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1. Introduction

In [4], Dontchev has introduced and studied I-Hausdorff spaces. In [13] , Nasef

has improved I-Hausdorff spaces and defined quasi-I-Hausdorff spaces. In [5] , the

∗Corresponding author.

Email addresses: hatir10�yahoo.om (E. Hatir), t.noiri�nifty.om (T. Noiri)

http://www.ejpam.com 172 c© 2009 EJPAM All rights reserved.



E. Hatir and T. Noiri / Eur. J. Pure Appl. Math, 2 (2009), (172-181) 173

present authors defined the notion of semi-open sets via ideals to obtain decomposi-

tion of continuity. In the present paper, we introduce the notion of semi-I-Hausdorff

spaces which is weaker than Hausdorff spaces and independent both I-Hausdorff and

quasi-I-Hausdorff spaces. Using semi-I-irresolute [6] functions, we also investigate its

relation with semi-I-Hausdorff spaces.

2. Preliminaries

Throughout this paper, (X ,τ) (simply X ) denotes a topological space on which no

separation axiom is assumed unless explicitly stated. For a subset A of a topological

space X , the closure and the interior of A in X are denoted by Cl(A) and Int(A),

respectively. A nonempty collection I of subsets on a topological space (X ,τ) is called

a topological ideal on (X ,τ) if it satisfies the following two conditions: (1) if A ∈ I

and B ⊂ A, then B ∈ I (heredity); (2) if A ∈ I and B ∈ I , then A∪ B ∈ I (finite

additivity). If I is a proper ideal, that is, X /∈ I , then {A : X − A∈ I} is a filter, hence

proper ideals are sometimes called dual filters. By (X ,τ, I), we will denote an

ideal topological space which means a topological space (X ,τ) with an ideal I on

X . No separation property is assumed on X . For a space (X ,τ, I) and a subset A

of X , A∗(I) =
�

x ∈ X : U ∩ A /∈ I for each neighborhood U of x
	

is called the local

function of A with respect to I and τ [7] . We simply write A∗ instead of A∗(I) in case

there is no chance for confusion. The simplest ideals are {∅} and ℘(X ) which satisfy

{∅} ⊂ I ⊂ ℘(X ), for any ideal I on X . Note that Cl∗(A) = A∪A∗ defines a Kuratowski

closure operator for a topology τ∗(I) (also denoted by τ∗ when there is no chance for

confusion) finer than τ.

Definition 2.1. A subset A of an ideal topological space (X ,τ, I) is said to be semi-

open [10] (resp. β − open [1] , semi-I-open [5] , I-open [9] , quasi-I-open [2]) if

A ⊂ Cl(Int(A)) (resp. A ⊂ Cl(Int(Cl(A))), A ⊂ Cl∗(Int(A)), A ⊂ Int(A∗), A ⊂
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Cl(Int(A∗))).

For a subsets defined above, the following diagram holds:

DIAGRAM I

open −→ semi-I-open −→ semi-open

↓

I − open −→ quasi-I-open −→ β − open

Definition 2.2. A space (X ,τ) is said to be semi-Hausdorff [11] (resp. β−Hausdorff

[12]) if for every two different points x , y of X , there exist disjoint semi-open (resp.

β − open) sets U, V of X such that x ∈ U and y ∈ V.

Definition 2.3. An ideal topological space (X ,τ, I) is called I-Hausdorff [4] (resp.

quasi-I-Hausdorff [13]) if for every two different points x , y of X , there exist disjoint

I-open sets (resp. quasi-I-open) U, V of X such that x ∈ U and y ∈ V.

3. Semi-I-Hausdorff Spaces

Definition 3.1. An ideal topological space (X ,τ, I) is called semi-I-Hausdorff if for

each two distinct points x 6= y, there exist semi-I-open sets U and V containig x and y,

respectively such that U ∩ V = ∅. Then the points x and y are said to be semi − I −

separated.

Theorem 3.1. For an ideal topological space (X ,τ, I), the following statements hold:

1. Every Hausdorff space is semi-I-Hausdorff.

2. Every semi-I-Hausdorff space is semi-Hausdorff.

Proof. This follows from the definition of semi-I -open sets.
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For ideal topological spaces, the following diagram holds:

DIAGRAM II

Hausdorff −→ semi-I-Hausdorff −→ semi-Hausdorff

↓

I-Hausdorff −→ quasi-I-Hausdorff −→ β −Hausdorff

Remark 3.1. (1) It is shown in Example 2.3 and 2.4 of [4] that Hausdorffness and

I-Hausdorffness are independent of each other.

