Baer Elements In Lattice Modules

C S Manjarekar ${ }^{1}$, U N Kandale ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Shivaji University, Kolhapur, India
${ }^{2}$ Department of General Engineering, Sharad Institute, Shivaji University, Kolhapur, India

Abstract

Let L be a compactly generated multiplicative lattice with 1 compact in which every finite product of compact elements is compact and M be a module over L . In this paper we generalize the concepts of Baer elements,*-elements and closed elements and obtain the relation between $*$-elements and Baer elements and also closed elements and Baer elements. Some characterization are also obtain for closed elements of M and minimal prime elements of M.

2010 Mathematics Subject Classifications: 13A99
Key Words and Phrases: Prime element,primary element,lattice modules,Baer element, *-element, closed element.

1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if $a<1$. A proper element p of L is said to be prime if $a b \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L, b \in L,(a: b)$ is the join of all elements c in L such that $c b \leq a$. A proper element p of L is said to be primary if $a b \leq p$ implies $a \leq p$ or $b^{n} \leq p$ for some positive integer n. If $a \in L$ then $\sqrt{a}=\vee\left\{x \in L \mid x^{n} \leqslant a, n \in Z_{+}\right\}$. An element $a \in L$ is called a radical element if $a=\sqrt{a}$. An element $a \in L$ is called compact if $a \leqslant \vee_{\alpha} b_{\alpha}$ implies $a \leqslant b_{\alpha 1} \vee b_{\alpha 2} \vee \ldots \vee b_{\alpha n}$ for some finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact and every finite product of compact elements is compact. We shall denote by L_{*} the set compact elements of L. A nonempty subset F of L_{*} is called a filter of L_{*} if the following conditions are satisfied,
(i) $x, y \in F$ implies $x y \in F$
(ii) $x \in F, x \leqslant y$ implies $y \in F$.

[^0]Let $F\left(L_{*}\right)$ denote the set of all filters of L. For a nonempty subset $\left\{F_{\alpha}\right\} \subseteq F\left(L_{*}\right)$, define $\uplus F_{\alpha}=\left\{x \in L_{*} \mid x \geq f_{1} f_{2} \cdots f_{n} \in F_{\alpha_{i}}\right.$, for some $\left.i=1,2, \ldots, n\right\}$. Then it is observed that, $F\left(L_{*}\right)=\left\langle F\left(L_{*}\right), \mathbb{U}, \cap\right\rangle$ is a complete distributive lattice with \mathbb{U} as the supremum and the set theroretic \bigcap as the infimum. For $a \in L_{*}$ the smallest filter containing a is denoted by [a) and it is given by $[a)=\left\{x \in L * \mid x \geq a^{n}\right.$ for some nonnegative integer $\left.n\right\}$. For a filter $F \in F\left(L_{*}\right)$ we denote, $0_{F}=\vee\left\{x \in L_{*} \mid x s=0\right.$, for $\left.s \in F\right\}$.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L -module or module over L if there is a multiplication between elements of L and M written as $a B$ where $a \in L$ and $B \in M$ which satisfies the following properties,
(i) $\left(\vee_{\alpha} a_{\alpha}\right) A=\underset{\alpha}{\vee} a_{\alpha} A \quad \forall a_{\alpha} \in L, A \in M$
(ii) $a\left(\underset{\alpha}{\vee} A_{\alpha}\right)=\vee_{\alpha} a A_{\alpha} \quad \forall a \in L, A_{\alpha} \in M$
(iii) $(a b) A=a(b A) \quad \forall a, b \in L, A \in M$
(iv) $1 B=B$
(v) $0 B=0_{M}$ for all $a, a_{\alpha}, b \in L$ and $A, A_{\alpha} \in M$, where 1 is the supremum of L and 0 is the infimum of L . We denote by 0_{M} and I_{M} the least element and the greatest element of M . Elements of L will generally be denoted by a, b, c, \ldots and elements of M will generally be denoted by $A, B, C \ldots$.

Let M be a L-module. If $N \in M$ and $a \in L$ then $(N: a)=\vee\{X \in M \mid a X \leqslant N\}$. If $A, B \in M$, then $(A: B)=\vee\{x \in L \mid x B \leqslant A\}$. An L-module M is called a multiplication L-module if for every element $N \in M$ there exists an element $a \in L$ such that $N=a I_{M}$ see [2]. In this paper a lattice module M will be a multiplication lattice module, which is compactly generated with the largest element I_{M} compact. A proper element N of M is said to be prime if $a X \leqslant N$ implies $X \leqslant N$ or $a I_{M} \leqslant N$ that is $a \leqslant\left(N: I_{M}\right)$ for every $a \in L, X \in M$. If N is a prime element of M then $\left(N: I_{M}\right)$ is prime element of L[4]. An element $N<I_{M}$ in M is said to be primary if $a X \leqslant N$ implies $X \leqslant N$ or $a^{n} I_{M} \leqslant N$ that is $a^{n} \leqslant\left(N: I_{M}\right)$ for some integer n. An element N of M is called a radical element if $\left(N: I_{M}\right)=\sqrt{\left(N: I_{M}\right)}$. If $a N=0_{M}$ implies $a=0$ or $N=0_{M}$ for any $a \in L$ and $N \in M$ then M is called a torsion free L-module.

