct an inverse semigroup from an
inductive groupoid.

The results of Schein were subsequently generalised to the regular case by K. S. S. Nam-
booripad, whereby regular semigroups may be associated with more general types of ordered
groupoids. Nambooripad [68] also placed the correspondence between inverse semigroups
and inductive groupoids in a more technical, category-theoretic setting. This new formula-
tion, together with a subsequent extension due to Nambooripad and Veeramony [69], were

†I say ‘in essence’ here because Schein did not define a replenishable Croisot groupoid to be an ordered object.
On the contrary, he defined a replenishable Croisot groupoid to be a Croisot groupoid which may be obtained
from an inverse semigroup in a specified way (see [40]). Nevertheless, he then proved that a Croisot groupoid is
replenishable if and only if it can be ordered in such a way as to make it inductive.
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gathered together into a single theorem by Lawson [51, Theorem 4.1.8], who named it the
Ehresmann–Schein–Nambooripad Theorem to reflect its disparate origins. As noted in the In-
troduction, the Ehresmann–Schein–Nambooripad Theorem, at its simplest, states that we may
always construct an inverse semigroup from an inductive groupoid and vice versa (see [51] or
[40]).

The Ehresmann–Schein–Nambooripad Theorem has provided a useful tool for inverse semi-
group theorists, who may study inductive groupoids as a way of informing them about inverse
semigroups: for example, Gilbert [22] studied the partial actions of inductive groupoids and
linked these with the partial actions of inverse semigroups. The theorem is tied very closely to
the development of the inverse semigroup concept and gives a nice expression of the fact that
inverse semigroups and inductive groupoids are two distinct, yet closely related, solutions to
the same problem.

4. The Munn Representation

In this section, we turn to the second of the major approaches to the structure of inverse
semigroups: the notion of a fundamental inverse semigroup and the Munn representation, both
due largely to W. D. Munn. Fountain describes these as Munn’s “most important and influential
contributions to semigroup theory” [20, p. 11].

4.1. Separation of Idempotents

To begin, we need the notion of an idempotent-separating morphism: a (homo)morphism
which restricts to an isomorphism on idempotents, that is to say, it ‘separates’ idempotents.
Such morphisms made an early appearance in Preston’s DPhil thesis [74], where they ap-
peared amongst material that was seemingly inspired by group-theoretic considerations, such
as the notion of a ‘normal’ subsemigroup of an inverse semigroup (for further comments on
Preston’s thesis, see [41, §10.6]). Idempotent-separating morphisms went on to be studied
by other authors (indeed, see Section 5). Allied to the notion of an idempotent-separating
morphism is that of an idempotent-separating congruence: a congruence which has at most
one idempotent in each congruence class. In particular, Howie [43] showed that any inverse
semigroup has a maximum idempotent-separating congruence: an idempotent-separating con-
gruence µ which contains every other idempotent-separating congruence on the semigroup,
that is, for any idempotent-separating congruence ρ, if x ρ y , then x µ y . Howie gave the
following characterisation of µ:

aµ b⇐⇒ a−1ea = b−1eb, for all e ∈ E(S). (3)

There may indeed also have been some group-theoretic inspiration behind the study of idempotent-
separating congruences; Lawson [51, p. 138] comments:

Of all the types of congruences on inverse semigroups, it is the idempotent-separating
congruences which behave most like group congruences, in that they are entirely
determined by their Kernels [sic] [namely, the unions of all congruence classes that
contain an idempotent].
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To return to µ, we note that, as Munn [63] showed, this is also the largest congruence con-
tained in Green’s relation H . Further early results on µ are due to Scheiblich [86] and
D. G. Green [31]. We observe also that the congruence µ had earlier appeared in work of Wag-
ner [99], who had described various properties of it: the ‘maximum idempotent-separating’
property, for example, is implicit in Wagner’s Theorem 28. The characterisation (3) was later
obtained independently by Shiryaev [93].

4.2. Fundamental Inverse Semigroups

The congruence µwent on to play an important role in a 1970 paper by Munn [65]. In this
paper, an inverse semigroup S is said to be fundamental if µ is the equality relation, that is, sµ t

if and only if s = t. Since equality is the smallest congruence on a semigroup (it is contained in
every other congruence), and since µ is the maximum idempotent-separating congruence on
an inverse semigroup, this means that a fundamental inverse semigroup has no idempotent-
separating congruences other than equality. Thus, fundamental inverse semigroups represent
one extreme in the study of idempotent-separating congruences. Munn’s goal was to describe
the structure of fundamental inverse semigroups. The principal tool for this turned out to be
a particular semigroup introduced by Munn in a 1966 paper.