(2) In the following examples, it will be shown that semi-I-Hausdorffness is indepen-

dent to quasi-I-Hausdorffness and to I-Hausdorffness.

Example 3.1. Let X be the real line with the "rigth-ray" topology τ that is the nontrivial

open sets are the form (x,∞), where x is any real number. Let I be the ideal of all finite

subsets of X. Then the ideal topological space (X ,τ, I) is an I-Hausdorff space which

is not Hausdorff
�

4, Example 2.3
�

. However, this space is not even semi-Hausdorff

because, every nonempty semi-open set has the nonempty interior.

Example 3.2. Let X = {a, b} , τ be the discrete topology on X and I = ℘(X ). Then

Dontchev [4] showed that the space is Hausdorff, but it is not I-Hausdorff. Moreover,

Nasef [13] showed that the space is not even quasi-I-Hausdorff.

Example 3.3. Let X = {a, b, c} , τ = {∅, X , {a} , {b} , {a, b}} and I = {∅} . Then

(X ,τ, I) is a semi-I-Hausdorff space which is not Hausdorff. If we take I = ℘(X ), then

(X ,τ, I) is semi-Hausdorff, but it is neither semi-I-Hausdorff nor quasi-I-Hausdorff.

Theorem 3.2. Let (X ,τ, I) be an ideal topological space.

1. Let I = {∅} . Then (X ,τ, I) is semi-I-Hausdorff (resp. quasi-I-Hausdorff) if

and only if it is semi-Hausdorff (resp. β−Hausdorff).
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2. Let I = ℘(X ). Then (X ,τ, I) is Hausdorff if and only if it is semi-I-Hausdorff.

Proof. (1) Let I = {∅} . Then A∗ = Cl(A) and Cl∗(A) = Cl(A) for every subset A

of X . Therefore, we have SIO(X ,τ) = SO(X ,τ) (resp. QIO(X ,τ) = β(X ,τ)) and

hence (X ,τ, I) is semi-I-Hausdorff (resp. quasi-I-Hausdorff) if and only if semi-

Hausdorff (resp. β−Hausdorff), where QIO(X ,τ) denotes the set of all quasi-I-open

sets.

(2) Let I = ℘(X ). Then A∗ = ∅ and Cl∗(A) = A for every subset A of X . Let A ∈

SIO(X ,τ), then A⊂ Cl∗(Int(A)) = Int(A) and hence A is open in (X ,τ). Therefore,

(X ,τ, I) is Hausdorff if and only if it is semi-I-Hausdorff.

Definition 3.2. An ideal topological space (X ,τ, I) is called semi-I-complete (resp. quasi-

I-complete [13]) if τ∗ = SIO(X ,τ) (resp. τ∗ = QIO(X ,τ)), that is, a subset A of X is

τ∗− open if and only if it is semi-I-open (resp. quasi-I-open).

Theorem 3.3. Let (X ,τ, In) be an ideal topological space, where In is the ideal of the

nowhere dense sets of (X ,τ).

1. (X ,τ, In) is semi-I-Hausdorff (resp. quasi-I-Hausdorff) if and only if it is

semi-Hausdorff (resp. β−Hausdorff).

2. (X ,τ, In) is semi-Hausdorff and semi-I-complete (resp. β−Hausdorff and

quasi-I-complete), then it is Hausdorff.

Proof. (1) Since In is the ideal of nowhere dense sets of (X ,τ), we have

A∗ = Cl(Int(Cl(A))) and hence by Example 2.10 of [8]

Cl∗(A) = A∪Cl(Int(Cl(A))) = αCl(A), where αCl(A) denotes the α− closure of

A.For every subset A of X ,

Cl∗(Int(A)) = Int(A)∪ Cl(Int(Cl(Int(A)))) = Int(A)∪ Cl(Int(A)) = Cl(Int(A)).

