EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 2, 2021, 551-577
ISSN 1307-5543 - ejpam.com
Published by New York Business Global


# $\phi$-Prime and $\phi$-Primary Elements in Lattice Modules 

Ashok V. Bingi ${ }^{1, *}$, C. S. Manjarekar ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, St. Xavier's College (autonomous), Mumbai-400001, Maharashtra, India<br>${ }^{2}$ Formerly at Department of Mathematics, Shivaji University, Kolhapur-416004, Maharashtra, India


#### Abstract

In this paper, we introduce $\phi$-prime and $\phi$-primary elements in an $L$-module $M$. Many of its characterizations and properties are obtained. By counter examples, it is shown that a $\phi$ prime element of $M$ need not be prime, a $\phi$-primary element of $M$ need not be $\phi$-prime, a $\phi$ primary element of $M$ need not be prime and a $\phi$-primary element of $M$ need not be primary. Finally, some results for almost prime and almost primary elements of an $L$-module $M$ with their characterizations are obtained. Also, we introduce the notions of $n$-potent prime(respectively $n$-potent primary) elements in $L$ and $M$ to obtain interrelations among them where $n \geqslant 2$.


2020 Mathematics Subject Classifications: 06D10, 06E10, 06E99, 06F10, 06F99
Key Words and Phrases: $\phi$-prime element, $\phi$-primary element, almost prime element, almost primary element, $n$-potent prime element, $n$-potent primary element

## 1. Introduction

In multiplicative lattices, the study of $\phi$-prime and $\phi$-primary elements is done by C. S. Manjarekar and A. V. Bingi in [16]. Our aim is to extend the notion of $\phi$-prime and $\phi$-primary elements in a multiplicative lattice to the notion of $\phi$-prime and $\phi$-primary elements in a lattice module and study its properties. According to [1], a proper element $N$ of an $L$-module $M$ is said to be prime if for all $A \in M, a \in L, a A \leqslant N$ implies either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. According to [10], a proper element $N$ of an $L$-module $M$ is said to be primary if for all $A \in M, a \in L, a A \leqslant N$ implies either $A \leqslant N$ or $a \leqslant \sqrt{N: I_{M}}$. By restricting where $a A$ lies, weakly prime and weakly primary elements in lattice modules are studied by C. S. Manjarekar et. al. in [19] and [20], respectively. A proper element $N$ of an $L$-module $M$ is said to be weakly prime if for all $A \in M, a \in L, O_{M} \neq a A \leqslant N$ implies either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. A proper element $N$ of an $L$-module $M$ is said to be weakly primary if for all $A \in M, a \in L, O_{M} \neq a A \leqslant N$ implies either $A \leqslant N$

[^0]or $a \leqslant \sqrt{N: I_{M}}$. Keeping this in mind, in this paper we define and study $\phi$-prime and $\phi$-primary elements of an $L$-module $M$.

A multiplicative lattice $L$ is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $e \in L$ is called meet principal if $a \wedge b e=((a: e) \wedge b) e$ for all $a, b \in L$. An element $e \in L$ is called join principal if $(a e \vee b): e=(b: e) \vee a$ for all $a, b \in L$. An element $e \in L$ is called principal if $e$ is both meet principal and join principal. An element $a \in L$ is called compact if for $X \subseteq L, a \leqslant \vee X$ implies the existence of a finite number of elements $a_{1}, a_{2}, \cdots, a_{n}$ in $X$ such that $a \leqslant a_{1} \vee a_{2} \vee \cdots \vee a_{n}$. The set of compact elements of $L$ will be denoted by $L_{*}$. If each element of $L$ is a join of compact elements of $L$, then $L$ is called a compactly generated lattice or simply a CG-lattice. $L$ is said to be a principally generated lattice or simply a PG-lattice if each element of $L$ is a join of principal elements of $L$. Throughout this paper, $L$ denotes a compactly generated multiplicative lattice with greatest compact element 1 in which every finite product of compact elements is compact.

An element $a \in L$ is said to be proper if $a<1$. A proper element $m \in L$ is said to be maximal if for every element $x \in L$ such that $m<x \leqslant 1$ implies $x=1$. A proper element $p \in L$ is called a prime element if $a b \leqslant p$ implies $a \leqslant p$ or $b \leqslant p$ where $a, b \in L$ and is called a primary element if $a b \leqslant p$ implies $a \leqslant p$ or $b^{n} \leqslant p$ for some $n \in Z_{+}$where $a, b \in L_{*}$. For $a, b \in L,(a: b)=\vee\{x \in L \mid x b \leqslant a\}$. The radical of $a \in L$ is denoted by $\sqrt{a}$ and is defined as $\vee\left\{x \in L_{*} \mid x^{n} \leqslant a\right.$, for some $\left.n \in Z_{+}\right\}$. A multiplicative lattice is called as a Noether lattice if it is modular, principally generated and satisfies the ascending chain condition. A proper element $a \in L$ is said to be nilpotent if $a^{n}=0$ for some $n \in Z_{+}$. According to [9], a proper element $p \in L$ is said to be almost prime if for all $a, b \in L, a b \leqslant p$ and $a b \nless p^{2}$ implies either $a \leqslant p$ or $b \leqslant p$ and according to [15], a proper element $p \in L$ is said to be almost primary if for all $a, b \in L, a b \leqslant p$ and $a b \nless p^{2}$ implies either $a \leqslant p$ or $b \leqslant \sqrt{p}$. Further study on almost prime and almost primary elements of a multiplicative lattice $L$ is seen in [16], [5] and [4]. According to [12], a proper element $q \in L$ is said to be 2-absorbing if for all $a, b, c \in L, a b c \leqslant q$ implies either $a b \leqslant q$ or $b c \leqslant q$ or $c a \leqslant q$. According to [18], a proper element $q \in L$ is said to be 2 -absorbing primary if for all $a, b, c \in L, a b c \leqslant q$ implies either $a b \leqslant q$ or $b c \leqslant \sqrt{q}$ or $c a \leqslant \sqrt{q}$. The reader is referred to [2], [3] and [9] for general background and terminology in multiplicative lattices.

Let $M$ be a complete lattice and $L$ be a multiplicative lattice. Then $M$ is called $L$ module or module over $L$ if there is a multiplication between elements of $L$ and $M$ written as $a B$ where $a \in L$ and $B \in M$ which satisfies the following properties:
(1) $\quad\left(\underset{\alpha}{\vee} a_{\alpha}\right) A=\underset{\alpha}{\vee}\left(a_{\alpha} A\right)$, (2) $\quad a\left(\underset{\alpha}{\vee} A_{\alpha}\right)=\underset{\alpha}{\vee}\left(a A_{\alpha}\right)$, (3) $(a b) A=a(b A)$, (4) $1 A=A$, (5) $0 A=O_{M}$, for all $a, a_{\alpha}, b \in L$ and $A, A_{\alpha} \in M$ where 1 is the supremum of $L$ and 0 is the infimum of $L$. We denote by $O_{M}$ and $I_{M}$ for the least element and the greatest element of $M$, respectively. Elements of $L$ will generally be denoted by $a, b, c, \cdots$ and elements of $M$ will generally be denoted by $A, B, C, \cdots$

Let $M$ be an $L$-module. For $N \in M$ and $a \in L,(N: a)=\vee\{X \in M \mid a X \leqslant N\}$. For $A, B \in M,(A: B)=\vee\{x \in L \mid x B \leqslant A\}$. If $\left(O_{M}: I_{M}\right)=0$, then $M$ is called a faithful $L$-module. $M$ is called a torsion free $L$-module if for all $c \in L, B \in M, c B=O_{M}$ implies either $B=O_{M}$ or $c=0$. An $L$-module $M$ is called a multiplication lattice module if for
every element $N \in M$ there exists an element $a \in L$ such that $N=a I_{M}$. By proposition 3 in [10], an $L$-module $M$ is a multiplication lattice module if and only if $N=\left(N: I_{M}\right) I_{M}$ $\forall N \in M$. An element $N \in M$ is called meet principal if $(b \wedge(B: N)) N=b N \wedge B$ for all $b \in L, B \in M$. An element $N \in M$ is called join principal if $b \vee(B: N)=((b N \vee B): N)$ for all $b \in L, B \in M$. An element $N \in M$ is said to be principal if $N$ is both meet principal and join principal. $M$ is said to be a PG-lattice $L$-module if each element of $M$ is a join of principal elements of $M$. An element $N \in M$ is called compact if $N \leqslant{ }_{\alpha} A_{\alpha}$ implies $N \leqslant A_{\alpha_{1}} \vee A_{\alpha_{2}} \vee \cdots \vee A_{\alpha_{n}}$ for some finite subset $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$. The set of compact elements of $M$ is denoted by $M_{*}$. If each element of $M$ is a join of compact elements of $M$, then $M$ is called a CG-lattice $L$-module. An element $N \in M$ is said to be proper if $N<I_{M}$. A proper element $N \in M$ is said to be maximal if whenever there exists an element $B \in M$ such that $N \leqslant B$ then either $N=B$ or $B=I_{M}$. If a proper element $N \in M$ is prime, then $\left(N: I_{M}\right) \in L$ is prime. If a proper element $N \in M$ is primary, then $\sqrt{N: I_{M}} \in L$ is prime. A proper element $N \in M$ is said to be a radical element if $\left(N: I_{M}\right)=\sqrt{N: I_{M}}$. An $L$-module $M$ is said to be Noetherian, if $M$ satisfies the ascending chain condition, is modular and is principally generated. According to [17], a proper element $Q$ of an $L$-module $M$ is said to be 2-absorbing if for all $a, b \in L, N \in M$, $a b N \leqslant Q$ implies either $a b \leqslant\left(Q: I_{M}\right)$ or $b N \leqslant Q$ or $a N \leqslant Q$. According to [6], a proper element $Q$ of an $L$-module $M$ is said to be 2 -absorbing primary if for all $a, b \in L, N \in M$, $a b N \leqslant Q$ implies either $a b \leqslant\left(Q: I_{M}\right)$ or $b N \leqslant\left(\sqrt{Q: I_{M}}\right) I_{M}$ or $a N \leqslant\left(\sqrt{Q: I_{M}}\right) I_{M}$. The reader is referred to [1], [10] and [14] for terminology in lattice modules.

This paper is motivated by [24] and [7]. Many of the results obtained in this paper are lattice module version of the results in [16] and principal elements of $M$ are used wherever needed with some more conditions on $M$. First section of this paper is comprised of $\phi-$ prime and $\phi$-primary elements of an $L$-module $M$. Second section is comprised of almost prime and almost primary elements of an $L$-module $M$. By counter examples, it is shown that a $\phi$-prime element of $M$ need not be prime (see Example 1), a $\phi$-primary element of $M$ need not be $\phi$-prime (see Example 2), a $\phi$-primary element of $M$ need not be prime (see Example 3) and a $\phi$-primary element of $M$ need not be primary (see Example 4). We define 2 -potent prime and 2 -potent primary elements in an $L$-module $M$. By counter examples, it is shown that an almost primary element of $M$ need not be 2-potent prime (see Example 5) and a 2-potent prime element of $M$ which is almost primary need not be prime (see Example 6). Also, we introduce the notions of $n$-potent prime and $n$-potent primary elements in an $L$-module $M$ where $n \geqslant 2$. We find condition(s) under which a $\phi$-prime element of $M$ is prime (see Theorems 5-10). Also, we find condition(s) under which a $\phi$-primary element of $M$ is primary (see Theorems 15-23). Absorbing concepts in an $L$-module $M$ are related to these notions of $\phi$-prime and $\phi$-primary in $M$. In the last section of this paper, many characterizations of almost prime and almost primary elements of $M$ are obtained. By a counter example, it is shown that an almost primary element of $M$ need not be idempotent (see Example 7). By a counter example, it is shown that an almost primary element of $M$ need not be weakly primary (see Example 8). Finally, we show that if an element in $M$ is almost prime (respectively almost primary), then its corresponding element in $L$ is also almost prime (respectively almost primary) and vice
versa.

## 2. $\phi$-Prime and $\phi$-Primary Elements in $M$

The study of weakly prime and weakly primary elements of an $L$-module $M$ is carried out by A. V. Bingi and C. S. Manjarekar in [8]. Also, the notion of an almost prime element of an $L$-module $M$ is seen in [22]. With weakly prime elements and almost prime elements of an $L$-module $M$ in mind, we begin with introducing the notion of a $\phi$-prime element of an $L$-module $M$.