Let E be a semilattice; IE denotes the symmetric inverse semigroup on E. We define a
semigroup TE to be the inverse subsemigroup of IE consisting of all isomorphisms between
principal ideals of E. The semigroup TE is called the Munn semigroup (of E). It is possible
to show that the semilattice of idempotents of TE is isomorphic to E (see, for example, [44,
Theorem 5.4.1]). Furthermore, Munn [64] showed that for any inverse semigroup S there is
a morphism S → TE(S) which maps E(S) isomorphically onto E(TE(S)) and which induces the
maximum idempotent-separating congruence on S. Lawson [51, p. 141] leaves us in no doubt
about the significance of the Munn semigroup:

This inverse semigroup is second only to the symmetric inverse monoid in its im-
portance in inverse semigroup theory. It is particularly useful in constructing ex-
amples of inverse semigroups with a given semilattice of idempotents.

The Munn semigroup plays a central role in Munn’s description of fundamental inverse semi-
groups: the fundamental representation, nowadays termed the Munn representation. This is a
morphism α : S → IE(S), where the partial bijection aα = αa is given by eαa = a−1ea on the
domain E(S)aa−1. The Munn representation thus gives a rather different representation of an
inverse semigroup from that of Wagner and Preston;‡ unlike the Wagner–Preston representa-
tion, the Munn representation is not necessarily faithful: it is faithful only if S is fundamental
(see [82] for efforts to make the Munn representation faithful for any S). The Munn repre-
sentation has also become a useful tool in the study of congruence-free inverse semigroups
(inverse semigroups with no non-trivial congruences) — see [72, §IV.3].

‡We note that Preston had in fact carried out some preliminary investigations on the representation of inverse
semigroups by partial bijections of their semilattices of idempotents in his early work; see, for example, [77,
Theorem 2].
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Fountain [20, Theorem 2.5] presents the following theorem, which combines results of
Munn’s 1966 and 1970 papers:

Theorem 1. Let S be an inverse semigroup with semilattice E of idempotents. Then

(1) TE is an inverse subsemigroup of IE;

(2) if α : S→IE(S) is the fundamental representation, then imα is a full subsemigroup of TE(S)

(that is, it contains all the idempotents of TE(S)), imα∼= S/µ and imα is fundamental;

(3) S is fundamental if and only if it is isomorphic to a full inverse subsemigroup of TE(S).

Note, in particular, that TE is itself fundamental. Besides those results listed above, Munn
also gave canonical constructions (by means of partial bijections) for bisimple inverse semi-
groups, simple inverse semigroups, and inverse semigroups with no non-trivial groups as ho-
momorphic images. Each of these was characterised using a special type of subsemigroup of
TE . Fundamental inverse semigroups thus live up to their name by providing a foundation on
which to construct various different classes of inverse semigroups.

Although we have focused on Munn’s contributions to this aspect of semigroup theory
which bears his name, we note that he was not the only person to consider such problems.
Indeed, Wagner [100–102] studied fundamental inverse semigroups independently around the
same time, under the name of antigroups.§ As in his earlier investigation of inverse semigroups,
Wagner’s work on fundamental inverse semigroups was based heavily on the theory of binary
relations: in [100], for example, the majority of the results are theorems on these, which are
then used to prove results on fundamental inverse semigroups. The main result of this paper
is the following extension of Theorem 1 [100, Theorem 11]:

Theorem 2. An inverse semigroup S is fundamental if and only if it is isomorphic to a semigroup

of homeomorphisms between open sets of a T0-topological space.

In the years since its introduction, a considerable theory has grown up around the notion
of a fundamental inverse semigroup — far too much to cover here, so I refer the reader to the
standard texts on inverse semigroups: [44, §5.4], [72, §IV.2] and [51, §5.2]. One appearance
of fundamental inverse semigroups in the literature that is worth noting, however, is Mills’
use of them in the study of partial symmetries of a convex polygon in the plane [61]. Like
certain earlier techniques of Rees and Clifford (discussed in [37] and [41, Chapter 6]), Munn’s
general approach to the study of fundamental inverse semigroups has provided a model for
many subsequent results, a flavour of which will be given (in a specific context) in Section 6.2.