2. Residuation properties

We state some elementary properties of residuation in the following theorem.
Theorem 1. Let L be a multiplicative lattice and M be a multiplication lattice module over L.For $x, y \in L$ and $Z, A, B \in M$, where $\left(0_{M}: I_{M}\right)$ is a radical element. We have the following identities,
(i) $x \leqslant y$ implies $\left(0_{M}: y\right) \leqslant\left(0_{M}: x\right)$ and $0_{M}:\left(0_{M}: x\right) \leqslant 0_{M}:\left(0_{M}: y\right)$
(ii) $x \leqslant 0_{M}:\left(0_{M}: x\right)$
(iii) $0_{M}:\left[0_{M}:\left(0_{M}: x\right)\right]=\left(0_{M}: x\right)$
(iv) $\left(0_{M}: x\right)=\left(0_{m}: x^{n}\right)$ for every $n \in Z_{+}$
(v) $0_{M}:\left(0_{M}: x\right) \wedge 0_{M}:\left(0_{M}: y\right)=0_{M}:\left(0_{M}: x y\right)=0_{M}:\left[0_{M}:(x \wedge y)\right]$
(vi) $\left(0_{M}: a\right)=0_{M}$ implies $\left(0_{M}: a^{n}\right)=0$ for every $n \in Z_{+}$
(vii) $x \vee y=1$ implies $\left(0_{M}: x\right) \vee\left(0_{M}: y\right)=0_{M}:(x \wedge y)=0_{M}: x y$
(viii) For Z in $M, Z \leqslant 0_{M}:\left(0_{M}: Z\right)$
(ix) $A \leqslant B$ implies $\left(0_{M}: B\right) \leqslant\left(0_{M}: A\right)$
(x) $0_{M}:\left[0_{M}:\left(0_{M}: A\right)\right]=0_{M}: A$
(xi) $0_{M}: x I_{M}=0_{M}: x^{n} I_{M}$ for some positive integer n.

We define, $0_{F M}=\vee\left\{X \in M_{*} \mid s X=0_{M}\right.$ for some $\left.s \in F\right\}$, where M_{*} is the set of compact elements of M .

The proofs of the following theorems are simple
Theorem 2. Let $F \subseteq L$ be a filter of $F(L *)$ and let X be a compact element of M. Then $X \leqslant 0_{F M}$ if and only if $s X=0_{M}$ for some $s \in F$.

Theorem 3. For $F \in F\left(L_{*}\right), 0_{F M}=\vee\left\{\left(0_{M}: x\right) \mid x \in F\right\}$.
Theorem 4. For $F_{1}, F_{2} \in F\left(L_{*}\right)$
(i) $F_{1} \subseteq F_{2}$ implies $0_{F_{1} M} \leqslant 0_{F_{2} M}$.
(ii) $0_{F_{1} M} \wedge 0_{F_{2} M}=0_{\left(F_{1} \bigcap F_{2}\right) M}$

3. Baer Elements

A study of Baer elements, *-elements and closed elements carried out by D D Anderson, et al. [1]. We generalize these concepts for lattice modules.

Definition 1. An element $A \in M$ is said to be Baer element if for $x \in L *, x I_{M} \leqslant A$ implies $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant A$.
Definition 2. An element A of M is said to be $*$-element if $A=0_{F M}$ for some filter $F \in F\left(L_{*}\right)$ such that zero does not belong to F.

Definition 3. An element A of M is said to be closed element if $A=0_{M}:\left(0_{M}: A\right)$.
The next result establishes the relation between closed element and Baer element.
Theorem 5. Every closed element is a Baer element.
Proof. Let A be a closed element of M and x be a compact element of L_{*} such that $x I_{M} \leqslant A$. Then $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left(0_{M}: A\right)=A$ as A is a closed. This shows that A is a Baer element.

Definition 4. An element P of M is called a minimal prime element over $A \in M$ if $A \leqslant P$ and there is no other prime element Q of M such that $A \leqslant Q<P$.

The following result gives the characterization of a minimal prime element over an element.