Definition 1. Let $\phi: M \longrightarrow M$ be a function on an $L$-module $M$. A proper element $N \in M$ is said to be $\phi$-prime if for all $a \in L, A \in M, a A \leqslant N$ and $a A \nless \phi(N)$ implies either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$.

Now if $\phi_{\alpha}: M \longrightarrow M$ is a function on an $L$-module $M$, then $\phi_{\alpha}$-prime elements of $M$ are defined by following settings in the Definition 1 of a $\phi$-prime element.

- $\phi_{0}(N)=O_{M}$. Then $N \in M$ is called a weakly prime element.
- $\phi_{2}(N)=\left(N: I_{M}\right) N$. Then $N \in M$ is called a 2 -almost prime element or a $\phi_{2}$-prime element or simply an almost prime element.
- $\phi_{n}(N)=\left(N: I_{M}\right)^{n-1} N(n \geqslant 2)$. Then $N \in M$ is called an $n$-almost prime element or a $\phi_{n}$-prime element $(n \geqslant 2)$.
- $\phi_{\omega}(N)=\bigwedge_{i=1}^{\infty}\left(N: I_{M}\right)^{i} N$. Then $N \in M$ is called a $\omega$-prime element or $\phi_{\omega}$-prime element.

Since $N \backslash \phi(N)=N \backslash(N \wedge \phi(N))$, so without loss of generality, throughout this paper, we assume that $\phi(N) \leqslant N$.

Definition 2. Given two functions $\gamma_{1}, \gamma_{2}: M \longrightarrow M$ on an $L$-module $M$, we define $\gamma_{1} \leqslant \gamma_{2}$ if $\gamma_{1}(N) \leqslant \gamma_{2}(N)$ for all $N \in M$.

Clearly, we have the following order:

$$
\phi_{0} \leqslant \phi_{\omega} \leqslant \cdots \leqslant \phi_{n+1} \leqslant \phi_{n} \leqslant \cdots \leqslant \phi_{2}
$$

Now before obtaining the characterizations of a $\phi$-prime element of an $L$-module $M$, we state the following essential lemma which is outcome of Lemma 2.3.13 from [11].

Lemma 1. Let $a_{1}, a_{2} \in L$. Suppose $b \in L$ satisfies the following property:
(*). If $h \in L_{*}$ with $h \leqslant b$, then either $h \leqslant a_{1}$ or $h \leqslant a_{2}$.
Then either $b \leqslant a_{1}$ or $b \leqslant a_{2}$.
Theorem 1. Let $M$ be a $C G$-lattice L-module, $N \in M$ be a proper element and $\phi: M \longrightarrow$ $M$ be a function on $M$. Then the following statements are equivalent:
(1) $N$ is a $\phi$-prime element of $M$.
(2) For every $A \in M$ such that $A \nless N$, either $(N: A)=\left(N: I_{M}\right)$ or $(N: A)=(\phi(N)$ : A).
(3) For every $r \in L$ such that $r \nless\left(N: I_{M}\right)$, either $(N: r)=N$ or $(N: r)=(\phi(N): r)$.
(4) For every $r \in L_{*}, A \in M_{*}$, if $r A \leqslant N$ and $r A \nless \phi(N)$, then either $r \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$.

Proof. (1) $\Longrightarrow$ (2). Suppose (1) holds. Let $A \in M$ be such that $A \nless N$. Obviously, $(\phi(N): A) \leqslant(N: A)$ and $\left(N: I_{M}\right) \leqslant(N: A)$. Let $a \in L_{*}$ be such that $a \leqslant(N: A)$. Then $a A \leqslant N$. If $a A \leqslant \phi(N)$, then $a \leqslant(\phi(N): A)$. If $a A \nless \phi(N)$, then since $N$ is $\phi$-prime and $A \nless N$, it follows that $a \leqslant\left(N: I_{M}\right)$. Hence by Lemma 1, either $(N: A) \leqslant(\phi(N): A)$ or $(N: A) \leqslant\left(N: I_{M}\right)$. Thus either $(N: A)=(\phi(N): A)$ or $(N: A)=\left(N: I_{M}\right)$.
(2) $\Longrightarrow$ (3). Suppose (2) holds. Let $r \nless\left(N: I_{M}\right)$ for $r \in L$. Then $r I_{M} \nless N$. Using (2), we have, either $\left(N: r I_{M}\right)=\left(N: I_{M}\right)$ or $\left(N: r I_{M}\right)=\left(\phi(N): r I_{M}\right)$. Now let $K \leqslant(N: r)$ for $K \in M_{*}$. As $\left(K: I_{M}\right) I_{M} \leqslant K$, we have, $\left(K: I_{M}\right) I_{M} \leqslant(N: r)$ and $\left(K: I_{M}\right) I_{M} \in M_{*}$. Clearly, $K \leqslant(N: r)$ implies $\left(K: I_{M}\right) \leqslant\left((N: r): I_{M}\right)=\left(N: r I_{M}\right)$. So we have either $\left(K: I_{M}\right) \leqslant\left(N: I_{M}\right)$ or $\left(K: I_{M}\right) \leqslant\left(\phi(N): r I_{M}\right)=\left(\phi(N): r: I_{M}\right)$. This gives either $\left(K: I_{M}\right) I_{M} \leqslant N$ or $\left(K: I_{M}\right) I_{M} \leqslant(\phi(N): r)$. This implies that either $(N: r) \leqslant N$ or $(N: r) \leqslant(\phi(N): r)$, by Lemma 3.1 of [22]. Since $r N \leqslant N$ gives $N \leqslant(N: r)$ and $\phi(N) \leqslant N$ gives $(\phi(N): r) \leqslant(N: r)$, it follows that either $(N: r)=N$ or $(N: r)=(\phi(N): r)$.
(3) $\Longrightarrow$ (4). Suppose (3) holds. Let $r A \leqslant N, r A \nless \phi(N)$ and $r \notin\left(N: I_{M}\right)$ for $r \in L_{*}$, $A \in M_{*}$. Then by (3), we have either $(N: r)=(\phi(N): r)$ or $(N: r)=N$. If $(N: r)=$ $(\phi(N): r)$, then as $r A \leqslant N$, it follows that $A \leqslant(\phi(N): r)$ which contradicts $r A \nless \phi(N)$ and so we must have $(N: r)=N$. Therefore $r A \leqslant N$ gives $A \leqslant N$.
(4) $\Longrightarrow$ (1). Suppose (4) holds. Let $a Q \leqslant N, a Q \nless \phi(N)$ and $Q \nless N$ for $a \in L, Q \in M$. As $L$ and $M$ are compactly generated, there exist $x^{\prime} \in L_{*}$ and $Y, Y^{\prime} \in M_{*}$ such that $x^{\prime} \leqslant a, Y \leqslant Q, Y^{\prime} \leqslant Q, Y^{\prime} \not N$ and $x^{\prime} Y^{\prime} \nless \phi(N)$. Let $x \in L_{*}$ be such that $x \leqslant a$. Then $\left(x \vee x^{\prime}\right) \in L_{*},\left(Y \vee Y^{\prime}\right) \in M_{*}$ such that $\left(x \vee x^{\prime}\right)\left(Y \vee Y^{\prime}\right) \leqslant a Q \leqslant N,\left(x \vee x^{\prime}\right)\left(Y \vee Y^{\prime}\right) \nless \phi(N)$ and $\left(Y \vee Y^{\prime}\right) \notin N$. So by (4), $\left(x \vee x^{\prime}\right) \leqslant\left(N: I_{M}\right)$ which implies $a \leqslant\left(N: I_{M}\right)$. Therefore $N$ is $\phi$-prime.

The following 2 corollaries are consequences of Theorem 1.
Corollary 1. Let $M$ be a $C G$-lattice L-module and $N \in M$ be a proper element. Then the following statements are equivalent:
(1) $N$ is a weakly prime element of $M$.
(2) For every $A \in M$ such that $A \nless N$, either $(N: A)=\left(N: I_{M}\right)$ or $(N: A)=\left(O_{M}\right.$ : A).
(3) For every $r \in L$ such that $r \nless\left(N: I_{M}\right)$, either $(N: r)=N$ or $(N: r)=\left(O_{M}: r\right)$.
(4) For every $r \in L_{*}, A \in M_{*}$, if $O_{M} \neq r A \leqslant N$, then either $r \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$.

Corollary 2. Let $M$ be a CG-lattice L-module and $N \in M$ be a proper element. Then the following statements are equivalent:
(1) $N$ is an almost prime element of $M$.
(2) For every $A \in M$ such that $A \nless N$, either $(N: A)=\left(\left(N: I_{M}\right) N: A\right)$ or $(N: A)=$ ( $N: I_{M}$ ).
(3) For every $r \in L$ such that $r \nless\left(N: I_{M}\right)$, either $(N: r)=\left(\left(N: I_{M}\right) N: r\right)$ or $(N: r)=N$.
(4) For every $r \in L_{*}, A \in M_{*}$, if $r A \leqslant N$ and $r A \nless\left(N: I_{M}\right) N$, then either $A \leqslant N$ or $r \leqslant\left(N: I_{M}\right)$.

To obtain the relation among prime, weakly prime, $\omega$-prime, $n$-almost prime ( $n \geqslant 2$ ) and almost prime elements of an $L$-module $M$, we prove the following result.
Theorem 2. Let $\gamma_{1}, \gamma_{2}: M \longrightarrow M$ be functions on an $L$-module $M$ such that $\gamma_{1} \leqslant \gamma_{2}$. Then every proper $\gamma_{1}$-prime element of $M$ is $\gamma_{2}$-prime.

Proof. Let a proper element $N \in M$ be $\gamma_{1}$-prime. Assume that $a A \leqslant N$ and $a A \nless$ $\gamma_{2}(N)$ for $a \in L, A \in M$. Then as $\gamma_{1} \leqslant \gamma_{2}$, we have $a A \nless \gamma_{1}(N)$. Since $N$ is $\gamma_{1}$-prime, it follows that either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$ and hence $N$ is $\gamma_{2}$-prime.

Theorem 3. Let $N$ be a proper element of an L-module $M$. Then $N$ is prime implies $N$ is weakly prime, $N$ is weakly prime implies $N$ is $\omega$-prime, $N$ is $\omega$-prime implies $N$ is $n$-almost prime $(n \geqslant 2)$ and $N$ is $n$-almost prime $(n \geqslant 2)$ implies $N$ is almost prime.

Proof. By definition, every prime element of an $L$-module $M$ is weakly prime and hence $N$ is prime implies $N$ is weakly prime. The remaining implications follow by using Theorem 2 to the fact that $\phi_{0} \leqslant \phi_{\omega} \leqslant \cdots \leqslant \phi_{n+1} \leqslant \phi_{n} \leqslant \cdots \leqslant \phi_{2}$.

From the Theorem 3, we get the following characterization of a $\omega$-prime element of an $L$-module $M$.

Corollary 3. Let $N$ be a proper element of an L-module $M$. Then $N$ is $\omega$-prime if and only if $N$ is $n$-almost prime for every $n \geqslant 2$.

Proof. Assume that $N \in M$ is $n$-almost prime for every $n \geqslant 2$. Let $a A \leqslant N$ and $a A \nless \bigwedge_{i=1}^{\infty}\left(N: I_{M}\right)^{i} N$ for $a \in L, A \in M$. Then $a A \nexists\left(N: I_{M}\right)^{n-1} N$ for some $n \geqslant 2$. Since $N$ is $n$-almost prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$ and hence $N$ is $\omega$-prime. The converse follows from Theorem 3.

Before going to the characterization of an $n$-almost prime element of an $L$-module $M$, we recall the definition of the Jacobson radical of $L$. According to [2], in a multiplicative lattice $L$ with 1 compact, the Jacobson radical is the element $\wedge\{m \in L \mid \mathrm{m}$ is a maximal element $\}$.

Theorem 4. Let $L$ be a Noether lattice, $M$ be a torsion free Noetherian L-module and $f \in L$ be the Jacobson radical. Then a proper element $N \in M$ such that $\left(N: I_{M}\right) \leqslant f$ is $n$-almost prime for every $n \geqslant 2$ if and only if $N$ is prime.