5. Proper Inverse Semigroups and the P-Theorem

Our third and final approach to the study of the structure of inverse semigroups is derived
in large part from the work of McAlister [57] (though some elements were also present in a

§Shiryaev [93] called them rigid inverse semigroups, whilst Petrich [72, p. 135] suggested the name E-faithful

inverse semigroup, in view of the fact that the Munn representation is faithful whenever S is fundamental.
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1939 paper by Stanisław Goła̧b, as we will see). This is the study of so-called E-unitary (or
proper) inverse semigroups, culminating in the celebrated P-Theorem, which gave a complete
description of these semigroups.

5.1. The Minimum Group Congruence

To begin, we should define the notion of a proper inverse semigroup, and in order to do
this, we need that of the ‘minimum group congruence’. Any congruence on a semigroup for
which the corresponding factor semigroup is a group is called a group congruence. Munn [62,
Theorem 1] showed that if S is an inverse semigroup, then the congruence σ on S given by

sσ t ⇐⇒ ea = eb, for some e ∈ E(S),

is the minimum group congruence on S (that is, a group congruence which is contained in
every other group congruence).¶ Note that σ is necessarily universal in any semigroup with
a zero. Since σ is the smallest possible group congruence, the factor semigroup S/σ is the
largest possible group that can be constructed in this way; for this reason, it is often termed
the maximum group image of S.

It is worth noting the form that σ takes when we move away from the abstract setting
and consider partial bijections. The only idempotent partial transformations on a set X are the
empty transformation ǫ and the partial identity transformations IA, for A⊆ X . Thus, for partial
bijections α,β on X , we have

ασβ ⇐⇒ IAα= IAβ , for some A⊆ X .

But the effect of composing α (respectively, β) with IA on the left is to restrict α (respectively,
β) to A; we can see this by applying (1). Therefore, the minimum group congruence takes the
following form in any semigroup of partial bijections:

ασβ ⇐⇒ α|A = β |A, for some A⊆ X . (4)

Note, however, that σ is universal in IX , indeed in any semigroup of partial bijections that
contains ǫ.

Returning to the matter of proper inverse semigroups, we are now in a position to state
that an inverse semigroup S is proper if σ ∩ R is equality, where R denotes Green’s right-
hand relation. In a less compact form, this says that if sσ t and sR t, then s = t. The first
appearance of proper inverse semigroups in the literature seems to have been in the work of
Saitô [84], who considered them in the ordered case and obtained a characterisation which
was subsumed by that of McAlister (see below).

¶A different characterisation was given by Howie [43]; this may be found in [44, Theorem 5.3.5]. Although the
minimum group congruence was exploited more fully by later authors, such as Munn [62], it was in fact present
in a pair of earlier works on inverse semigroups and related topics, namely, those of Goła̧b [24] and Rees [81]
(on which, see §10.2 and §10.6 of [41], respectively). Both Goła̧b and Rees were working with partial bijections,
and thus (in essence) defined σ in the form given in (4). We note also that, as with so much else in the theory of
inverse semigroups, σ put in a brief appearance in the work of Wagner [98, Theorem 4.39].
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Another special property of inverse semigroups that it is useful to define at this point is the
property of being E-unitary. An inverse semigroup S is said to be E-unitary if, for any s ∈ S

and any e ∈ E(S), es ∈ E(S) implies that s ∈ E(S) (that is, E(S) forms a unitary subset of S).
The reason that this concept is useful is that it does in fact give an alternative characterisation
of proper inverse semigroups: an inverse semigroup is proper if and only if it is E-unitary
(see [44, §5.9]). We will use both characterisations (and, indeed, both names) throughout
this section. Note that, rather than ‘proper’, O’Carroll [70] used the term reduced for these
inverse semigroups. Indeed, Preston [78] argued that this is a more natural term, since such
a semigroup S occurs when the idempotent of S/σ is smallest: when E(S) is a σ-class. Note
that the ‘one-sidedness’ in the definitions of ‘proper’ and ‘E-unitary’ is in fact only apparent: a
proper inverse semigroup may equivalently be defined by demanding that σ ∩L be equality,
whilst we may replace ‘es’ by ‘se’ in the definition of an E-unitary inverse semigroup (again,
see [44, §5.9]).