Theorem 6. Let a be proper element of L and P be a prime element of M with $a I_{M} \leqslant P$. Then the following statements are equivalent,
(i) P is minimal prime element over $a I_{M}$.
(ii) For each compact element x in $L, x I_{M} \leqslant P$, there is compact element y in L such that $y I_{M} \notin P$ and $x^{n} y I_{M} \leqslant a I_{M}=A$ for some positive integer n.

Proof. (i) \Rightarrow (ii)
Let P be a minimal prime over $a I_{M}$ and suppose $x I_{M} \leqslant P$. Let

$$
S=\left\{x^{n} y \mid y \nless\left(P: I_{M}\right) \text { and } n \text { is a positive integer }\right\} .
$$

It is clear that, S is a multiplicatively closed set. Suppose $x^{n} y \notin a I_{M}$ for any integer n and for any $y I_{M} \notin P$, where y is compact in L. By the separation lemma (see [5]), there is a prime element $\left(Q: I_{M}\right)$ of L such that $\left(P: I_{M}\right) \leqslant\left(Q: I_{M}\right)$ and $t \nless\left(Q: I_{M}\right)$ for all $t \in S$. Then we have $\left(Q: I_{M}\right) \leqslant\left(P: I_{M}\right)$ since otherwise $x^{n}\left(Q: I_{M}\right) \in S$ and $x^{n}\left(Q: I_{M}\right) \notin\left(Q: I_{M}\right)$ a contradiction. Hence $\left(P: I_{M}\right)=\left(Q: I_{M}\right)$. It follows that $P=Q$ (see [3]. But then for $t \in S$, $t \leqslant x \leqslant\left(P: I_{M}\right)=\left(Q: I_{M}\right)$ a contraduction.
$(i i) \Rightarrow(i)$
Suppose for any x in $\mathrm{L}, x I_{M} \leqslant P$, there is y in L such that $y I_{M} \nless P$ and $x^{n} y I_{M} \leqslant a I_{M}$ for some positive integer n . Also suppose that there is a prime element Q of M with $a I_{M} \leqslant Q<P$. Choose, $x I_{M} \leqslant P$ and $x I_{M} \nless Q$. By hyphothesis, there is a compact element y in L such that $y I_{M} \notin P$ and integer n such that $x^{n} y I_{M} \leqslant a I_{M} \leqslant Q$. As $x I_{M} \notin Q, x \notin\left(Q: I_{M}\right)$. Since Q is a prime element of $\mathrm{M},\left(Q: I_{M}\right)$ is also prime element of L (see [4]). Hence $x^{n} \notin\left(Q: I_{M}\right)$. Thus, $x^{n} \notin\left(Q: I_{M}\right)$ and $y \notin\left(Q: I_{M}\right)$ where $\left(Q: I_{M}\right)$ is a prime element of L , which is a contradiction.

In the next result, we prove the important property of a minimal prime element.
Theorem 7. Let M be an lattice module. Every minimal prime element of M is $a *$-element where $0_{F M}$ is prime element.

Proof. Let p be a minimal prime element of M. Define the set $F=\left\{x \in L_{*} \mid x I_{M} \notin P\right\}$. We first show that F is a filter of $F\left(L_{*}\right)$. Let x and y be compact element of L such that $x, y \in F$. So $x I_{M} \notin P$ and $y I_{M} \notin P$. As P is prime, $x y I_{M} \notin P$. This shows that $x y \in F$. Now let $x \in F$ and $x \leqslant y$. Hence $x I_{M} \notin P$ implies $y I_{M} \notin P$ and $y \in F$. If $0 \in F$ then we have $0 I_{M} \notin P$ that is $0_{M} \notin P$ a contradction. Thus $F \in F\left(L_{*}\right)$ and $0 \notin F$. Now we show that $P=0_{F M}$. Let x be a compact element of L such that $x I_{M} \leqslant P$. By Theorem 6 it follows that there exist a compact element $y \in L$ such that $y I_{M} \notin P$ and $x^{n} y I_{M}=0_{M}$ for some positive integer n. We have $y \in F$ and $x^{n} I_{M} \leqslant 0_{F M}$. As $0_{F M}$ is prime element, so $x I_{M} \leqslant 0_{F M}$ implies $P \leqslant 0_{F M}$. Now let x be a
compact element of L such that $x I_{M} \leqslant 0_{F M}$. Then by Theorem $2, r x I_{M}=0_{M}$ for some $r \in F$. So we have $r x I_{M} \leqslant P$ and $r I_{M} \notin P$. As P is prime, $x I_{M} \leqslant P$ and $0_{F M} \leqslant P$ which shows that $P=0_{F M}$. Thus every minimal prime element of M is $*$-element.