Proof. Assume that $N \in M$ is $n$-almost prime where $n \geqslant 2$. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless\left(N: I_{M}\right)^{n-1} N$ for $n \geqslant 2$, then as $N$ is $n$-almost prime, we have either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. If $a A \leqslant\left(N: I_{M}\right)^{n-1} N$ for all $n \geqslant 2$, then as $\left(N: I_{M}\right) \leqslant f$, from Corollary 3.3 of [13], it follows that $a A \leqslant \bigwedge_{n=1}^{\infty}\left(N: I_{M}\right)^{n} N=O_{M}$ and thus $a A=O_{M}$. Since $M$ is torsion free, we have either $A=O_{M}$ or $a=0$ which implies either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$ and hence $N$ is prime. The converse follows from Theorem 3.

Clearly, every prime element of an $L$-module $M$ is $\phi$-prime. But the converse is not true which is shown in the following example by taking $\phi(N)=\left(N: I_{M}\right) N$ for convenience.

Example 1. If $Z$ is the ring of integers, then $Z_{24}$ is a $Z$-module. Assume that $(k)$ denotes the cyclic ideal of $Z$ generated by $k \in Z$ and $\langle\bar{t}\rangle$ denotes the cyclic submodule of $Z$-module $Z_{24}$ where $\bar{t} \in Z_{24}$. Suppose that $L=L(Z)$ is the set of all ideals of $Z$ and $M=L\left(Z_{24}\right)$ is the set of all submodules of $Z$-module $Z_{24}$. The multiplication between elements of $L$ and $M$ is given by $\left(k_{i}\right)<\overline{t_{j}}>=<\overline{k_{i} t_{j}}>$ for every $\left(k_{i}\right) \in L$ and $<\overline{t_{j}}>\in M$ where $k_{i}, t_{j} \in Z$. Then $M$ is a lattice module over $L$ [[22], Example 2.5]. Let $N$ be the cyclic submodule of $M$ generated by $\overline{0}$. It is easy to see that $O_{M}=<\overline{0}>=N$ is weakly prime and hence almost prime ( $\phi_{2}$-prime) while $N$ is not prime, since (2) $<\overline{12}>\leqslant N$ but $<\overline{12}>\nless N$ and (2) $\nless\left(N: I_{M}\right)=(0)$ where $I_{M}=\langle\overline{1}\rangle$.

Now we obtain six results that show under which condition(s) a $\phi$-prime element of an $L$-module $M$ is prime. But before that we prove the required cancellation laws of $M$ in the form of following lemmas.

Lemma 2. Let $M$ be a torsion free L-module and $O_{M} \neq A \in M$ be a weak join principal element. Then $a A \leqslant b A$ implies $a \leqslant b$ for $a, b \in L$ where $b \neq 0$.

Proof. Let $a A \leqslant b A$ and $O_{M} \neq A \in M$ be a weak join principal element for $a, b \in L$. As $M$ is a torsion free $L$-module, we have $\left(O_{M}: A\right)=0$. Then clearly, $a=a \vee 0=$ $a \vee\left(O_{M}: A\right)=(a A: A) \leqslant(b A: A)=b \vee\left(O_{M}: A\right)=b \vee 0=b$ which implies $a \leqslant b$.

Lemma 3. Let $M$ be a torsion free L-module and $O_{M} \neq A \in M$ be a weak join principal element. Then $a A=b A$ implies $a=b$ for $a, b \in L$ where $a \neq 0, b \neq 0$.

Proof. The proof is obvious.
Now we have a characterization of a $\phi$-prime element of an $L$-module $M$.
Theorem 5. Let $M$ be a torsion free L-module and $O_{M} \neq N<I_{M}$ be a weak join principal element of $M$. Then $N$ is $\phi$-prime for some $\phi \leqslant \phi_{2}$ if and only if $N$ is prime.

Proof. Assume that $N \in M$ is a prime element. Then obviously, $N$ is $\phi$-prime for every $\phi$ and hence for some $\phi \leqslant \phi_{2}$. Conversely, let $N$ be $\phi$-prime for some $\phi \leqslant \phi_{2}$. Then by Theorem $2, N$ is $\phi_{2}$-prime. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless \phi_{2}(N)$, then as $N$ is $\phi_{2}$-prime, we have either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. Next, assume that $a A \leqslant \phi_{2}(N)$. If $a(A \vee N) \nless \phi_{2}(N)$, then as $a(A \vee N) \leqslant N$ and $N$ is $\phi_{2}$-prime, we have either $(A \vee N) \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$ and hence either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. Finally, if $a(A \vee N) \leqslant \phi_{2}(N)$, then $a N \leqslant\left(N: I_{M}\right) N$ which implies $a \leqslant\left(N: I_{M}\right)$, by Lemma 2 and hence $N$ is prime.

Now we show that the Theorem 5 can also be achieved by changing the conditions on $M$ and $L$. According to [23], in a Noether lattice $L$, an element $a \in L$ is said to satisfy the restricted cancellation law (RCL) if for all $b, c \in L, a b=a c \neq 0$ implies $b=c$.

Theorem 6. Let $L$ be a Noether $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$-module with $I_{M}$ compact. Let $N$ be a proper element of $M$ such that $0 \neq\left(N: I_{M}\right) \in L$ satisfies the restricted cancellation law ( $R C L$ ) and is a non-nilpotent element. Then $N$ is $\phi$-prime for some $\phi \leqslant \phi_{2}$ if and only if $N$ is prime.

Proof. Assume that $N \in M$ is a prime element. Then obviously, $N$ is $\phi$-prime for every $\phi$ and hence for some $\phi \leqslant \phi_{2}$. Conversely, let $N$ be $\phi$-prime for some $\phi \leqslant \phi_{2}$. Then by Theorem $2, N$ is $\phi_{2}$-prime. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless \phi_{2}(N)$, then as $N$ is $\phi_{2}$-prime, we have either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. Next, assume that $a A \leqslant \phi_{2}(N)$. If $a(A \vee N) \nless \phi_{2}(N)$, then as $a(A \vee N) \leqslant N$ and $N$ is $\phi_{2}$-prime, we have either $(A \vee N) \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$ and hence either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$. Finally, if $a(A \vee N) \leqslant \phi_{2}(N)$, then $a N \leqslant\left(N: I_{M}\right) N$ which implies $a\left(N: I_{M}\right) I_{M} \leqslant\left(N: I_{M}\right)^{2} I_{M}$, since $M$ is a multiplication lattice $L$ module. As $I_{M}$ is compact, this gives $a\left(N: I_{M}\right) \leqslant\left(N: I_{M}\right)^{2} \neq 0$, by Theorem 5 of [10]. This implies $a \leqslant\left(N: I_{M}\right)$, by Lemma 1.11 of [23] and hence $N$ is prime.

Now we define a 2 -potent prime element in an $L$-module $M$.
Definition 3. A proper element $N \in M$ is said to be 2-potent prime if for all $a \in L, A \in$ $M, a A \leqslant\left(N: I_{M}\right) N$ implies either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$.

Theorem 7. Let a proper element $N$ of an L-module $M$ be 2-potent prime. Then $N$ is $\phi$-prime for some $\phi \leqslant \phi_{2}$ if and only if $N$ is prime.

Proof. Assume that $N \in M$ is a prime element. Then obviously, $N$ is $\phi$-prime for every $\phi$ and hence for some $\phi \leqslant \phi_{2}$. Conversely, let $N$ be $\phi$-prime for some $\phi \leqslant \phi_{2}$. Then by Theorem $2, N \in M$ is $\phi_{2}$-prime. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless\left(N: I_{M}\right) N$, then as $N$ is $\phi_{2}$-prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$. If $a A \leqslant\left(N: I_{M}\right) N$, then as $N$ is 2-potent prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$ and hence $N$ is prime.

Now we define a $n$-potent prime element in an $L$-module $M$ where $n \geqslant 2$.
Definition 4. Let $n \geqslant 2$ and $n \in Z_{+}$. A proper element $N \in M$ is said to be $n$-potent prime if for all $a \in L, A \in M, a A \leqslant\left(N: I_{M}\right)^{n-1} N$ implies either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$.

Theorem 8. A proper element $N$ of an L-module $M$ is $\phi$-prime for some $\phi \leqslant \phi_{n}$ where $n \geqslant 2$ if and only if $N$ is prime, provided $N$ is $k$-potent prime for some $k \leqslant n$.

Proof. Assume that $N \in M$ is a prime element. Then obviously, $N$ is $\phi$-prime for every $\phi$ and hence for some $\phi \leqslant \phi_{n}$ where $n \geqslant 2$. Conversely, let $N$ be $\phi$-prime for some $\phi \leqslant \phi_{n}$ where $n \geqslant 2$. Then by Theorem $2, N \in M$ is $\phi_{n}$-prime. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless \phi_{k}(N)$, then $a A \nless \phi_{n}(N)$ as $k \leqslant n$. Since $N$ is $\phi_{n}$-prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$. If $a A \leqslant \phi_{k}(N)$, then as $N$ is $k$-potent prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$ and hence $N$ is prime.

The following corollary is outcome of Theorems 5, 6 and 7.
Corollary 4. An almost prime element $N$ of an $L$-module $M$ is prime if one the following statements hold true:
(i) $M$ is torsion free and $O_{M} \neq N<I_{M}$ is a weak join principal element.
(ii) $N$ is a 2-potent prime element.
(iii) L is a Noether PG-lattice, $M$ is a faithful multiplication $P G$-lattice with $I_{M}$ compact, $0 \neq\left(N: I_{M}\right) \in L$ satisfies the restricted cancellation law (RCL) and is a nonnilpotent element.

Theorem 9. Let a proper element $N$ of an L-module $M$ be $\phi$-prime. If $\phi(N)$ is prime, then $N$ is prime.

Proof. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless \phi(N)$, then as $N$ is $\phi$-prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$ and we are done. If $a A \leqslant \phi(N)$, then as $\phi(N)$ is prime, we have either $a I_{M} \leqslant \phi(N)$ or $A \leqslant \phi(N)$. This implies that either $a I_{M} \leqslant N$ or $A \leqslant N$ because $\phi(N) \leqslant N$. Hence $N$ is prime.

Theorem 10. Let a proper element $N$ of an L-module $M$ be $\phi$-prime. If $\left(N: I_{M}\right) N \nless$ $\phi(N)$, then $N$ is prime.

Proof. Let $a A \leqslant N$ for $a \in L, A \in M$. If $a A \nless \phi(N)$, then as $N$ is $\phi$-prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$. So assume that $a A \leqslant \phi(N)$. First suppose $a N \nless \phi(N)$. Then $a N_{0} \nless \phi(N)$ for some $N_{0} \leqslant N$ in $M$. Since $N$ is $\phi$-prime, $a\left(A \vee N_{0}\right)=a A \vee a N_{0} \leqslant N$ and $a\left(A \vee N_{0}\right) \nless \phi(N)$, we have either $a \leqslant\left(N: I_{M}\right)$ or $\left(A \vee N_{0}\right) \leqslant N$ and hence either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$. Next, assume that $a N \leqslant \phi(N)$. If $\left(N: I_{M}\right) A \nless \phi(N)$, then $k_{0} A \nless \phi(N)$ for some $k_{0} \leqslant\left(N: I_{M}\right)$ in $L$. Since $N$ is $\phi$-prime, $\left(a \vee k_{0}\right) A \leqslant N$ and $\left(a \vee k_{0}\right) A \nless \phi(N)$, we have either $\left(a \vee k_{0}\right) \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$ and hence either $a \leqslant(N$ : $\left.I_{M}\right)$ or $A \leqslant N$. Now let $\left(N: I_{M}\right) A \leqslant \phi(N)$. By hypothesis, as $\left(N: I_{M}\right) N \nless \phi(N)$, there exist $k \leqslant\left(N: I_{M}\right)$ in $L$ and $N_{0} \leqslant N$ in $M$ such that $k N_{0} \nless \phi(N)$. Since $N$ is $\phi$-prime, $(a \vee k)\left(A \vee N_{0}\right) \leqslant N$ and $(a \vee k)\left(A \vee N_{0}\right) \nless \phi(N)$, we have either $(a \vee k) \leqslant\left(N: I_{M}\right)$ or $\left(A \vee N_{0}\right) \leqslant N$ and hence either $a \leqslant\left(N: I_{M}\right)$ or $A \leqslant N$. Therefore $N$ is prime.