5.2. The Covering Theorem

As well as obtaining the P-Theorem (to be stated below) in papers of 1974, McAlister also
introduced the notion of an E-unitary (or proper) cover for an inverse semigroup (for a gen-
eral introduction to covers for semigroups, see [19]). Such a notion contrasts with that of the
much-studied ‘embedding problems’ for semigroups: the question of whether a given semi-
group can be embedded in another semigroup with ‘nice’ properties, for example, a group
(see [41, Chapter 5] and [42]). The problem of finding covers for semigroups is in some
sense the ‘opposite’ problem: whereas the embedding problem takes a semigroup S and seeks
an injective morphism from S into some other semigroup T with particular properties, the
‘covering problem’ seeks a surjective morphism from T onto S. In particular, as noted above,
McAlister sought an E-unitary cover for an arbitrary inverse semigroup S: an E-unitary semi-
group T and a surjective morphism φ such that S is the homomorphic image of T under φ.
In fact, McAlister went further; he showed that such a cover exists for any inverse semigroup
via an idempotent-separating morphism (which, intuitively, has the effect of making the cover
‘tighter’) — the so-called Covering Theorem:

Theorem 3 ([51, Theorem 2.2.4]). Every inverse semigroup is the image of a proper inverse

semigroup under an idempotent-separating morphism.

Lawson [50, p. 73] observes that Gérard Joubert, a student of Ehresmann, had earlier
proved a result which is equivalent to the Covering Theorem [46].

We will link E-unitary covers with the P-Theorem below, but we must first define the notion
of a P-semigroup.

5.3. P-semigroups

As already commented, McAlister’s P-Theorem gives a complete characterisation of the
structure of proper inverse semigroups. The central concept in the P-Theorem is that of a P-

semigroup, a semigroup constructed according to a particular recipe, which we now describe,
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following the account of Howie [44, §5.9]. LetX be a partially ordered set (with partial order
≤), and let Y be a subset of X . We assume the following properties of Y :

(1) Y is a ∧-semilattice, that is, every pair of elements a, b ∈ Y has a greatest lower bound
a ∧ b ∈ Y with respect to ≤;

(2) Y is an order ideal of X , that is, if a ∈ Y and b ≤ a, for any b ∈ X , then b ∈ Y .

Now suppose that G is a group (with identity e) that acts on X on the left by order automor-
phisms (with the action denoted by ·). We may express this as follows:

(3) for all a ∈ X , e · a = a;

(4) for all g ∈ G and all a, b ∈ X , a ≤ b if and only if g · a ≤ g · b;

(5) for all g,h ∈ G and all a ∈ X , g · (h · a) = (gh) · a.

Note that condition (4) gives order-preservation, and (5) gives the ‘morphism’ property; con-
ditions (3) and (5) imply that the action is by bijections. Going further, the triple (G,X ,Y ) is
called a McAlister triple if it satisfies the following extra conditions:

(6) for each b ∈ X , there exist g ∈ G and a ∈ Y such that g · a = b;

(7) for all g ∈ G, Y ∩ g · Y 6= ;.

Using a McAlister triple we define a semigroup P(G,X ,Y ) to have underlying set

{(a, g) ∈ Y × G : g−1 · a ∈ Y } (5)

and multiplication
(a, g)(b,h) = (a ∧ g · b, gh).

As McAlister showed, any semigroup constructed in this way is an inverse semigroup with
(A, g)−1 = (g−1A, g−1), and, moreover, it is proper. Such a semigroup is termed a P-semigroup.
The P-Theorem runs as follows (see, for example, [51, Theorem 7.2.15]):

Theorem 4. Every proper inverse semigroup is isomorphic to a P-semigroup.

In this way, E-unitary inverse semigroups were described in a similar spirit to Rees’ charac-
terisation of completely 0-simple semigroups [80]. McAlister’s original proof of this theorem
was somewhat involved, but it wasn’t long before Schein [88] and Munn [66] provided shorter
ones. Indeed, the P-Theorem seems to exert a certain fascination amongst semigroup theo-
rists, as several distinct proofs have been provided over the years: besides those of Schein (to
be dealt with shortly) and Munn (described by McAlister [59, p. 138] as a “gem”), there are
proofs by Reilly and Munn [83], Petrich and Reilly [73], and Wilkinson [103], for example. A
homological proof was given by Loganathan [54], whilst Margolis and Pin [56] proved the the-
orem using the Grothendieck construction. Perhaps the most recent proof is that of Kellendonk
and Lawson [47] in the context of partial group actions; indeed, Petrich and Reilly’s previous
approach to proper inverse semigroups had also been by partial actions — using these, it is
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possible to avoid the need for Y in the construction, which means furthermore that this tech-
nique may be adapted to some of the generalisations of inverse semigroups that we deal with
in Section 6, for which the approach involving total actions does not work. See [52] for a list
of proofs of the P-Theorem, as well as for examples of E-unitary inverse semigroups.