The relation between $*$-element and Baer element is proved in the next result.
Theorem 8. Each $*$-element of M is a Baer element.
Proof. Suppose an element A of M is $*$-element. Hence $A=0_{F M}$ for some filter $F \in F\left(L_{*}\right)$ such that $0 \notin F$. Let $x \in L_{*}$ such that $x I_{M} \leqslant A$. Then we have $r x I_{M}=0_{M}$ that is $x I_{M} \leqslant\left(0_{M}: r\right)$ for some $r \in F$ by Theorem 2. Therefore by (i) and (iii) of Theorem 1 we get

$$
0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left[0_{M}:\left(0_{M}: r\right)\right]=\left(0_{M}: r\right)
$$

Hence by Theorem $3,0_{M}:\left(0_{M}: x I_{M}\right) \leqslant \underset{s \in F}{\vee}\left(0_{M}: s\right)=0_{F M}=A$. This shows that A is a Baer element.

The next result we prove the existence of closed and Baer elements.
Theorem 9. Let M be multiplication lattice module. For any $x \in L,\left(0_{M}: x\right)$ is both Baer and closed element.

Proof. For an element $x \in L_{*}$, let $x I_{M} \leqslant\left(0_{M}: x\right)$, then

$$
0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left[0_{M}:\left(0_{M}: x\right)\right]=\left(0_{M}: x\right)
$$

by (i) and (iii) of Theorem 1. Thus ($0_{M}: x$) is a Baer element. Again from (iii) of Theorem 1, $\left(0_{M}: x\right)=0_{M}:\left(0_{M}:\left(0_{M}: x\right)\right)$. This shows that $\left(0_{M}: x\right)$ is a closed element.

In the following theorem we prove the characterization of closed element in terms of Baer element.

Theorem 10. For $a \in L_{*}, a I_{M}$ is closed if and only if $a I_{M}$ is a Baer element.
Proof. Let L_{*} be the set of all compact element of L and $a I_{M}$ be a Baer element of M . We show that $a I_{M}=0_{M}:\left(0_{M}: a I_{M}\right)$. As $a I_{M} \leqslant a I_{M}$, we have $\left[0_{M}:\left(0_{M}: a I_{M}\right)\right] \leqslant a I_{M}$. But $a I_{M}\left(0_{M}: a I_{M}\right) \leqslant 0_{M}$ implies $a I_{M} \leqslant 0_{M}:\left(0_{M}: a I_{M}\right)$. Therefore $0_{M}:\left(0_{M}: a I_{M}\right)=a I_{M}$. Thus $a I_{M}$ is closed. The converse is proved in Theorem 5.

Theorem 11. For a nonzero compact element a in $L, 0_{M}: a=0_{[a)}$.
Proof. We note that $F=[a)=\left\{z \in L_{*} \mid z \geq a^{n}\right.$ for some $\left.n \in Z_{+}\right\} \in F\left(L_{*}\right)$ and $0_{F M}=\vee\left\{X \in M_{*} \mid s X=0_{M}\right.$ for some $\left.s \in F\right\}$. Now let z be compact element of L such that $z \in F \cap\{0\}$. Then $z \in F$ and $z=0$. As $z \in F, z \geq a^{n}$ for some $n \in Z_{+}$. Hence $a \leqslant \sqrt{z}=0$ which shows that $a=0$. This contradiction implies that $0 \notin F$. Now we show that $0_{M}: a=0_{F M}$. As a is a compact element in $\mathrm{L}, a \in F$. So we have $0_{M}: a \leqslant 0_{F M}=\vee\left\{\left(0_{M}: x\right) \mid x \in F\right\}$. Let Z be a compact element in M and $Z \leqslant 0_{F M}$. Then by Theorem $2 s Z=0_{M}$ for some $s \in F$. So $s \geq a^{n}$ for some $n \in Z_{+}$. We note that $0_{M}: a^{n}=0_{M}: a$. Consequently, we have $a^{n} Z \leqslant s Z=0_{M}$. This implies that $Z \leqslant\left(0_{M}: a^{n}\right)=\left(0_{M}: a\right)$. Consequently, $0_{F} \leqslant\left(0_{M}: a\right)$ and $\left(0_{M}: a\right)=0_{F}$.

The following theorem establishes the property of Baer, closed and $*$-element.

Theorem 12. Suppose L has no divisors of zero then the element 0_{M} is always a Baer, closed and $*$-element whereas 1_{M} is Baer and closed.