The consequences of Theorem 10 are presented in the following corollaries.

Corollary 5. If a proper element $N$ of a multiplication lattice L-module $M$ is $\phi$-prime but not prime, then $\left(N: I_{M}\right)^{2} I_{M} \leqslant \phi(N)$.

Proof. Since $M$ is a multiplication lattice $L$-module, by Proposition 3 of [10], we have $N=\left(N: I_{M}\right) I_{M}$. So $\left(N: I_{M}\right)^{2} I_{M}=\left(N: I_{M}\right) N \leqslant \phi(N)$ by Theorem 10.

Corollary 6. If a proper element $N$ of an L-module $M$ is weakly prime such that ( $N$ : $\left.I_{M}\right) N \neq O_{M}$, then $N$ is prime.

Proof. The proof is obvious.
Corollary 7. If a proper element $N$ of an L-module $M$ is $\phi$-prime such that $\phi \leqslant \phi_{3}$, then $N$ is $\omega$-prime.

Proof. If $N$ is prime, then by Theorem 3, $N$ is $\omega$-prime. So assume that $N$ is not prime. Then by Theorem 10 and hypothesis, we get $\left(N: I_{M}\right)^{2} N \leqslant\left(N: I_{M}\right) N \leqslant \phi(N) \leqslant$ $\left(N: I_{M}\right)^{2} N$ and so $\phi(N)=\left(N: I_{M}\right)^{2} N=\left(N: I_{M}\right) N$. Now consider $\left(N: I_{M}\right)^{3} N=((N:$ $\left.\left.I_{M}\right)\left(N: I_{M}\right)^{2}\right) N=\left(N: I_{M}\right)\left(\left(N: I_{M}\right)^{2} N\right)=\left(N: I_{M}\right)\left(\left(N: I_{M}\right) N\right)=\left(\left(N: I_{M}\right)(N:\right.$ $\left.\left.I_{M}\right)\right) N=\left(N: I_{M}\right)^{2} N=\phi(N)$ and so on. Hence $\phi(N)=\left(N: I_{M}\right)^{n-1} N$ for every $n \geqslant 2$. Consequently, $N$ is $n$-almost prime for every $n \geqslant 2$ and thus $N$ is $\omega$-prime by Corollary 3 .

Corollary 8. If a proper element $N$ of a multiplication lattice L-module $M$ is $\phi$-prime but not prime, then $\sqrt{N: I_{M}}=\sqrt{\phi(N): I_{M}}$.

Proof. By Corollary 5, we have $\left(N: I_{M}\right)^{2} I_{M} \leqslant \phi(N)$ which implies $\left(N: I_{M}\right) \leqslant$ $\sqrt{\phi(N): I_{M}}$. Hence $\sqrt{N: I_{M}} \leqslant \sqrt{\sqrt{\phi(N): I_{M}}}=\sqrt{\phi(N): I_{M}}$, by property (p3) of radicals in [21]. Also, as $\phi(N) \leqslant N$, we have $\sqrt{\phi(N): I_{M}} \leqslant \sqrt{N: I_{M}}$ and thus $\sqrt{N: I_{M}}=$ $\sqrt{\phi(N): I_{M}}$.

Corollary 9. If a proper element $N$ of a multiplication lattice $L$-module $M$ is $\phi$-prime, then either $\sqrt{\phi(N): I_{M}} \leqslant\left(N: I_{M}\right)$ or $\left(N: I_{M}\right) \leqslant \sqrt{\phi(N): I_{M}}$.

Proof. The proof is obvious.
Now we introduce the notion of $\phi$-primary element of an $L$-module $M$.
Definition 5. Let $\phi: M \longrightarrow M$ be a function on an L-module $M$. A proper element $N \in M$ is said to be $\phi$-primary if for all $a \in L, A \in M, a A \leqslant N$ and $a A \nless \phi(N)$ implies either $A \leqslant N$ or $a^{n} \leqslant\left(N: I_{M}\right)$ for some $n \in Z_{+}$.

Now if $\phi_{\alpha}: M \longrightarrow M$ is a function on an $L$-module $M$, then $\phi_{\alpha}$-primary elements of $M$ are defined by following settings in the Definition 5 of a $\phi$-primary element.

- $\phi_{0}(N)=O_{M}$. Then $N \in M$ is called a weakly primary element.
- $\phi_{2}(N)=\left(N: I_{M}\right) N$. Then $N \in M$ is called a 2-almost primary element or a $\phi_{2}$-primary element or simply an almost primary element.
- $\phi_{n}(N)=\left(N: I_{M}\right)^{n-1} N(n \geqslant 2)$. Then $N \in M$ is called an $n$-almost primary element or a $\phi_{n}$-primary element $(n \geqslant 2)$.
- $\phi_{\omega}(N)=\bigwedge_{i=1}^{\infty}\left(N: I_{M}\right)^{i} N$. Then $N \in M$ is called a $\omega$-primary element or $\phi_{\omega^{-}}$ primary element.

Clearly, every $\phi$-prime element of an $L$-module $M$ is $\phi$-primary but the converse is not true as shown in the following example by taking $\phi(N)=\left(N: I_{M}\right) N$ for convenience.

Example 2. Consider the lattice module as in Example 1. Let $N$ be the cyclic submodule of $M$ generated by $\overline{4}$. It is easy to see that the element $N=<\overline{4}>$ is almost primary ( $\phi_{2}$-primary) but $N$ is not almost prime ( $\phi_{2}$-prime) because ( 2 ) $<\overline{6}>\leqslant N$, (2) $<\overline{6}>\nless$ $\phi_{2}(N)=<\overline{8}>$ but $<\overline{6}>\nless N$ and (2) $\neq\left(N: I_{M}\right)=(4)$ where $I_{M}=<\overline{1}>$.

Clearly, every prime element of an $L$-module $M$ is $\phi$-primary. But the converse is not true which is shown in the following example by taking $\phi(N)=\left(N: I_{M}\right) N$ for convenience.

Example 3. Consider the lattice module as in Example 1. Let $N$ be the cyclic submodule of $M$ generated by $\overline{0}$. It is easy to see that the element $N=<\overline{0}>=O_{M}$ is almost primary ( $\phi_{2}$-primary) but $N$ is not prime.

The analogous results (from the results of $\phi$-prime elements of $M$ ) for $\phi$-primary elements of $M$ are stated below whose proofs being on similar arguments are omitted. We begin with the characterizations of a $\phi$-primary element of an $L$-module $M$.

Theorem 11. Let $M$ be a CG-lattice L-module, $N \in M$ be a proper element and $\phi$ : $M \longrightarrow M$ be a function on $M$. Then the following statements are equivalent:
(i) $N$ is a $\phi$-primary element of $M$.
(ii) For every $A \in M$ such that $A \nless N$, either $(N: A) \leqslant \sqrt{N: I_{M}}$ or $(N: A)=(\phi(N)$ : A).
(iii) For every $r \in L$ such that $r \not \sqrt{N: I_{M}}$, either $(N: r)=N$ or $(N: r)=(\phi(N): r)$.
(iv) For every $r \in L_{*}, A \in M_{*}$, if $r A \leqslant N$ and $r A \nless \phi(N)$, then either $r \leqslant \sqrt{N: I_{M}}$ or $A \leqslant N$.

The following 2 corollaries are consequences of Theorem 11.
Corollary 10. Let $M$ be a $C G$-lattice $L$-module and $N \in M$ be a proper element. Then the following statements are equivalent:
(1) $N$ is a weakly primary element of $M$.
(2) For every $A \in M$ such that $A \nless N$, either $(N: A) \leqslant \sqrt{N: I_{M}}$ or $(N: A)=\left(O_{M}\right.$ : A).
(3) For every $r \in L$ such that $r \neq \sqrt{N: I_{M}}$, either $(N: r)=N$ or $(N: r)=\left(O_{M}: r\right)$.
(4) For every $r \in L_{*}, A \in M_{*}$, if $O_{M} \neq r A \leqslant N$, then either $r \leqslant \sqrt{N: I_{M}}$ or $A \leqslant N$.

Corollary 11. Let $M$ be a CG-lattice L-module and $N \in M$ be a proper element. Then the following statements are equivalent:
(1) $N$ is an almost primary element of $M$.
(2) For every $A \in M$ such that $A \nless N$, either $(N: A)=\left(\left(N: I_{M}\right) N: A\right)$ or $(N: A) \leqslant$ $\sqrt{N: I_{M}}$.
(3) For every $r \in L$ such that $r \nless \sqrt{N: I_{M}}$, either $(N: r)=\left(\left(N: I_{M}\right) N: r\right)$ or $(N: r)=N$.
(4) For every $r \in L_{*}, A \in M_{*}$, if $r A \leqslant N$ and $r A \nless\left(N: I_{M}\right) N$, then either $r \leqslant$ $\sqrt{N: I_{M}}$ or $A \leqslant N$.

To obtain the relation among primary, weakly primary, $\omega$-primary, $n$-almost primary $(n \geqslant 2)$ and almost primary elements of an $L$-module $M$, we have the following result.

Theorem 12. Let $\gamma_{1}, \gamma_{2}: M \longrightarrow M$ be functions on an L-module $M$ such that $\gamma_{1} \leqslant \gamma_{2}$. Then every proper $\gamma_{1}$-primary element of $M$ is $\gamma_{2}$-primary.

Theorem 13. Let $N$ be a proper element of an L-module $M$. Then $N$ is primary implies $N$ is weakly primary, $N$ is weakly primary implies $N$ is $\omega$-primary, $N$ is $\omega$-primary implies $N$ is n-almost primary $(n \geqslant 2), N$ is n-almost primary ( $n \geqslant 2$ ) implies $N$ is almost primary.

From the Theorem 13, we get the following characterization of a $\omega$-primary element of an $L$-module $M$.

Corollary 12. Let $N \in M$ be a proper element of an L-module $M$. Then $N$ is $\omega$-primary if and only if $N$ is $n$-almost primary for every $n \geqslant 2$.

The following theorem gives the characterization of an $n$-almost primary element of an $L$-module $M$.

Theorem 14. Let $L$ be a Noether lattice, $M$ be a torsion free Noetherian L-module and $f \in L$ be the Jacobson radical. Then a proper element $N \in M$ such that $\left(N: I_{M}\right) \leqslant f$ is $n$-almost primary for every $n \geqslant 2$ if and only if $N$ is primary.

Clearly, every primary element of an $L$-module $M$ is $\phi$-primary. But the converse is not true which is shown in the following example by taking $\phi(N)=\left(N: I_{M}\right) N$ for convenience.

Example 4. If $Z$ is the ring of integers, then $Z_{30}$ is a $Z$-module. Assume that $(k)$ denotes the cyclic ideal of $Z$ generated by $k \in Z$ and $\langle\bar{t}\rangle$ denotes the cyclic submodule of $Z$-module $Z_{30}$ where $\bar{t} \in Z_{30}$. Suppose that $L=L(Z)$ is the set of all ideals of $Z$ and $M=L\left(Z_{30}\right)$ is the set of all submodules of $Z$-module $Z_{30}$. The multiplication between
elements of $L$ and $M$ is given by $\left(k_{i}\right)<\overline{t_{j}}>=<\overline{k_{i} t_{j}}>$ for every $\left(k_{i}\right) \in L$ and $<\overline{t_{j}}>\in M$ where $k_{i}, t_{j} \in Z$. Then $M$ is a lattice module over $L$. Let $N$ be the cyclic submodule of $M$ generated by $\overline{6}$. It is easy to see that $N=<\overline{6}>$ is almost primary ( $\phi_{2}$-primary) while $N$ is not primary, since $(3)<\overline{2}>\leqslant N$ but $<\overline{2}>\nless N$ and $(3)^{n} \nless\left(N: I_{M}\right)=(6)$ for every $n \in Z_{+}$where $I_{M}=<\overline{1}>$.

In the following successive nine theorems, we show under which condition(s) a $\phi$ primary element of an $L$-module $M$ is primary. Now we have a characterization of a $\phi$-primary element of an $L$-module $M$.