5.4. Background to the Covering and P-Theorems

McAlister linked E-unitary covers for semigroups with isomorphism extension theorems
for groups. He noted [58, p. 9] that Higman, Neumann and Neumann [35] had shown that
any group G may be embedded in a group H in such a way that every isomorphism between
subgroups of G is induced by conjugation by an element of H. McAlister observed that a P-
semigroup is easily obtained from this set-up. Let LG denote the ∧-semilattice of subgroups
of G, and let LH denote that of H. Then H acts on LH , and LG is an ideal of LH , which
means that we can construct the P-semigroup P(H, LH , LG). For any subgroup A of H, let
ig |A denote the isomorphism of A onto g−1Ag, induced by conjugation by g ∈ H. Let AG be
the inverse semigroup of isomorphisms between subgroups of G. Then the map which sends
(A, g) ∈ P(H, LH , LG) to ig |A is an idempotent-separating morphism onto AG , that is, an E-
unitary cover for AG . McAlister [58, p. 9] commented:

What this example points out, I think, is that the search for E-unitary covers for
inverse semigroups has a natural interpretation. It fits into the framework of iso-
morphism extension theorems like that of Higman and the Neumanns and thus,
in turn, is related to questions about amalgamations.

In [59], McAlister described the background to his construction of P-semigroups and his proof
of the P-Theorem. He commented that during the 1960s, much work had been done on the
structure of inverse semigroups. There existed various decompositions whereby inverse semi-
groups could be studied in terms of ‘simpler’ components, such as groups and semilattices (for
a survey of these various approaches, see [78]). However, there was a problem with these
structure theorems:

The building blocks . . . were simple and natural. The interrelations between the
building blocks were not. [59, p. 134]

In many cases, these interrelations were complicated and considerably less than transparent.
McAlister commented:

Frankly, the structure theory of inverse semigroups had reached the point of di-
minishing returns. One could reasonably say that each new theorem resulted in a
gain of information but a loss of insight. [59, p. 134]

A new approach was therefore needed. This was provided by Scheiblich’s construction of the
free inverse semigroup (which is proper — see [44, §5.10]), in which it is possible to see
many similarities with the construction of a P-semigroup ([85]; see also [59, pp. 134–135]).
Working on the principle that “if an object is simple [then] so are its homomorphic images”
[59, p. 135], McAlister set out to
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construct a family of inverse semigroups from simple, familiar, naturally related
objects in such a way that every inverse semigroup is a nice homomorphic image
of a member of the family. [59, p. 136]

Scheiblich’s construction provided a guide and the result was the notion of a proper inverse
semigroup, via that of an E-unitary cover. As we have seen, the “simple, familiar, naturally
related objects” are partially ordered sets, semilattices and groups; “nice” in this context means
‘idempotent-separating’. McAlister’s Covering and P-Theorems were very much simpler than
many of the other pre-existing structure theorems for inverse semigroups, so much so that
A. H. Clifford’s initial reaction to these theorems was to say “That can’t possibly be true” [59,
p. 137].

5.5. A Naive Approach

I have glossed over much of the technical development of proper inverse semigroups. As
in previous sections, my aim is to provide an intuitive understanding. To this end, we now
turn to an article of 1980, in which McAlister provided

a naive approach to the structure of inverse semigroups to motivate the introduc-
tion of P-semigroups and E-unitary inverse semigroups. [58, p. 1]

Although this is not the way in which the notion of an E-unitary inverse semigroup emerged,
it is instructive to consider this “naive approach”.

McAlister began by recalling the easy observation that in any inverse semigroup S, there
is a group He around each idempotent e, consisting of those elements which have e as both a
left and a right identity. However, these groups do not necessarily exhaust S and it need not
be the case that HeH f ⊆ He f . As I have described elsewhere ([37, §7] and [41, §6.6]), Clifford
had faced this very problem, but, in a paper of 1941, had shown that if the idempotents of
S are central, then not only is S the (disjoint) union of the groups He, but also HeH f ⊆ He f .
He had shown further that the multiplication in S is determined by a family of morphisms
φe, f : He → H f for e ≥ f . We see that in this case S is completely determined by the groups
He and its semilattice of idempotents. As McAlister [58, p. 2] commented:

In view of this, it is natural to wonder to what extent inverse semigroups can be
constructed from groups and semilattices. Indeed much of the structure theory of
inverse semigroups has been concerned with this problem.