Proof. Let x be a nonzero element of L . From Theorem 9,for any $x \in L, 0_{M}: x$ is both Baer and closed and by Theorem 11 for a nonzero compact element x of $\mathrm{L}, 0_{M}: x=0_{[x)}$. To show that 0_{M} a is Baer element,take $x \in L_{*}$ such that $x I_{M} \leqslant 0_{M}$. We have

$$
0_{M}:\left(0_{M}: x I_{M}\right) \leqslant O_{M}:\left(0_{M}: 0_{M}\right)=0_{M} .
$$

Hence 0_{M} is a Baer element. As $0_{M}=0_{M}:\left(0_{M}: 0_{M}\right), 0_{M}$ is closed. Every Baer element is a *-element. To show that 1_{M} is a Baer element. Take any $x \in L_{*}$ such that $x I_{M} \leqslant 1_{M}$. We have $0_{M}:\left(0_{M}: x I_{M}\right)=0_{M}:\left[\vee\left\{a \in L \mid a x I_{M}=0_{M}\right\}\right]=0_{M}: 0=1_{M}$. So 1_{M} is a Baer element. Now $0_{M}:\left(0_{M}: 1_{M}\right)=0_{M}:\left[\bigvee\left\{a \in L \mid a I_{M}=0_{M}\right\}\right]=1_{M}$ and 1_{M} is closed.

Remark 1. For defining the $*$-element, the condition $0 \notin F$ is necessary.
Suppose if possible X is $a *$-element. Hence $X=0_{F M}$, for some filter F such that $0 \notin F$. Then we have $X=\vee\left\{\left(0_{M}: r\right) \mid r \in F\right\}$. Now $0_{M}: 0=\vee\left\{A \in M \mid 0 A=0_{M}\right\}=1_{M}$. Thus only 1_{M} will be $a *$-element. Hence, for defining $a *$-element we take F such that $0 \notin F$.

Theorem 13. If $\left\{A_{\alpha\}_{\alpha}}\right.$ is a family of Baer elements then $\wedge_{\alpha} A_{\alpha}$ is a Baer element.
Proof. Let $x \in L_{*}$ such that $x I_{M} \leqslant \wedge_{\alpha} A_{\alpha}$. Then for each $\alpha, x I_{M} \leqslant A_{\alpha}$. As each A_{α} is a Baer element, $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant A_{\alpha}$. Hence $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant \wedge_{\alpha} A_{\alpha}$. Thus ${\underset{\alpha}{ } A_{\alpha} \text { is a Baer }}^{\text {a }}$ element.

The next result we prove the relation between minimal prime element and Baer element.
Theorem 14. If A is a meet of minimal prime elements then A is a Baer element.
Proof. From Theorem 7, every minimal prime element of M is a $*$-element and by Theorem 8 , each $*$-element of M is a Baer element. From these two results, every minimal prime element is a Baer element. So meet of all minimal prime elements is a Baer element, by Theorem 13.

Theorem 15. If $\left\{A_{\alpha}\right\}_{\alpha}$ is a family of closed elements then $\wedge_{\alpha} A_{\alpha}$ is a closed element.
Proof. We have $\wedge_{\alpha} A_{\alpha} \leqslant A_{\alpha}$ for each α. As each A_{α} is a closed element we have $0_{M}:\left[0_{M}:\left(\wedge A_{\alpha}\right)\right] \leqslant 0_{M}:\left(0_{M}: A_{\alpha}\right)=A_{\alpha}$. This gives $0_{M}:\left[0_{M}:\left(\wedge_{\alpha} A_{\alpha}\right)\right] \leqslant \wedge_{\alpha} A_{\alpha}$. Now let Z be an element of M such that $Z \leqslant \wedge_{\alpha} A_{\alpha}$. Then we have $Z \leqslant 0_{M}:\left(0_{M}: Z\right) \leqslant 0_{M}:\left(0_{M}: \wedge A_{\alpha}\right)$, by (ix) of Theorem 1. This gives $\wedge_{\alpha} A_{\alpha}^{\alpha} \leqslant 0_{M}:\left[0_{M}:\left(\wedge_{\alpha} A_{\alpha}\right)\right]$. Thus we get $0_{M}:\left[0_{M}:\left(\wedge_{\alpha} A_{\alpha}\right)\right]=\wedge_{\alpha}^{\alpha} A_{\alpha}$.

Here is an important property of largest element of M which is compact.
Theorem 16. 1_{M} is never a-element where 1_{M} is compact and M is torsion free L-module.

Proof. Suppose that 1_{M} is a $*$-element. Then there exist some filter $F \in F\left(L_{*}\right)$ such that $1_{M}=0_{F M}$, where $0 \notin F$. Then as 1_{M} is compact and $1_{M}=0_{F M}=\vee\left\{\left(0_{M}: x\right) \mid x \in F\right\}$,
$1_{M}=\left(0_{M}: x_{1}\right) \vee\left(0_{M}: x_{2}\right) \vee \ldots \vee\left(0_{M}: x_{n}\right)$ for some $x_{1}, x_{2}, \ldots, x_{n} \in F$. Consequently, as 1_{M} is closed,

$$
\begin{aligned}
1_{M} & =0_{M}:\left(0_{M}: 1_{M}\right)=0_{M}:\left[0_{M}:\left(\left(0_{M}: x_{1}\right) \vee\left(0_{M}: x_{2}\right) \vee \ldots \vee\left(0_{M}: x_{n}\right)\right)\right] \\
& =0_{M}:\left[0_{M}:\left(0_{M}: x_{1}\right) \wedge 0_{M}:\left(0_{M}: x_{2}\right) \wedge \ldots \wedge 0_{M}:\left(0_{M}: x_{n}\right)\right] .
\end{aligned}
$$