Theorem 15. Let $M$ be a torsion free L-module and $O_{M} \neq N<I_{M}$ be a weak join principal element of an L-module $M$. Then $N$ is $\phi$-primary for some $\phi \leqslant \phi_{2}$ if and only if $N$ is primary.

The following result shows that the Theorem 15 can also be achieved by changing the conditions on $M$ and $L$.

Theorem 16. Let $L$ be a Noether PG-lattice and $M$ be a faithful multiplication PG-lattice $L$-module with $I_{M}$ compact. Let $N$ be a proper element of $M$ such that $0 \neq\left(N: I_{M}\right) \in L$ satisfies the restricted cancellation law ( $R C L$ ) and is a non-nilpotent element. Then $N$ is $\phi$-primary for some $\phi \leqslant \phi_{2}$ if and only if $N$ is primary.

Now we define a 2 -potent primary element in an $L$-module $M$.
Definition 6. A proper element $N \in M$ is said to be 2-potent primary if for all $a \in$ $L, A \in M, a A \leqslant\left(N: I_{M}\right) N$ implies either $A \leqslant N$ or $a^{m} \leqslant\left(N: I_{M}\right)$ for some $m \in Z_{+}$.

Theorem 17. Let a proper element $N$ of an L-module $M$ be 2-potent primary. Then $N$ is $\phi$-primary for some $\phi \leqslant \phi_{2}$ if and only if $N$ is primary.

Clearly, every 2-potent prime element of an $L$-module $M$ is 2-potent primary.
Theorem 18. Let a proper element $N$ of an L-module $M$ be 2-potent prime. Then $N$ is $\phi$-primary for some $\phi \leqslant \phi_{2}$ if and only if $N$ is primary.

Now we define a $n$-potent primary element in an $L$-module $M$ where $n \geqslant 2$.
Definition 7. Let $n \geqslant 2$ and $n \in Z_{+}$. A proper element $N \in M$ is said to be $n$ potent primary if for all $a \in L, A \in M, a A \leqslant\left(N: I_{M}\right)^{n-1} N$ implies either $A \leqslant N$ or $a^{m} \leqslant\left(N: I_{M}\right)$ for some $m \in Z_{+}$.

Theorem 19. A proper element $N$ of an L-module $M$ is $\phi$-primary for some $\phi \leqslant \phi_{n}$ where $n \geqslant 2$ if and only if $N$ is primary, provided $N$ is $k$-potent primary for some $k \leqslant n$.

Clearly, every $n$-potent prime element of an $L$-module $M$ is $n$-potent primary.
Theorem 20. A proper element $N$ of an L-module $M$ is $\phi$-primary for some $\phi \leqslant \phi_{n}$ where $n \geqslant 2$ if and only if $N$ is primary, provided $N$ is $k$-potent prime for some $k \leqslant n$.

The following corollary is outcome of Theorems 15, 16, 17 and 18.
Corollary 13. An almost primary element $N$ of an L-module $M$ is primary if one the following statements hold true:
(i) $M$ is torsion free and $O_{M} \neq N<I_{M}$ is a weak join principal element.
(ii) $N$ is a 2-potent primary element.
(iii) $N$ is a 2-potent prime element.
(iv) L is a Noether PG-lattice, $M$ is a faithful multiplication $P G$-lattice with $I_{M}$ compact, $0 \neq\left(N: I_{M}\right) \in L$ satisfies the restricted cancellation law ( $R C L$ ) and is a nonnilpotent element.

From the following examples, it is clear that, an almost primary element of an $L$ module $M$ need not be 2-potent prime and a 2-potent prime element of an $L$ module $M$ which is almost primary need not be prime.

Example 5. Consider the lattice module as in Example 4. Let $N$ be the cyclic submodule of $M$ generated by $\overline{6}$. It is easy to see that the element $N=\langle\overline{6}>$ is almost primary but not 2 -potent prime.

Example 6. If $Z$ is the ring of integers, then $Z_{8}$ is a $Z$-module. Assume that $(k)$ denotes the cyclic ideal of $Z$ generated by $k \in Z$ and $\langle\bar{t}\rangle$ denotes the cyclic submodule of $Z$-module $Z_{8}$ where $\bar{t} \in Z_{8}$. Suppose that $L=L(Z)$ is the set of all ideals of $Z$ and $M=L\left(Z_{8}\right)$ is the set of all submodules of $Z$-module $Z_{8}$. The multiplication between elements of $L$ and $M$ is given by $\left(k_{i}\right)<\overline{t_{j}}>=<\overline{k_{i} t_{j}}>$ for every $\left(k_{i}\right) \in L$ and $<\overline{t_{j}}>\in M$ where $k_{i}, t_{j} \in Z$. Then $M$ is a lattice module over $L$. Let $N$ be the cyclic submodule of $M$ generated by $\overline{4}$. It is easy to see that $N=<\overline{4}>$ is almost primary ( $\phi_{2}$-primary) and 2-potent prime but not prime.
Theorem 21. Let a proper element $N$ of an L-module $M$ be $\phi$-primary. If $\phi(N)$ is primary, then $N$ is primary.

Theorem 22. Let a proper element $N$ of an L-module $M$ be $\phi$-primary. If $\left(N: I_{M}\right) N \nless$ $\phi(N)$, then $N$ is primary.

The consequences of Theorem 22 are presented in the form of following corollaries.
Corollary 14. If a proper element $N$ of a multiplication lattice $L$-module $M$ is $\phi$-primary but not primary, then $\left(N: I_{M}\right)^{2} I_{M} \leqslant \phi(N)$.

Corollary 15. If a proper element $N$ of an L-module $M$ is weakly primary such that $\left(N: I_{M}\right) N \neq O_{M}$, then $N$ is primary.

Corollary 16. If a proper element $N$ of an L-module $M$ is $\phi$-primary such that $\phi \leqslant \phi_{3}$, then $N$ is $\omega$-primary.

Corollary 17. If a proper element $N$ of a multiplication lattice L-module $M$ is $\phi$-primary but not primary, then $\sqrt{N: I_{M}}=\sqrt{\phi(N): I_{M}}$.

Corollary 18. If a proper element $N$ of a multiplication lattice $L$-module $M$ is $\phi$-primary, then either $\sqrt{\phi(N): I_{M}} \leqslant\left(N: I_{M}\right)$ or $\left(N: I_{M}\right) \leqslant \sqrt{\phi(N): I_{M}}$.
Theorem 23. Let a proper element $N$ of an L-module $M$ be $\phi$-primary. If $\left(\sqrt{N: I_{M}}\right) N \nless$ $\phi(N)$, then $N$ is primary.

Proof. Just mimic the proof of Theorem 10.
Now, the interrelations among prime, primary, 2-absorbing and 2-absorbing primary elements of an $L$-module $M$ are given in following theorems whose proofs being obvious are omitted.

Theorem 24. Every prime element of an L-module $M$ is primary and 2-absorbing.
Theorem 25. If $Q$ is a primary element of an L-module $M$, then $\sqrt{Q: I_{M}}$ is a prime element and hence a 2-absorbing element of L. Also, it is a 2-absorbing primary element of $L$.
Theorem 26. If $Q$ is a 2-absorbing element of an L-module $M$, then both $\sqrt{Q: I_{M}}$ and $\left(Q: I_{M}\right)$ are 2-absorbing elements of L. Also, they are 2-absorbing primary elements of $L$.

Theorem 27. Let $L$ be a PG-lattice and $M$ be a faithful multiplication PG-lattice $L$ module with $I_{M}$ compact. If $Q$ is a 2-absorbing primary element of $M$, then $\left(Q: I_{M}\right)$ is a 2-absorbing primary element of $L$ and $\sqrt{Q: I_{M}}$ is a 2-absorbing element of $L$.

Proof. Let $a b c \leqslant\left(Q: I_{M}\right)$ for $a, b, c \in L$. Then as $a b\left(c I_{M}\right) \leqslant Q$ and $Q$ is a 2-absorbing primary element of $M$, we have, either $a b \leqslant\left(Q: I_{M}\right)$ or $a\left(c I_{M}\right) \leqslant\left(\sqrt{Q: I_{M}}\right) I_{M}$ or $b\left(c I_{M}\right) \leqslant\left(\sqrt{Q: I_{M}}\right) I_{M}$. Since $I_{M}$ is compact, by Theorem 5 of [10], it follows that, either $a b \leqslant\left(Q: I_{M}\right)$ or $a c \leqslant \sqrt{Q: I_{M}}$ or $b c \leqslant \sqrt{Q: I_{M}}$ and hence $\left(Q: I_{M}\right)$ is a 2-absorbing primary element of $L$. By Theorem 2.4 in [18], it follows that $\sqrt{Q: I_{M}}$ is a 2-absorbing element of $L$.

By relating the absorbing concepts with $\phi$-prime and $\phi$-primary elements of an $L$ module $M$, we obtain the following results.

Theorem 28. Let a proper element $N$ of an L-module $M$ be $\phi$-prime. If $\left(N: I_{M}\right) N \nless$ $\phi(N)$, then $N$ is primary and 2-absorbing. Also, then both $\sqrt{N: I_{M}}$ and $\left(N: I_{M}\right)$ are 2-absorbing and hence 2-absorbing primary elements of $L$.

Proof. The proof follows from Theorems 10, 24 and 26.
Clearly, every primary element of a multiplication $L$-module $M$ is 2 -absorbing primary.
Theorem 29. Let a proper element $N$ of a multiplication L-module $M$ be $\phi$-prime. If $\left(N: I_{M}\right) N \nless \phi(N)$, then $N$ is 2-absorbing primary. Also, then $\left(N: I_{M}\right)$ is a 2-absorbing primary element of $L$ provided $M$ is a faithful $P G$-lattice with $I_{M}$ compact and $L$ as a $P G$-lattice. Further, $\sqrt{N: I_{M}}$ is a 2-absorbing element of $L$.

Proof. The proof follows from Theorems 10, 24 and 27.
Theorem 30. Let a proper element $N$ of a multiplication L-module $M$ be $\phi$-primary. If $\left(N: I_{M}\right) N \nless \phi(N)$, then $N$ is 2 -absorbing primary.

Proof. The proof follows from Theorem 22.
Theorem 31. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let a proper element $N$ of an $L$-module $M$ be $\phi$-primary. If $\left(N: I_{M}\right) N \nless \phi(N)$, then $\left(N: I_{M}\right)$ is a 2-absorbing primary element of $L$ and $\sqrt{N: I_{M}}$ is a 2-absorbing element of $L$.

Proof. The proof follows from Theorems 30 and 27.
The following results are obtained by relating the absorbing concepts with almost prime and almost primary elements of an $L$-module $M$.

Theorem 32. Let $M$ be a torsion free L-module and $O_{M} \neq N<I_{M}$ be a weak join principal element of $M$. If $N$ is almost prime, then $N$ is primary and 2-absorbing. Also, then both $\sqrt{N: I_{M}}$ and $\left(N: I_{M}\right)$ are 2-absorbing and hence 2-absorbing primary elements of $L$.

Proof. The proof follows from Theorems 5, 24 and 26.
Theorem 33. Let $M$ be a torsion free, multiplication L-module and $O_{M} \neq N<I_{M}$ be a weak join principal element of $M$. If $N$ is almost prime, then $N$ is 2 -absorbing primary. Also, then $\left(N: I_{M}\right)$ is a 2-absorbing primary element of $L$ provided $M$ is a faithful $P G$ lattice with $I_{M}$ compact and $L$ as a $P G$-lattice. Further, $\sqrt{N: I_{M}}$ is a 2-absorbing element of $L$.

Proof. The proof follows from Theorems 5, 24 and 27.
Theorem 34. Let $M$ be a torsion free, multiplication L-module and $O_{M} \neq N<I_{M}$ be a weak join principal element of $M$. If $N$ is almost primary, then $N$ is 2-absorbing primary.

Proof. The proof follows from Theorem 15.
Theorem 35. Let $M$ be a torsion free, faithful, multiplication PG-lattice L-module with $I_{M}$ compact and $L$ be a $P G$-lattice. Let $O_{M} \neq N<I_{M}$ be a weak join principal element of $M$. If $N$ is almost primary, then $\left(N: I_{M}\right)$ is a 2-absorbing primary element of $L$ and $\sqrt{N: I_{M}}$ is a 2-absorbing element of $L$.

Proof. The proof follows from Theorems 34 and 27.