The most naive way to combine a group and a semilattice is simply to take their direct
product. If we do this, the result is certainly an inverse semigroup, but it is an inverse semi-
group with central idempotents, so we cannot construct every inverse semigroup in this way.
As McAlister [58, p. 2] noted, “[o]ne needs a mechanism to account for the non-centrality of
idempotents”. He suggested that such a mechanism may be found in the semidirect product
construction: suppose that a group G acts on the left of a semilattice E by automorphisms —
the semidirect product of E by G is the set of all pairs (e, g) ∈ E × G, under the multiplication

(e, g)( f ,h) = (e(g · f ), gh).
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Such a semidirect product, P(G, E, E), is an inverse semigroup and, moreover, it is an in-
verse semigroup with non-central idempotents. However, once again, this construction will
not serve to describe all inverse semigroups, this time because it cannot have a zero element.
Nevertheless, such a semidirect product can be connected with a geometric example [58, Ex-
ample 1.3]. Let An denote n-dimensional real affine space; a geometric figure is a compact
connected subset of An. The set F of geometric figures forms a semilattice under convex join,
and the n-dimensional affine group G acts on F via

g · a = ag−1,

for a ∈ F and g ∈ G, where ag−1 denotes the result of applying the transformation g−1 to
the figure a. We may of course associate a semidirect product P(G, F, F) with this action.
McAlister [58, p. 4] observed that P(G, F, F) has a particularly interesting ideal structure, but
that it is “not quite so satisfying” from the geometric viewpoint. The problem is that the set
of all geometric figures is rather too large to handle; we should ‘localise’ them in some way.
We do this by restricting our attention to those geometric figures which contain the origin; let
the set of all such be denoted by E. However, this causes a new problem: G may translate
elements of E out of E, and so we cannot construct the semidirect product of E by G. Instead,
we limit ourselves to those pairs (a, g) ∈ E × G for which g−1 · a = ag also lies in E. That is,
we confine our attention to the set

{(a, g) ∈ E × G : g−1 · a ∈ E},

but we retain the semidirect product multiplication. We denote this new construction by
P(G, F, E) and observe that it is an inverse subsemigroup of P(G, F, F). Comparing it also with
(5), we see that, as the notation suggests, P(G, F, E) is a special case of a P-semigroup. McAl-
ister noted that, just like semidirect products, P-semigroups in which the group is non-trivial
cannot have a zero element, and so not all inverse semigroups can be realised as P-semigroups.
Thus, the ‘goal’ of these considerations has not been reached — we have not managed to give
a complete description of inverse semigroups in terms of groups and semilattices — but we
have derived an interesting class of inverse semigroups to study. In order to study inverse semi-
groups with zero which satisfy something like the E-unitary property, we must instead consider
so-called 0-E-unitary inverse semigroups: an inverse semigroup with zero is 0-E-unitary when-
ever, for any non-zero idempotent e, e ≤ s implies that s is idempotent. For more details on
these semigroups, see [51, Chapter 9].

5.6. Goła̧b’s Approach

Earlier on, I indicated that the 1939 work of Goła̧b contained the ingredients for the proof
of the P-Theorem (to quote [92, p. 152], it contained the “key idea”). In order to explain
this, we need to recall the compatibility relation from Section 3. This was a relation ∼ that we
defined on partial bijections f , g by the rule that f ∼ g if and only if f ∪ g is also a partial
bijection. Lawson [51, Proposition 1.2.1] demonstrates that f ∼ g precisely when f g−1 and
f −1 g are partial identity transformations. Thus, when we pass from partial bijections to the
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abstract setting, the compatibility relation on an inverse semigroup S is defined as follows:

s ∼ t ⇐⇒ st−1, s−1 t ∈ E(S).

The relation∼ is not an equivalence relation, since it fails to be transitive in general. This begs
the question: for which inverse semigroups is ∼ transitive? The answer: ∼ is transitive on an
inverse semigroup S if and only if S is E-unitary. Moreover, in an E-unitary inverse semigroup,
∼ coincides with the minimum group congruence σ [51, Theorem 2.4.6]. The transitivity of
the compatibility relation means that an E-unitary inverse semigroup S of partial bijections
has the ‘unique extension’ property (as used by Goła̧b — see [41, p. 257]): any α ∈ S may be
extended to at most one partial bijection on a set A⊇ domα.