Therefore $1_{M}=0_{M}:\left[0_{M}:\left(0_{M}:\left(x_{1} x_{2} \ldots x_{n}\right)\right]=0_{M}:\left(x_{1} x_{2} \ldots x_{n}\right)\right.$, by (iii) and (v) of Theorem 1. This implies that $x_{1} x_{2} \ldots x_{n}=0$. Since $x_{1}, x_{2}, \ldots, x_{n}$ are in F . We have $0=x_{1} x_{2} \ldots x_{n} \in F$. Which is a contradiction as $0 \notin F$.

The next result we prove the characterization of a Baer element.
Theorem 17. The following statements are equivalent,
(i) An element $A \in M$ is a Baer element.
(ii) For any element $x, y \in L$ such that x is compact $0_{M}: x I_{M}=0_{M}: y I_{M}$ and $x I_{M} \leqslant$ A implies $y I_{M} \leqslant A$.
(iii) For any element $x, y \in L_{*}, 0_{M}: x=0_{M}: y$ and $x I_{M} \leqslant A$ implies $y I_{M} \leqslant A$.

Proof. (i) \Rightarrow (ii)
Assume that A is a Baer element of M . Let $x, y \in L$ be such that x is compact, $x I_{M} \leqslant A$, and $0_{M}: x I_{M}=0_{M}: y I_{M}$. Then by Theorem $1, y I_{M} \leqslant 0_{M}:\left(0_{M}: y I_{M}\right)=0_{M}:\left(0_{M}: x I_{M}\right) \leqslant A$, since A is a Baer element.
(ii) \Rightarrow (iii)

Obvious.
(iii) $\Rightarrow(i)$

Assume that for any element $x, y \in L_{*}, 0_{M}: x I_{M}=0_{M}: y I_{M}$ and $x I_{M} \leqslant A$ implies $y I_{M} \leqslant A$. We show that $A \in M$ is a Baer element. Let $x \in L_{*}$ be such that $x I_{M} \leqslant A$. We have $0_{M}: x I_{M}=0_{M}:\left[0_{M}:\left(0_{M}: x I_{M}\right)\right]$. Hence by (iii), we have $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant A$. Hence, A is a Baer element.

In the following theorem we prove the relation between Baer element of a lattice module and radical element of a multiplicative lattice.

Theorem 18. If A is Baer element of M then $A: I_{M}$ is a radical element.
Proof. Let A be Baer element of a lattice module M. We show that $\left(A: I_{M}\right)=\sqrt{\left(A: I_{M}\right)}$. Assume that x is compact element such that $x^{n} I_{M} \leqslant A$ for some positive integer n . We have $0_{M}: x I_{M}=0_{M}: x^{n} I_{M}$, by (xii) of Theorem 1 and hence by above theorem $x I_{M} \leqslant A$ that is $x \leqslant\left(A: I_{M}\right)$. Hence $\sqrt{\left(A: I_{M}\right)} \leqslant\left(A: I_{M}\right)$ and we have $\sqrt{\left(A: I_{M}\right)}=\left(A: I_{M}\right)$ i.e. $\left(A: I_{M}\right)$ is a radical element.

Theorem 19. If A is a Baer element then every minimal prime element over A is a Baer element.

Proof. Let A be a Baer element and P be a minimal prime in M over A. Assume that $0_{M}: x=0_{M}: z$ for some $x, z \in L$ such that x is compact and $x I_{M} \leqslant P$. There exists a compact element $y \in L$ such that $y I_{M} \notin P$ and $x^{n} y I_{M} \leqslant A \leqslant P$ for some positive integer n , by Theorem 14. Note that $0_{M}: y x=\left(0_{M}: x\right): y=\left(0_{M}: x^{n}\right): y=0_{M}: x^{n} y=0_{M}: y x^{n}=0_{M}: y z$. As A is a Baer element. By Theorem 17, $x y I_{M} \leqslant A$ implies $y z I_{M} \leqslant A \leqslant P$. Hence $z I_{M} \leqslant P$ as P is prime. So again by Theorem 17, P is a Baer element.

The characterization of minimal prime element of M is proved in the next theorem.
Theorem 20. Let L be a lattice module and P be a prime element of M. Then P is a minimal prime element if and only if for $x \in L_{*}, P$ contains precisely one of $x I_{M}$ and $0_{M}: x$.