Therefore, A ∈ SIO(X ,τ) if and only if A ∈ SO(X ,τ).By this fact, it follows that

(X ,τ, In) is semi-I-Hausdorff if and only if it is semi-Hausdorff. On the other hand,
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Cl(Int(A∗)) = Cl(Int(Cl(Int(Cl(A))))) = Cl(Int(Cl(A))) for every subset A of

X . Therefore, A∈ QIO(X ,τ) if and only if A∈ β(X ,τ). It follows that (X ,τ, In) is

quasi-I-Hausdorff if and only if it is β −Hausdor f f .

(2) Let (X ,τ, In) be semi-Hausdorff and semi-I-complete. Then A ∈ SIO(X ,τ)

if and only if A ∈ τ∗ if and only if A is α − open. By the proof of (1), SO(X ,τ) =

SIO(X ,τ) and hence (X ,τ, I) is Hausdorff. The another result is shown similarly.

Lemma 3.1. Let I and J be two ideals on a topological space (X ,τ). If I ⊂ J , then the

following properties hold:

1. C l∗J (A)⊂ Cl∗I (A) for each subset A of X ,

2. SIO(X ,τ, J) ⊂ SIO(X ,τ, I).

Proof. (1) If I ⊂ J , then A∗(J) ⊂ A∗(I) and Cl∗J (A) = A∪A∗(J) ⊂ A∪A∗(I) = Cl∗I (A)

for each subset A of X .

(2) Let A ∈ SIO(X ,τ, J). Then A ⊂ Cl∗J (Int(A)) ⊂ Cl∗I (Int(A)) and hence A ∈

SIO(X ,τ, I).

Theorem 3.4. Let I and J be two ideals on a topological space (X ,τ) and I ⊂ J . If

(X ,τ, J) is semi-I-Hausdorff, then (X ,τ, I) is semi-I-Hausdorff.

Proof. This is an immediate consequence of Lemma 1

A semi-I-open subspace of semi-I-Hausdorff space need not be semi-I-Hausdorff

as shown in the following example.

Example 3.4. Let X = {a, b, c} , τ = {∅, X , {a} , {b} , {a, b}} and I = {∅} . Then

(X ,τ, I) is semi-I-Hausdorff. But, take A = {a, c} ∈ SIO(X ,τ), then (A,τ|A, I|A) is not

semi-I-Hausdorff.

Lemma 3.2. (Hatir and Noiri [5]) Let (X ,τ, I) be an ideal topological space. If

U ∈ τ and V ∈ SIO(X ,τ), then U ∩ V ∈ SIO(U ,τ|U , I|U).
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Theorem 3.5. Let (X ,τ, I) be a semi-I-Hausdorff space and A⊂ X . Then if A is open,

then (A,τ|A, I|A) semi-I-Hausdorff.

Proof. This follows from Lemma 2

4. Semi-I-irresolute Functions

In this section, we investigate some properties of semi-I-irresolute functions. First,

we shall recall some definition of functions.

Definition 4.1. A function f : (X ,τ, I) −→ (Y,σ, J) is said to be

1. Semi-I-continuous [5] if for every V ∈ σ, f −1(V ) is semi-I-open set,

2. Semi-I-irresolute if for every V ∈ SJO(Y,σ), f −1(V ) ∈ SIO(X ,τ),

3. Irresolute [3] if for every V ∈ SO(Y,σ), f −1(V ) ∈ SO(X ,τ).

Remark 4.1. In [6] , the present authors called semi-I-irresolute functions I-irresolute.

However, Dontchev [4] defined a function f : (X ,τ, I) −→ (Y,σ, J) to be I-irresolute if

f −1(V ) is I-open in (X ,τ, I) for every I-open in (Y,σ, J).

Theorem 4.1. For a function f : (X ,τ, I) −→ (Y,σ, J), the following properties are

equivalent;

1. f is semi-I-irresolute,

2. The inverse image of each semi-I-closed set in (Y,σ, J) is semi-I-closed in

(X ,τ, I),

3. For each x ∈ X and each V ∈ SIO(Y,σ) containing f (x), there exists U ∈

SIO(X ,τ) containing x such that f (U)⊂ V.

Proof. The proof is obvious from the fact that the arbitrary union of semi-I-open

sets is semi-I-open [6, Theorem 3.4] .
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Remark 4.2. Irresolute functions are not in general semi-I-irresolute as shown by the

following example.