In explaining Goła̧b’s approach to the P-Theorem, we follow Schein [91]. Let Σ be any
inverse semigroup of partial bijections in which the compatibility relation is transitive. Thus,
the union (as partial mappings, in the sense of p. 298) of any collection of elements from
Σ is also a partial bijection. Since ∼ and σ coincide in such a semigroup, any σ-class in Σ
is a compatible subset (p. 298). For any α ∈ Σ, let α denote the partial bijection formed as
the union of all elements of the σ-class of α. It is reasonably clear that α = α|domα and also
that such partial bijections α are in a one-one correspondence with the σ-classes of Σ. Let
G = {α : α ∈ Σ}. Defining an operation α ◦ β = αβ in G, we obtain a group (G,◦) which is
isomorphic toΣ/σ. Next, we observe that the elements α ∈ Σ are in a one-one correspondence
with pairs of the form (domα,α). This becomes an isomorphism if we define the following
operation on the pairs (domα,α):

(domα,α)(domβ ,β) = ((domβ)α−1,α ◦ β).

We note that Y = {domα : α ∈ Σ} is a semilattice isomorphic to E(Σ), and, moreover, that
Y is contained in X , the inclusion-ordered set of sets of the form (domβ)α−1, for α,β ∈ Σ.
Finally, we observe that G acts on X :

α · domβ = (domβ)α−1.

In this way, the G, X and Y that we have just constructed serve as the ingredients for the
representation of Σ as a P-semigroup P(G, X , Y ). An abstract version of this proof was given
by Schein in 1975 as his new proof of the P-Theorem. He commented, however, that what is

remarkable is that after [this] was published, I discovered that something like the
argument leading to this result was made as early as in 1939 by Goła̧b . . . [91]

Indeed, analogues of α, and also the composition ◦, appear in Goła̧b’s work. The fact that
he was not working with the full composition of (1) (see [41, §10.2]) does not seem to have
hampered him. In fact, Schein noted:

IfΣ does contain the empty transformation [which Schein denoted here by ;], then
any two elements of Σ are compatible (because each one is compatible with ; and
the compatibility relation was supposed to be transitive), so Σ is a semilattice,
and the whole theorem degenerates. Thus we may as well consider the case when
; /∈ Σ.
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Allowing for the lack of ;, the objects studied by Goła̧b (specifically, his ‘pseudogroups in the
narrower sense’ — see [41, p. 257]) were in fact E-unitary inverse semigroups. The avoidance
of the empty transformation may not have caused such a great difficulty after all.

By way of concluding this section, we comment upon the legacy of McAlister’s work. Just
like the constructions described in Section 4, as well as those of Rees and Clifford (see the com-
ments in [37] and [41, Chapter 6]), McAlister’s Covering and P-Theorems have provided mod-
els for the research of subsequent semigroup theorists. We mention, in particular, O’Carroll’s
Embedding Theorem ([71]; see also [51, Theorem 7.1.5]), which was proved on the basis of
the P-Theorem, and provides a useful characterisation of proper inverse semigroups:

Theorem 5. An inverse semigroup is proper if and only if it can be embedded in the semidirect

product of a semilattice by a group.

Moreover, there are several analogues of the P-Theorem in the literature for various gen-
eralisations of inverse semigroups: see the next section. McAlister’s goal of constructing a
family of inverse semigroups from “simple, familiar, naturally related objects” (see p. 310)
was certainly achieved.

6. Some generalisations

I give here a brief indication (with just one or two sample results) of some of the ways
in which the constructions and notions of the foregoing sections have been extended to more
general classes of semigroups. In the interests of saving space, I confine my attention mostly
to non-regular generalisations of inverse semigroups (specifically, those discussed in [36]).
Moreover, I do not define any of these semigroups here — I instead refer the reader to the
sources cited. A more detailed survey of the use of these methods in the non-regular setting
may be found in [29].

6.1. Inductive Categories

The connection between inverse semigroups and inductive groupoids was first generalised
to the ample semigroups of Fountain [17, 18] by Armstrong [1], where the object to which
an ample semigroup corresponds is an inductive cancellative category. The latter is obtained
from an inductive groupoid by dropping the requirement that all arrows be invertible (mod-
ifying the statements of certain of the defining axioms in order to take account of the lack
of inverses), but nevertheless insisting that their composition be ‘cancellative’ in an appro-
priate sense. Successive generalisations of Armstrong’s result were given by Lawson, first
for what are now termed full restriction semigroups and inductive unipotent categories, and
then for arbitrary restriction semigroups and arbitrary inductive categories. In addition, Law-
son provided a category-theoretic formulation of these results, in which terms the original
Ehresmann–Schein–Nambooripad Theorem may also be expressed (see [51, Theorem 4.1.8]),
although this language was not employed by Armstrong. Further technical details were added
to the general case in [38]. The historical development of these generalisations is dealt with
in more detail in [40], where their precise formulations may also be found.
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We note that inverse, ample and restriction semigroups are all inherently ‘two-sided’: ele-
ments of inverse semigroups have two-sided inverses, whilst members of the latter two classes
of semigroups come equipped with two unary operations. The connection between ample and
restriction semigroups and the appropriate classes of inductive categories therefore emerges as
being quite natural: the unary operations become the domain and range operations. Neverthe-
less, it is also possible to extend the ‘Ehresmann–Schein–Nambooripad’ approach to one-sided