## 3. Almost Prime and Almost Primary Elements in $M$

In this section, we will obtain some more results on an almost prime (respectively almost primary) element of an $L$-module $M$ by relating it with an idempotent element and a weakly prime (respectively weakly primary) element of an $L$-module $M$. Also, many characterizations of an almost prime and almost primary element of an $L$-module $M$ are obtained. Finally, we define $n$-potent prime(respectively $n$-potent primary) elements in $L$ and these notions are related with $n$-potent prime(respectively $n$-potent primary) elements in $M$ where $n \geqslant 2$.

Clearly, every almost prime element of an $L$-module $M$ is almost primary but the converse need not be true as seen in Example 2. It is easy to see that converse holds for radical elements of an $L$-module $M$. Every prime element of an $L$-module $M$ is almost prime and every primary element of an $L$-module $M$ is almost primary but their converses are not true as seen in Example 1 and Example 4, respectively. Also, every prime element of an $L$-module $M$ is almost primary.

According to Definition 2.6 of [22], an idempotent element of an $L$-module $M$ is defined in the following way.

Definition 8. A proper element $N$ of an L-module $M$ is said to be idempotent if ( $N$ : $\left.I_{M}\right) N=N$.

Clearly, every idempotent element of an $L$-module $M$ is almost prime and hence almost primary. But an almost primary element of an $L$-module $M$ need not be idempotent as shown in the following example.

Example 7. Consider the lattice module as in Example 6. Let $N$ be the cyclic submodule of $M$ generated by $\overline{4}$. It is easy to see that the element $N=<\overline{4}>$ is almost primary but not idempotent.

Theorem 36. Let $L$ be a PG-lattice and $M$ be a faithful multiplication PG-lattice $L$ module with $I_{M}$ compact. For an idempotent element $N \in M,\left(\sqrt{\left(N: I_{M}\right) N: I_{M}}\right) N=$ $\left(N: I_{M}\right) N$.

Proof. As $N<I_{M}$ is idempotent, $N$ is almost prime ( $\phi_{2}-$ prime). Since $M$ is a multiplication lattice $L$-module, we have $\left(N: I_{M}\right)^{2} I_{M}=\left(N: I_{M}\right) N$ which implies $\left(N: I_{M}\right) \leqslant \sqrt{\left(N: I_{M}\right) N: I_{M}}$. Thus $\left(N: I_{M}\right) N \leqslant\left(\sqrt{\left(N: I_{M}\right) N: I_{M}}\right) N$. Now to prove that $\left(\sqrt{\left(N: I_{M}\right) N: I_{M}}\right) N \leqslant\left(N: I_{M}\right) N$, let $a \leqslant \sqrt{\left(N: I_{M}\right) N: I_{M}}$ for $a \in L$. If $a \leqslant\left(N: I_{M}\right)$, then we are done. So let $a \nless\left(N: I_{M}\right)$. Then as $N$ is $\phi_{2}-$ prime, by Theorem 1, we have either $(N: a)=N$ or $(N: a)=\left(\left(N: I_{M}\right) N: a\right)$. Let $(N: a)=N$ and $n$ be the least positive integer such that $a^{n} \leqslant\left(\left(N: I_{M}\right) N: I_{M}\right)$. If $n=1$, then $a I_{M} \leqslant\left(N: I_{M}\right) N=\left(N: I_{M}\right)^{2} I_{M}$. As $I_{M}$ is compact, by Theorem 5 of [10], we have $a \leqslant\left(N: I_{M}\right)^{2} \leqslant\left(N: I_{M}\right)$ which contradicts $a \nless\left(N: I_{M}\right)$. So assume that $n \geqslant 2$. Then $a^{n} I_{M} \leqslant\left(N: I_{M}\right) N \leqslant N$ with $a^{k} I_{M} \nless\left(N: I_{M}\right) N$ for every $k \leqslant(n-1)$. Since
$a\left(a^{n-1} I_{M}\right) \leqslant N$, we have $a^{n-1} I_{M} \leqslant(N: a)=N$ with $a^{n-1} I_{M} \nless\left(N: I_{M}\right) N$. If $n=2$, then $a I_{M} \leqslant N$ which contradicts $a \nless\left(N: I_{M}\right)$. If $n \geqslant 3$, then $a\left(a^{n-2} I_{M}\right) \leqslant N$ but $a\left(a^{n-2} I_{M}\right) \nless\left(N: I_{M}\right) N$. As $N$ is almost prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $a^{n-2} I_{M} \leqslant N$. As $a \leqslant\left(N: I_{M}\right)$ is a contradiction, let $a^{n-2} I_{M} \leqslant N$. Then $a\left(a^{n-3} I_{M}\right) \leqslant N$ but $a\left(a^{n-3} I_{M}\right) \nless\left(N: I_{M}\right) N$. As $N$ is almost prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $a^{n-3} I_{M} \leqslant N$. Continuing this process we conclude that $a \leqslant\left(N: I_{M}\right)$ which contradicts $a \nless\left(N: I_{M}\right)$. Hence we must have $(N: a)=\left(\left(N: I_{M}\right) N: a\right)$. Then $a N \leqslant a(N:$ $a)=a\left(\left(N: I_{M}\right) N: a\right) \leqslant\left(N: I_{M}\right) N$ which implies $a \leqslant\left(\left(N: I_{M}\right) N: N\right)$ and so $\sqrt{\left(N: I_{M}\right) N: I_{M}} \leqslant\left(\left(N: I_{M}\right) N: N\right)$. It follows that $\left(\sqrt{\left(N: I_{M}\right) N: I_{M}}\right) N \leqslant(N:$ $\left.I_{M}\right) N$ and hence $\left(\sqrt{\left(N: I_{M}\right) N: I_{M}}\right) N=\left(N: I_{M}\right) N$.

From following example, it is clear that an almost primary element of an $L$-module $M$ need not be weakly primary.

Example 8. Consider the lattice module as in Example 4. Let $N$ be the cyclic submodule of $M$ generated by $\overline{6}$. It is easy to see that the element $N=\langle\overline{6}>$ is almost primary ( $\phi_{2}$-primary) but not weakly primary.

Before obtaining the characterization of an almost primary element of an $L$-module $M$ in terms of a weakly primary element of $M$, we recall the definition of a local module $M$. According to [1], an $L$-module $M$ is said to be a local module if it has a unique maximal element.

Theorem 37. Let $M$ be a local L-module with a unique maximal element $Q \in M$ such that $\left(Q: I_{M}\right) Q=O_{M}$. Then a proper element $N \in M$ is almost primary if and only if $N$ is weakly primary.

Proof. Assume that a proper element $N \in M$ is almost primary. Then $N \leqslant Q$. It follows that $\left(N: I_{M}\right) N \leqslant\left(Q: I_{M}\right) Q=O_{M}$ and hence $\left(N: I_{M}\right) N=O_{M}$. Let $O_{M} \neq a A \leqslant N$ for $a \in L, A \in M$. As $a A \leqslant N, a A \nless\left(N: I_{M}\right) N=O_{M}$ and $N$ is almost primary, we have either $A \leqslant N$ or $a \leqslant \sqrt{N: I_{M}}$ and hence $N$ is weakly primary. The converse is obvious from Theorem 13.

Now we prove the result required to show that if an element in $M$ (or $L$ ) is almost primary, then its corresponding element in $L$ (or $M$ ) is also almost primary.

Lemma 4. Let $M$ be a torsion free multiplication lattice L-module and $I_{M}$ be a weak join principal element of $M$. Let $N$ be a proper element of $M$. Then $a\left(N: I_{M}\right)=\left(a N: I_{M}\right)$ for $a \in L$.

Proof. Since $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$. Then $a(N$ : $\left.I_{M}\right) I_{M}=a N=\left(a N: I_{M}\right) I_{M}$ and so the result follows by Lemma 3.

Theorem 38. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M}$ be a weak join principal element and $N$ be a proper element of $M$. Then the following statements are equivalent:
(1) $N$ is an almost primary element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost primary element of $L$.
(3) $N=q I_{M}$ for some almost primary element $q \in L$ which is maximal in the sense that if a $I_{M}=N$, then $a \leqslant q$ where $a \in L$.

Proof. (1) $\Longrightarrow$ (2). Assume that $N$ is an almost primary element of $M$. Let $a b \leqslant\left(N: I_{M}\right)$ and $a b \nless\left(N: I_{M}\right)^{2}$ for $a, b \in L$. Then $a b I_{M} \leqslant N$. If $a b I_{M} \leqslant\left(N: I_{M}\right) N$, then by Lemma 4, we have $a b \leqslant\left(\left(N: I_{M}\right) N: I_{M}\right)=\left(N: I_{M}\right)\left(N: I_{M}\right)$ which contradicts $a b \nless\left(N: I_{M}\right)^{2}$. So let $a\left(b I_{M}\right) \nless\left(N: I_{M}\right) N$. Then as $N$ is almost primary, we have either $a \leqslant \sqrt{N: I_{M}}$ or $b I_{M} \leqslant N$ and thus ( $N: I_{M}$ ) is an almost primary element of $L$.
(2) $\Longrightarrow$ (3). Assume that $\left(N: I_{M}\right)=q$ is an almost primary element of $L$. Then $q I_{M} \leqslant N$. Since $M$ is a multiplication lattice module, $N=a I_{M}$ for some $a \in L$. So $a \leqslant\left(N: I_{M}\right)=q$ and thus $N=a I_{M} \leqslant q I_{M}$. Hence $N=q I_{M}$ for some almost primary element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$.
(3) $\Longrightarrow$ (1). Suppose $N=q I_{M}$ for some almost primary element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$ where $a \in L$. Then $q \leqslant\left(N: I_{M}\right)$. Now, let $r X \leqslant N, r X \nless\left(N: I_{M}\right) N$ and $X \nless N$ for $r \in L, X \in M$. Since $M$ is a multiplication lattice module, $X=c I_{M}$ for some $c \in L$. Then $r c \leqslant\left(N: I_{M}\right) \leqslant q$, using maximality of $q$ to $N=\left(N: I_{M}\right) I_{M}($ by Proposition 3 of $[10])$. If $r c \leqslant q^{2}$, then $r X \leqslant q N \leqslant\left(N: I_{M}\right) N$, a contradiction. So $r c \nless q^{2}$. Also, $c \nless q$ because if $c \leqslant q$, then $X \leqslant N$, a contradiction. Now, as $r c \leqslant q, r c \nless q^{2}, c \nless q$ and $q$ is almost primary, we have, $r \leqslant \sqrt{q}$ which implies $r \leqslant \sqrt{N: I_{M}}$ and hence $N$ is almost primary

Theorem 39. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M}$ be a weak join principal element and $N$ be a proper element in $M$. Then the following statements are equivalent:
(1) $N$ is an almost primary element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost primary element of $L$.
(3) $N=q I_{M}$ for some almost primary element $q \in L$.

Proof. (1) $\Longrightarrow$ (2) follows from $(1) \Longrightarrow$ (2) in the proof of Theorem 38.
(2) $\Longrightarrow$ (1). Assume that $\left(N: I_{M}\right)$ is an almost primary element of $L$. Let $r Q \leqslant N$ and $r Q \nless\left(N: I_{M}\right) N$ for $r \in L, Q \in M$. Then $\left(r Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ and so by Lemma 4, we have $r\left(Q: I_{M}\right)=\left(r Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$. If $r\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)^{2}=\left(\left(N: I_{M}\right) N: I_{M}\right)$, then $r\left(Q: I_{M}\right) I_{M} \leqslant\left(N: I_{M}\right) N$ which implies $r Q \leqslant\left(N: I_{M}\right) N$, a contradiction. If $r\left(Q: I_{M}\right) \nless\left(N: I_{M}\right)^{2}$, then as $r\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ and $\left(N: I_{M}\right)$ is almost primary, we have either $r \leqslant \sqrt{N: I_{M}}$ or $\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ which implies either $r \leqslant \sqrt{N: I_{M}}$ or $Q \leqslant N$ and thus $N$ is an almost primary element of $M$.
(2) $\Longrightarrow$ (3). Suppose $\left(N: I_{M}\right)$ is an almost primary element of $L$. Since $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$ and hence (3) holds.
(3) $\Longrightarrow$ (2). Suppose $N=q I_{M}$ for some almost primary element $q \in L$. As $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$. Since $I_{M}$ is compact, (2) holds by Theorem 5 of [10].