Example 4.1. Let X = {a, b, c} , τ= {∅, X , {a}} and

I = {∅, {a}} and J = {∅} . Then the identity function

f : (X ,τ, I) −→ (X ,σ, J) is irresolute, but it is not semi-I-irresolute since {a, c} ∈

SIO(X ,σ, J) and f −1({a, c}) = {a, c} /∈ SIO(X ,τ, I).

Theorem 4.2. Let f : (X ,τ, I) −→ (Y,σ, J) be a function, where I and J are ideals

on Y, respectively. If I = J = {∅} or In, then semi-I-irresoluteness and irresoluteness are

equivalent.

Proof. This follows from the proofs of Theorems 2(1) and 3(1).

Theorem 4.3. Let f be a semi-I-irresolute injection from a space (X ,τ, I) into a space

(Y,σ, J). If Y is semi-I-Hausdorff, then X is also semi-I-Hausdorff.

Proof. Let x , y ∈ X and x 6= y. Then f (x) 6= f (y) thus f (x) and f (y) are semi-I-

separated in Y by semi-I-open sets U and V , respectively. Since f is semi-I-irresolute,

f −1(U) and f −1(V ) are disjoint semi-I-open sets containing x and y, respectively.

This shows that X is semi-I-Hausdorff.

Theorem 4.4. Let (X ,τ, I) be an ideal topological space with the following property;

if x 6= y, where x , y ∈ X , then there exist a Hausdorff space (Y,σ) and a semi-

I-continuous function f : (X ,τ, I) −→ (Y,σ) such that f (x) 6= f (y). Then X is

semi-I-Hausdorff.

Proof. The proof is straightforward.

Theorem 4.5. Let f : (X ,τ, I) −→ (Y,σ, J) be a function and V ∈ σ. Then
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f −1(V ∗)⊂ ( f −1(V ))∗ implies f −1(Cl∗(V )) ⊂ Cl∗( f −1(V )).

Proof. f −1(Cl∗(V )) = f −1(V ∪ V ∗) = f −1(V )∪ f −1(V ∗)

⊂ f −1(V )∪ ( f −1(V ))∗ = Cl∗( f −1(V )).

Remark 4.3. The converse of Theorem 10 is false as shown by the following example.

Example 4.2. Let X = {a, b, c} , τ= {∅, X , {a} , {c} , {a, c}} and

σ = {∅, X , {c} , {a, b}} . Let us take I = ℘(X ) and J = {∅, {c}} . The define the

identity function f : (X ,τ, I) −→ (X ,σ, J). For the subset {a, b} ∈ σ, we have

({a, b})∗ = {a, b} and ( f −1({a, b}))∗ = ({a, b})∗ =∅ and thus

f −1(V ∗) ( f −1(V ))∗ for V = {a, b} ∈ σ. But

f −1(Cl∗(V ))⊂ Cl∗( f −1(V )) for every V ∈ σ.

Lemma 4.1. (Hatir and Noiri [6]) Let A and B be subsets of an ideal topological space

(X ,τ, I). Then the following properties hold:

1. A∈ SIO(X ,τ) if and only if there exists U ∈ τ such that U ⊂ A⊂ Cl∗(U),

2. If A∈ SIO(X ,τ) and A⊂ B ⊂ Cl∗(A), then B ∈ SIO(X ,τ).

The following theorem slightly improve the Theorem 4.5 in [6] which states that

if f : (X ,τ, I) −→ (Y,σ, J) is semi-I-continuous and f −1(V ∗) ⊂ ( f −1(V ))∗ for

each V ∈ σ, then f is semi-I-irresolute.

Theorem 4.6. If f : (X ,τ, I) −→ (Y,σ, J) is semi-I-continuous and

f −1(Cl∗(V ))⊂ Cl∗( f −1(V )) for each V ∈ σ, then f is semi-I-irresolute.

Proof. Let B be any semi-I-open set of (Y,σ, J). By Lemma 3, there exists V ∈ σ

such that V ⊂ B ⊂ Cl∗(V ). Therefore, we have

f −1(V ) ⊂ f −1(B) ⊂ f −1(Cl∗(V )) ⊂ Cl∗( f −1(V )). Since f is semi-I-continuous

and V ∈ σ, f −1(V ) ∈ SIO(X ,τ) and hence by Lemma 3 , f −1(B) is semi-I-open

in (X ,τ, I). This shows that f is semi-I-irresolute.
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