restriction semigroups (in which only one unary operation is present). In this case, however,
we do not employ inductive categories, but objects that have been dubbed inductive constel-

lations. These are ‘one-sided’ analogues of inductive categories, in which we have a notion
corresponding to ‘domain’, but no concept of ‘range’. The definition of these objects, together
with the formulation of an Ehresmann–Schein–Nambooripad-type Theorem for these and left
restriction semigroups, may be found in [30, 39].

6.2. Munn-type Representations

The first generalisation of Munn’s major result (Theorem 1) was derived by Fountain [18]
for a particular class of so-called adequate semigroups, which, in common with several of the
other classes of non-regular semigroups dealt with here, may be defined in terms of the ‘starred’
generalisations of Green’s relations. Fountain observed, however, that, unlike an inverse semi-
group, an adequate semigroup need not have a maximum idempotent-separating congruence.
Recall, however, that Munn [63] had observed that the maximum idempotent-separating con-
gruence on an inverse semigroup is the largest congruence contained in Green’s relation H .
Taking inspiration from this, Fountain therefore pursued a different line of enquiry by inves-
tigating the largest congruence contained in the starred Green’s relationH ∗; any congruence
contained in H ∗ is idempotent-separating, but the converse does not necessarily hold. Fur-
thermore, as in other situations in the study of adequate semigroups, it transpired that in order
to develop a suitable analogue of Theorem 1 (using the same notion of Munn semigroup as in
Section 4), it was necessary to deal with a special class of adequate semigroups, namely ample
semigroups:

Theorem 6 ([18, Proposition 4.5]). For any ample semigroup S, there is a morphism

S→ TE(S) which maps E(S) isomorphically onto E(TE(S)) and which induces the largest congru-

ence contained inH ∗.

Further generalisations of the notions of a Munn semigroup and of a fundamental inverse
semigroup to other non-regular cases were later obtained in [15, 16, 21, 27, 48].

Generalisations of Munn’s methods to the regular case were considered in [32, 33, 67]. It
is interesting to note also that Zhitomirskii [104] even extended the Munn representation to
Wagner’s generalised heaps (on which, see [41, §10.4]).

6.3. Proper Semigroups of Other Types

Recall the observation in Section 5 that, although defined separately, the notions of ‘proper’
and ‘E-unitary’ coincide for inverse semigroups. This, however, is not the case for the non-
regular generalisations of inverse semigroups that we deal with here, an observation first made
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by Fountain [17, Example 3]. Efforts to generalise McAlister’s notions to the non-regular case
appear therefore to have focused on the semigroups which are ‘proper’ in a suitable sense
(obtained from the original definition by replacement of Green’s relations with their appro-
priate generalisations). We have, for example, the following right ample (monoid) version of
Theorem 3 (McAlister’s Covering Theorem):

Theorem 7 ([17, Theorem 3.3]). Every right ample monoid is the image of a proper right am-

ple monoid under an L ∗-morphism, where an L ∗-morphism is a morphism θ for which sL ∗ t

whenever sθ = tθ .

Note that such an L ∗-morphism is idempotent-separating. Fountain subsequently de-
scribed a generalisation of McAlister’s P-semigroups, which he termed McAlister monoids, and
used these to derive the following generalised P-Theorem:

Theorem 8 ([17, Theorem 4.3]). Every proper right ample monoid is isomorphic to a McAlister

monoid.

These theorems are easily adapted to the semigroup case. Versions for two-sided ample
semigroups appear in [49] as Theorems 3.8 and 2.11, respectively. Further generalisations of
McAlister’s notions in certain one-sided non-regular cases appeared in [25, 26, 28]. Results
for two-sided restriction semigroups took a little longer to develop, but may be found in [8, 9].
We note that the generalisation to the two-sided cases here are rather harder than to the one-
sided, and, to pick up on the comments at the end of Section 5.3, are achieved through the
use of partial actions.

Regular generalisations of the P-Theorem are discussed in [94], whilst versions for in-
ductive groupoids feature in [23, 60]; the inductive groupoids to which E-unitary inverse
semigroups correspond under the Ehresmann–Schein–Nambooripad Theorem are termed in-

compressible inductive groupoids.
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