Now we relate the almost primary element $N \in M$ with $\operatorname{rad}(N) \in M$, the radical of $N$. According to definition 3.1 in [17], the radical of a proper element $N$ in an $L$ module $M$ is defined as $\wedge\{P \in M \mid P$ is a prime element and $N \leqslant P\}$ and is denoted as $\operatorname{rad}(N)$. Using Theorem 3.6 of [17], we have the following interesting characterization of an almost primary element of $M$.

Theorem 40. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M} \in M$ be a weak join principal element. Then a proper element $P \in M$ is almost primary ( $\phi_{2}$-primary) if and only if whenever $N=a I_{M}$ and $K=b I_{M}$ in $M$ are such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ then either $N \leqslant P$ or $K \leqslant \operatorname{rad}(P)$ for $a, b \in L$.

Proof. Assume that $P \in M$ is almost primary. Let $N=a I_{M}$ and $K=b I_{M}$ in $M$ be such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ for $a, b \in L$. Since $M$ is a multiplication lattice $L$-module, we have $a=\left(N: I_{M}\right)$ and $b=\left(K: I_{M}\right)$ and so $\left(K: I_{M}\right)(N:$ $\left.I_{M}\right) I_{M}=a b I_{M} \leqslant P$ and $\left(K: I_{M}\right)\left(N: I_{M}\right) I_{M} \nless\left(P: I_{M}\right) P$. As $P \in M$ is almost primary, we have either $\left(N: I_{M}\right) I_{M} \leqslant P$ or $\left(K: I_{M}\right) \leqslant \sqrt{P: I_{M}}$ which implies either $N=\left(N: I_{M}\right) I_{M} \leqslant P$ or $K=\left(K: I_{M}\right) I_{M} \leqslant\left(\sqrt{P: I_{M}}\right) I_{M}=\operatorname{rad}(P)$ by Theorem 3.6 of [17]. Conversely, assume that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ implies either $N \leqslant P$ or $K \leqslant \operatorname{rad}(P)$ where $N=a I_{M}$ and $K=b I_{M}$ are in $M$ for $a, b \in L$. Let $r s \leqslant\left(P: I_{M}\right)$ and $r s \nless\left(P: I_{M}\right)^{2}$ where $S=r I_{M}$ and $Q=s I_{M}$ are in $M$ for $r, s \in L$. If $r s I_{M} \leqslant\left(P: I_{M}\right) P$, then since $M$ is a multiplication lattice $L$-module, we have $r s I_{M} \leqslant\left(P: I_{M}\right)^{2} I_{M}$. So by Theorem 5 of [10], we have $r s \leqslant\left(P: I_{M}\right)^{2}$, a contradiction. So let $r s I_{M} \notin\left(P: I_{M}\right) P$. Since $r s I_{M} \leqslant P$, by hypothesis, we have either $S \leqslant P$ or $Q \leqslant \operatorname{rad}(P)$ which implies either $r I_{M} \leqslant P$ or $s I_{M} \leqslant \operatorname{rad}(P)=\left(\sqrt{P: I_{M}}\right) I_{M}$, by Theorem 3.6 of [17]. So either $r \leqslant\left(P: I_{M}\right)$ or $s \leqslant \sqrt{P: I_{M}}$, by Theorem 5 of [10]. Thus $\left(P: I_{M}\right)$ is an almost primary element of $L$ and hence by Theorem $39, P$ is an almost primary element of $M$.

Now we show that Lemma 4 can also be achieved by changing the conditions on $M$ and $I_{M}$.

Lemma 5. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$-module with $I_{M}$ compact. Let $N$ be a proper element of $M$. Then $a\left(N: I_{M}\right)=\left(a N: I_{M}\right)$ for $a \in L$.

Proof. Since $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$. Then $a(N$ : $\left.I_{M}\right) I_{M}=a N=\left(a N: I_{M}\right) I_{M}$ and we are done, by Theorem 5 of [10].

Lemma 5 is Lemma 3.5 of [22].
In view of Lemma 5 , the Theorems 38, 39 and 40 can be restated in the following way.

Theorem 41. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an L-module $M$. Then the following statements are equivalent:
(1) $N$ is an almost primary element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost primary element of $L$.
(3) $N=q I_{M}$ for some almost primary element $q \in L$ which is maximal in the sense that if a $I_{M}=N$, then $a \leqslant q$ where $a \in L$.
Theorem 42. Let $L$ be a PG-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an L-module $M$. Then the following statements are equivalent:
(1) $N$ is an almost primary element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost primary element of $L$.
(3) $N=q I_{M}$ for some almost primary element $q \in L$.

Theorem 43. Let $L$ be a PG-lattice and $M$ be a faithful multiplication PG-lattice Lmodule with $I_{M}$ compact. Then a proper element $P \in M$ is almost primary ( $\phi_{2}-$ primary) if and only if whenever $N=a I_{M}$ and $K=b I_{M}$ in $M$ are such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ then either $N \leqslant P$ or $K \leqslant \operatorname{rad}(P)$ for $a, b \in L$.

The following result is a consequence of the Theorem 42.
Corollary 19. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication PG-lattice Lmodule with $I_{M}$ compact. Then a proper element $N$ of an $L$-module $M$ is almost primary if and only if $\left(N: I_{M}\right)$ is an almost primary element of $L$.

The analogous results (from the results of almost primary elements of $M$ ) for almost prime elements of $M$ are as follows.

In Example 2.5 of [22], it is shown that an almost prime element of an $L$-module $M$ need not be weakly prime. The following characterization of an almost prime element of an $L$-module $M$ shows that under a certain condition, an almost prime element of an $L$-module $M$ is weakly prime.
Theorem 44. Let $M$ be a local L-module with a unique maximal element $Q \in M$ such that $\left(Q: I_{M}\right) Q=O_{M}$. Then a proper element $N \in M$ is almost prime if and only if $N$ is weakly prime.

Proof. Assume that a proper element $N \in M$ is almost prime. Then $N \leqslant Q$. It follows that $\left(N: I_{M}\right) N \leqslant\left(Q: I_{M}\right) Q=O_{M}$ and hence $\left(N: I_{M}\right) N=O_{M}$. Let $O_{M} \neq a A \leqslant N$ for $a \in L, A \in M$. As $a A \leqslant N, a A \nless\left(N: I_{M}\right) N=O_{M}$ and $N$ is almost prime, we have either $A \leqslant N$ or $a \leqslant\left(N: I_{M}\right)$ and hence $N$ is weakly prime. The converse is obvious from Theorem 3.

The following result shows that if an element in $M$ (or $L$ ) is almost prime, then its corresponding element in $L$ (or $M$ ) is also almost prime.

Theorem 45. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M}$ be a weak join principal element and $N$ be a proper element of $M$. Then the following statements are equivalent:
(1) $N$ is an almost prime element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost prime element of $L$.
(3) $N=q I_{M}$ for some almost prime element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$ where $a \in L$.

Proof. (1) $\Longrightarrow$ (2). Assume that $N$ is an almost prime element of $M$. Let $a b \leqslant\left(N: I_{M}\right)$ and $a b \nless\left(N: I_{M}\right)^{2}$ for $a, b \in L$. Then $a b I_{M} \leqslant N$. If $a b I_{M} \leqslant\left(N: I_{M}\right) N$, then by Lemma 4, we have $a b \leqslant\left(\left(N: I_{M}\right) N: I_{M}\right)=\left(N: I_{M}\right)\left(N: I_{M}\right)$ which contradicts $a b \nless\left(N: I_{M}\right)^{2}$. So let $a\left(b I_{M}\right) \nless\left(N: I_{M}\right) N$. Then as $N$ is almost prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $b I_{M} \leqslant N$ and thus $\left(N: I_{M}\right)$ is an almost prime element of $L$.
(2) $\Longrightarrow$ (3). Assume that $\left(N: I_{M}\right)=q$ is an almost prime element of $L$. Then $q I_{M} \leqslant N$. Since $M$ is a multiplication lattice module, $N=a I_{M}$ for some $a \in L$. So $a \leqslant\left(N: I_{M}\right)=q$ and thus $N=a I_{M} \leqslant q I_{M}$. Hence $N=q I_{M}$ for some almost prime element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$.
(3) $\Longrightarrow$ (1). Suppose $N=q I_{M}$ for some almost prime element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$ where $a \in L$. Then $q \leqslant\left(N: I_{M}\right)$. Now, let $r X \leqslant N, r X \nless\left(N: I_{M}\right) N$ and $X \nless N$ for $r \in L, X \in M$. Since $M$ is a multiplication lattice module, $X=c I_{M}$ for some $c \in L$. Then $r c \leqslant\left(N: I_{M}\right) \leqslant q$, using maximality of $q$ to $N=\left(N: I_{M}\right) I_{M}$ (by Proposition 3 of [10]). If $r c \leqslant q^{2}$, then $r X \leqslant q N \leqslant\left(N: I_{M}\right) N$, a contradiction. So $r c \nless q^{2}$. Also, $c \nless q$ because if $c \leqslant q$, then $X \leqslant N$, a contradiction. Now, as $r c \leqslant q, r c \nless q^{2}, c \nless q$ and $q$ is almost prime, we have, $r \leqslant q$ which implies $r \leqslant\left(N: I_{M}\right)$ and hence $N$ is almost prime

Theorem 46. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M}$ be a weak join principal element and $N$ be a proper element of $M$. Then the following statements are equivalent:
(1) $N$ is an almost prime element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost prime element of $L$.
(3) $N=q I_{M}$ for some almost prime element $q \in L$.

Proof. (1) $\Longrightarrow$ (2) follows from (1) $\Longrightarrow$ (2) in the proof of Theorem 45.
(2) $\Longrightarrow$ (1). Assume that $\left(N: I_{M}\right)$ is an almost prime element of $L$. Let $r Q \leqslant N$ and $r Q \nless\left(N: I_{M}\right) N$ for $r \in L, Q \in M$. Then $\left(r Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ and so by Lemma 4 , we have $r\left(Q: I_{M}\right)=\left(r Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$. If $r\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)^{2}=\left(\left(N: I_{M}\right) N: I_{M}\right)$, then $r\left(Q: I_{M}\right) I_{M} \leqslant\left(N: I_{M}\right) N$ which implies $r Q \leqslant\left(N: I_{M}\right) N$, a contradiction. If $r\left(Q: I_{M}\right) \nless\left(N: I_{M}\right)^{2}$, then as $r\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ and $\left(N: I_{M}\right)$ is almost prime, we
have either $r \leqslant\left(N: I_{M}\right)$ or $\left(Q: I_{M}\right) \leqslant\left(N: I_{M}\right)$ which implies either $r \leqslant\left(N: I_{M}\right)$ or $Q \leqslant N$ and thus $N$ is an almost prime element of $M$.
(2) $\Longrightarrow$ (3). Suppose $\left(N: I_{M}\right)$ is an almost prime element of $L$. Since $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$ and hence (3) holds.
(3) $\Longrightarrow$ (2). Suppose $N=q I_{M}$ for some almost prime element $q \in L$. As $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$. Since $I_{M}$ is compact, (2) holds by Theorem 5 of [10].

The following result is another characterization of an almost prime element of an $L$ module $M$.

Theorem 47. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication torsion free $P G$ lattice L-module with $I_{M}$ compact. Let $I_{M}$ be a weak join principal element. Then a proper element $P \in M$ is almost prime ( $\phi_{2}-$ prime) if and only if whenever $N=a I_{M}$ and $K=b I_{M}$ in $M$ are such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ then either $N \leqslant P$ or $K \leqslant P$ for $a, b \in L$.