Proof. If part:
Assume that for $x \in L_{*}, \mathrm{P}$ contains precisely one of $x I_{M}$ and $0_{M}: x$. First assume that P contains $x I_{M}$. But $0_{M}: x \notin P$. Therefore there exists a compact element y in L such that $y I_{M} \leqslant 0_{M}: x$ but $y I_{M} \notin P$. Thus $x y I_{M} \leqslant 0_{M}$. This shows that for each compact element x in $\mathrm{L}, x I_{M} \leqslant P$, there exist a compact element y in L such that $y I_{M} \notin P$ and $x y I_{M} \leqslant 0_{M}$. By Theorem 6, it follows that P is a minimal prime element of M . Next assume that $0_{M}: x \leqslant P$ but $x I_{M} \notin P$. Let z be a compact element of L such that $z I_{M} \leqslant\left(0_{M}: x\right) \leqslant P$. But $x I_{M} \notin P$ and $x z I_{M} \leqslant 0_{M}$. Consequently, by Theorem 6 P is a minimal prime element. Thus the condition is sufficient. Only if part:
Assume that P is a minimal prime element of M . Let x be a compact element of L. Suppose if possible $x I_{M} \leqslant P$. Then by Theorem 6, there exist a compact element y in L such that $y I_{M} \notin P$ and $x^{n} y I_{M}=0_{M}$ for some positive integer n. Consequently, $y I_{M} \leqslant 0_{M}: x^{n}=0_{M}: x$. This implies that $0_{M}: x \notin P$. Now suppose if possible $x I_{M} \notin P$ and $0_{M}: x \notin P$. Then there exist a compact element y in L such that $y I_{M} \leqslant 0_{M}: x$ but $y I_{M} \notin P$. Hence we have $x y I_{M} \leqslant 0_{M}$ and so $x y I_{M} \leqslant P$. But $x I_{M} \notin P$ and $y I_{M} \notin P$ which contradicts the fact that P is prime element of M. This shows that P contains precisely one of $x I_{M}$ and $\left(0_{M}: x\right)$.

The relation between $*$-element of M and a minimal prime element over it is established in the next theorem.

Theorem 21. If A is $a *$-element of M then every minimal prime over A is a minimal prime.
Proof. Let P be a minimal prime element of M over A . We know by Theorem 8 and Theorem 18 , a $*$-element A is a Baer element and $\left(A: I_{M}\right)$ is a radical element. Let $x \in L_{*}$ be such that $x I_{M} \leqslant P$. But P is a minimal prime over A . Then by Theorem 2 there exists $y \in L_{*}$ such that $y I_{M} \notin P$ and $x^{n} y I_{M} \leqslant A$ i.e. $x^{n} y \leqslant A: I_{M}$. So $x^{n} y^{n} \leqslant A: I_{M}$ i.e. $x y \leqslant \sqrt{\left(A: I_{M}\right)}=\left(A: I_{M}\right)$. By hyphothesis, $x y$ is compact and $x y I_{M} \leqslant A=0_{F M}$, for some filter F of L_{*} such that $0 \notin F$. Hence $x y I_{M} d=0_{M}$ for some $d \in F$. We show that there is no compact element x in F such that $x I_{M} \leqslant P$. Suppose there is compact element z in L such that $z I_{M} \leqslant P$ and $z \in F$. Then by Theorem $3,0_{M}: z \leqslant 0_{F}=A \leqslant P$. This contradict the fact that P contains precisely one of $z I_{M}$ and $0_{M}: z$ where $z \in L_{*}$. Hence there is no compact element x in F such that $x I_{M} \leqslant P$. This implies that $d I_{M} \notin P$. As P is prime, $d I_{M} \notin P$ and $y I_{M} \notin P$ implies $y d I_{M} \notin P$. Thus $x y d I_{M}=0_{M} \leqslant P$ and $y d I_{M} \nless P$. Therefore by Theorem 6, P is minimal prime.

Remark 2. By Theorem 7, we infer that every minimal prime element is $a *$-element and it is a Baer element. Therefore by Theorem 21, if A is the meet of all minimal prime elements containing it, A is a Baer element.

Notation: For a family $\left\{A_{\alpha}\right\}$ of Baer elements of L we define,

$$
\vee_{A_{\alpha}}=\vee\left\{x I_{M}, x \in L_{*} \mid 0_{M}:\left(x_{1} \vee x_{2} \ldots \vee x_{n}\right) I_{M} \leqslant 0_{M}: x I_{M},\right.
$$

for some compact elements $x_{j} I_{M} \leqslant A_{\alpha j}$ and some $\left.j=1,2, \ldots, n\right\}$.
The important property of a family of Baer elements is established in the next theorem.
Theorem 22. If $\left\{A_{\alpha}\right\}$ is a family of Baer elements of $L, \underline{\vee} A_{\alpha}$ is the smallest Baer element greater than each A_{α}.