Proof. Assume that $P \in M$ is almost prime. Let $N=a I_{M}$ and $K=b I_{M}$ in $M$ be such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ for $a, b \in L$. Since $M$ is a multiplication lattice $L$ module, we have $a=\left(N: I_{M}\right)$ and $b=\left(K: I_{M}\right)$ and so $\left(K: I_{M}\right)\left(N: I_{M}\right) I_{M}=a b I_{M} \leqslant P$ and $\left(K: I_{M}\right)\left(N: I_{M}\right) I_{M} \nless\left(P: I_{M}\right) P$. As $P \in M$ is almost prime, we have either $\left(N: I_{M}\right) I_{M} \leqslant P$ or $\left(K: I_{M}\right) \leqslant\left(P: I_{M}\right)$ which implies either $N=\left(N: I_{M}\right) I_{M} \leqslant P$ or $K=\left(K: I_{M}\right) I_{M} \leqslant P$. Conversely, assume that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ implies either $N \leqslant P$ or $K \leqslant P$ where $N=a I_{M}$ and $K=b I_{M}$ are in $M$ for $a, b \in L$. Let $r s \leqslant\left(P: I_{M}\right)$ and $r s \nless\left(P: I_{M}\right)^{2}$ where $S=r I_{M}$ and $Q=s I_{M}$ are in $M$ for $r, s \in L$. If $r s I_{M} \leqslant\left(P: I_{M}\right) P$, then since $M$ is a multiplication lattice $L$-module, we have $r s I_{M} \leqslant\left(P: I_{M}\right)^{2} I_{M}$. So by Theorem 5 of [10], we have $r s \leqslant\left(P: I_{M}\right)^{2}$, a contradiction. So let $r s I_{M} \nless\left(P: I_{M}\right) P$. Since $r s I_{M} \leqslant P$, by hypothesis, we have either $S \leqslant P$ or $Q \leqslant P$ which implies either $r I_{M} \leqslant P$ or $s I_{M} \leqslant P$ and so either $r \leqslant\left(P: I_{M}\right)$ or $s \leqslant\left(P: I_{M}\right)$. Thus $\left(P: I_{M}\right)$ is an almost prime element of $L$ and hence by Theorem 46, $P$ is an almost prime element of $M$.

In view of Lemma 5, the Theorems 45, 46 and 47 can be restated in the following way.
Theorem 48. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an L-module $M$. Then the following statements are equivalent:
(1) $N$ is an almost prime element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost prime element of $L$.
(3) $N=q I_{M}$ for some almost prime element $q \in L$ which is maximal in the sense that if $a I_{M}=N$, then $a \leqslant q$ where $a \in L$.

Theorem 49. Let $L$ be a PG-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an L-module $M$. Then the following statements are equivalent:
(1) $N$ is an almost prime element of $M$.
(2) $\left(N: I_{M}\right)$ is an almost prime element of $L$.
(3) $N=q I_{M}$ for some almost prime element $q \in L$.

Theorem 49 is Theorem 3.8 of [22].
Theorem 50. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Then a proper element $P \in M$ is almost prime ( $\phi_{2}$ - prime) if and only if whenever $N=a I_{M}$ and $K=b I_{M}$ in $M$ are such that $a b I_{M} \leqslant P$ and $a b I_{M} \nless\left(P: I_{M}\right) P$ then either $N \leqslant P$ or $K \leqslant P$ for $a, b \in L$.

Theorem 50 is Theorem 3.14 of [22].
The following result is a consequence of the Theorem 49.
Corollary 20. Let $L$ be a PG-lattice and $M$ be a faithful multiplication PG-lattice $L$ module with $I_{M}$ compact. Then a proper element $N$ of an $L$-module $M$ is almost prime if and only if $\left(N: I_{M}\right)$ is an almost prime element of $L$.

According to [16], a proper element $q \in L$ is said to be 2-potent prime if for all $a, b \in L$, $a b \leqslant q^{2}$ implies either $a \leqslant q$ or $b \leqslant q$ and a proper element $q \in L$ is said to be 2-potent primary if for all $a, b \in L, a b \leqslant q^{2}$ implies either $a \leqslant q$ or $b \leqslant \sqrt{q}$.

In view of these definitions, we define $n$-potent prime and $n$-potent primary elements (where $n \geqslant 2$ ) in a multiplicative lattice $L$ in following way.

Definition 9. Let $n \geqslant 2$ and $n \in Z_{+}$. A proper element $q \in L$ is said to be $n$-potent prime if for all $a, b \in L, a b \leqslant q^{n}$ implies either $a \leqslant q$ or $b \leqslant q$.

Definition 10. Let $n \geqslant 2$ and $n \in Z_{+}$. A proper element $q \in L$ is said to be $n$-potent primary if for all $a, b \in L, a b \leqslant q^{n}$ implies either $a \leqslant q$ or $b \leqslant \sqrt{q}$.

Now we show that if an element in $M$ is $n$-potent prime (respectively $n$-potent primary), then its corresponding element in $L$ is also $n$-potent prime (respectively $n$-potent primary) and vice-versa where $n \geqslant 2$.

Theorem 51. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an $L$-module $M$ and $n \geqslant 2$. Then the following statements are equivalent:
(1) $N$ is a n-potent prime element of $M$.
(2) $\left(N: I_{M}\right)$ is a $n$-potent prime element of $L$.
(3) $N=q I_{M}$ for some n-potent prime element $q \in L$.

Proof. Since $M$ is a multiplication lattice $L$-module, by Proposition 3 of [10], we have $N=\left(N: I_{M}\right) I_{M}$.
(1) $\Longrightarrow$ (2). Assume that $N$ is a $n$-potent prime element of $M$. Let $a b \leqslant\left(N: I_{M}\right)^{n}$ for $a, b \in L$. Then $a\left(b I_{M}\right) \leqslant\left(N: I_{M}\right)^{n-1} N$. As $N$ is $n$-potent prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $b I_{M} \leqslant N$ and thus $\left(N: I_{M}\right)$ is a $n$-potent prime element of $L$.
(2) $\Longrightarrow$ (1). Assume that $\left(N: I_{M}\right)$ is a $n$-potent prime element of $L$. Let $a X \leqslant(N:$ $\left.I_{M}\right)^{n-1} N$ for $a \in L$ and $X \in M . M$ being a multiplication lattice $L$-module, we have $X=$ $c I_{M}$ for some $c \in L$. Clearly, $a\left(c I_{M}\right) \leqslant\left(N: I_{M}\right)^{n} I_{M}$. This implies that $a c \leqslant\left(N: I_{M}\right)^{n}$ by Theorem 5 of [10]. As $\left(N: I_{M}\right)$ is a $n$-potent prime, we have either $a \leqslant\left(N: I_{M}\right)$ or $c \leqslant\left(N: I_{M}\right)$ which implies either $a \leqslant\left(N: I_{M}\right)$ or $X=c I_{M} \leqslant\left(N: I_{M}\right) I_{M}=N$ and thus $N$ is a $n$-potent prime element of $M$.
(2) $\Longrightarrow$ (3). Suppose $q=\left(N: I_{M}\right)$ is a $n$-potent prime element of $L$. Since $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}=q I_{M}$ and hence (3) holds.
(3) $\Longrightarrow$ (2). Suppose $N=q I_{M}$ for some $n$-potent prime element $q \in L$. As $M$ is a multiplication lattice $L$-module, $N=\left(N: I_{M}\right) I_{M}$. Since $I_{M}$ is compact, (2) holds by Theorem 5 of [10].

Theorem 52. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Let $N$ be a proper element of an $L$-module $M$ and $n \geqslant 2$. Then the following statements are equivalent:
(1) $N$ is a n-potent primary element of $M$.
(2) $\left(N: I_{M}\right)$ is a $n$-potent primary element of $L$.
(3) $N=q I_{M}$ for some $n$-potent primary element $q \in L$.

Proof. Just mimic the proof of Theorem 51.
We conclude this paper with following 2 results which are outcomes of Theorems 51 and 52 , respectively.

Corollary 21. Let $L$ be a PG-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Then a proper element $N$ of an L-module $M$ is 2-potent prime if and only if $\left(N: I_{M}\right)$ is a 2-potent prime element of $L$.

Corollary 22. Let $L$ be a $P G$-lattice and $M$ be a faithful multiplication $P G$-lattice $L$ module with $I_{M}$ compact. Then a proper element $N$ of an $L$-module $M$ is 2-potent primary if and only if $\left(N: I_{M}\right)$ is a 2-potent primary element of $L$.

Note: This paper is a part of the first author's Ph.D. thesis, submitted in 2015 to Shivaji University, Kolhapur, Maharashtra, India.

## Acknowledgements

The authors wish to thank the referee for his assistance in making this paper accessible to a broader audience.

## References

[1] Eaman A Al-Khouja. Maximal elements and prime elements in lattice modules. Damascus University for Basic Sciences, 19(2):9-20, 2003.
[2] Francisco Alarcon, DD Anderson, and C Jayaram. Some results on abstract commutative ideal theory. Periodica Mathematica Hungarica, 30(1):1-26, 1995.
[3] DD Anderson. Abstract commutative ideal theory without chain condition. Algebra Universalis, 6(2):131-145, 1976.
[4] Sachin Ballal, Machchhindra Gophane, and Vilas Kharat. On weakly primary elements in multiplicative lattices. Southeast Asian Bulletin of Mathematics, 40(1):439449, 2016.
[5] Sachin Ballal and Vilas Kharat. On generalization of prime, weakly prime and almost prime elements in multiplicative lattices. Int. J. Algebra, 8(9):439-449, 2014.
[6] Sachin Ballal and Vilas Kharat. On $\phi$-absorbing primary elements in lattice modules. Algebra, 2015:1-6, 2015.
[7] Malik Bataineh and S Kuhail. Generalizations of primary ideals and submodules. International Journal of Contemporary Mathematical Sciences, 6(17):811-824, 2011.
[8] Ashok V Bingi and CS Manjarekar. Weakly prime and weakly primary elements in multiplication lattice modules. (to appear).
[9] Fethi Çallaalp, C Jayaram, and Ünsal Tekir. Weakly prime elements in multiplicative lattices. Communications in Algebra, 40(8):2825-2840, 2012.
[10] Fethi Çallıalp and Ünsal Tekir. Multiplication lattice modules. Iranian Journal of Science and Technology, 35(4):309-313, 2011.
[11] Dustin Scott Culhan. Associated Primes and Primal Decomposition in modules and Lattice modules, and their duals. University of Michigan Press, University of California, Riverside, 2005.
[12] C Jayaram, Ünsal Tekir, and Ece Yetkin. 2-absorbing and weakly 2-absorbing elements in multiplicative lattices. Communications in Algebra, 42(6):2338-2353, 2014.
[13] EW Johnson and JA Johnson. Lattice modules over semi-local noether lattices. Fundamenta Mathematicae, 68(2):187-201, 1970.
[14] J Johnson. a-adic completions of noetherian lattice modules. Fundamenta Mathematicae, 66:347-373, 1970.
[15] Zeliha Kılıç. Almost primary elements in multiplicative lattices. International Journal of Algebra, 7(18):881-888, 2013.
[16] CS Manjarekar and AV Bingi. $\phi$-prime and $\phi$-primary elements in multiplicative lattices. Algebra, 2014:1-7, 2014.
[17] CS Manjarekar and AV Bingi. Absorbing elements in lattice modules. International Electronic Journal of Algebra, 19(19):58-76, 2016.
[18] CS Manjarekar and AV Bingi. On 2-absorbing primary and weakly 2-absorbing primary elements in multiplicative lattices. Trans. Algebra Appl., 2:1-13, 2016.
[19] CS Manjarekar and UN Kandale. Weakly prime elements in lattice modules. International Journal of Scientific and Research Publications, 3(8):1-6, 2013.
[20] CS Manjarekar and UN Kandale. Residuation properties and weakly primary elements in lattice modules. Algebra, 2014:1-4, 2014.
[21] NK Thakare and CS Manjarekar. Radicals and uniqueness theorem in multiplicative lattices with chain conditions. Studia Scientifica Mathematicarum Hungarica, 18:1319, 1983.
[22] Emel Aslankarayigit Ugurlu, Fethi Callialp, and Unsal Tekir. Prime, weakly prime and almost prime elements in multiplication lattice modules. Open Mathematics, 14(1):673-680, 2016.
[23] Jane Wells. The restricted cancellation law in a noether lattice. Fundamenta Mathematicae, 3(75):235-247, 1972.
[24] Naser Zamani. $\varphi$-prime submodules. Glasgow Mathematical Journal, 52(2):253-259, 2010.


[^0]:    *Corresponding author.
    DOI: https://doi.org/10.29020/nybg.ejpam.v14i2.2366
    Email addresses: ashok.bingi@xaviers.edu (Ashok V. Bingi), csmanjrekar@yahoo.co.in (C. S. Manjarekar)