Proof. We first show that $\bigvee A_{\alpha}$ is a Baer element greater than each A_{α}. Let x be a compact element of L such that $x I_{M} \leqslant \underline{\vee} A_{\alpha}$. Then there exist compact elements $x_{1}, x_{2}, \ldots, x_{n}$ such that $0_{M}:\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M} \leqslant 0_{M}: x I_{M}$ and $x_{j} I_{M} \leqslant A_{\alpha j} j=1,2, \ldots, n$. Next we show that $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant \underline{\vee} A_{\alpha}$. Let z be compact element in L such that $z I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right)$. Then $0_{M}: z I_{M} \geq 0_{M}:\left[0_{M}:\left(0_{M}: x I_{M}\right)\right]$. That is $0_{M}: x I_{M} \leqslant 0_{M}: z I_{M}$ (by Theorem $1,(x)$ and (xi)). Therefore $0_{M}:\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M} \leqslant 0_{M}: z I_{M}$. This implies that $z I_{M} \leqslant \vee_{\alpha}$. Thus $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant \underline{V}_{\alpha}$. This shows that $\underline{\vee}_{\alpha}$ is a Baer element. Let z be a compact element in L such that $z I_{M} \leqslant A_{\alpha}$ for some α. But $0_{M}: z I_{M} \leqslant 0_{M}: z I_{M}$. Thus $z I_{M} \leqslant V_{\alpha}$. Hence each $A_{\alpha} \leqslant \bigvee_{\alpha}$. Let B be a Baer element such that $A_{\alpha} \leqslant B$ for each α and let x be a compact element in L such that $0_{M}:\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M} \leqslant 0_{M}: x I_{M}$ for some compact elements $x_{j} I_{M} \leqslant A_{\alpha j}$, $j=1,2, \ldots, n$ so that $x I_{M} \leqslant \underline{V}_{\alpha}$. Note that B is a Baer element and the compact element $\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M} \leqslant B$. Hence $0_{M}:\left[0_{M}:\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M}\right] \leqslant B$. Again note that $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left[0_{M}:\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M}\right]$ and $x I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right)$. Therefore $x I_{M} \leqslant B$ and hence $\underline{V}_{\alpha} \leqslant B$. Consequently $\underline{\vee}_{\alpha}$ is the smallest Baer element greater than each A_{α}.

Theorem 23. For any proper element $A \in M, \underline{\bigvee}\left\{0_{M}:\left(0_{M}: x I_{M}\right) \mid x \in L_{*}\right.$ and $\left.x I_{M} \leqslant A\right\}$ is the smallest Baer element greater than A.

Proof. First we show that $0_{M}:\left(0_{M}: x I_{M}\right)$ is a Baer element i.e. we show that for any $x \in L_{*}, x I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right)$ implies $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left(0_{M}: x I_{M}\right)$ which holds obviously. Hence by Theorem 22, $B=\underline{\mathrm{V}}\left\{0_{M}:\left(0_{M}: x I_{M}\right) \mid x \in L_{*}\right.$ and $\left.x I_{M} \leqslant A\right\}$ is the smallest Baer element containing each $0_{M}:\left(0_{M}: x I_{M}\right)$ for $x I_{M} \leqslant A$. Let a compact element x in L be such that $x I_{M} \leqslant A$. Then we have $x I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right) \leqslant B$. Thus $A \leqslant B$. Let $z I_{M}$ be a Baer element in M such that $A \leqslant z I_{M}$ and let y be compact element in L such that $y I_{M} \leqslant B$. Then $0_{M}:\left(z_{1} \vee z_{2} \vee \ldots \vee z_{n}\right) I_{M} \leqslant 0_{M}: y I_{M}$, for some compact elements $z_{i} I_{M} \leqslant 0_{M}:\left(0_{M}: x_{i} I_{M}\right)$, where $i=1,2, \ldots, n$. Thus $0_{M}: x_{i} I_{M} \leqslant 0_{M}: z_{i} I_{M}$ for each i. This gives

$$
\begin{aligned}
0_{M} & :\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M}=0_{M}: x_{1} I_{M} \wedge 0_{M}: x_{2} I_{M} \wedge \ldots 0_{M}: x_{n} I_{M} \\
& \leqslant 0_{M}: z_{1} I_{M} \wedge 0_{M}: z_{2} I_{M} \wedge \ldots \wedge 0_{M}: z_{n} I_{M} \\
& =0_{M}:\left(z_{1} \vee z_{2} \vee \ldots \vee z_{n}\right) I_{M} \leqslant 0_{M}: y I_{M} .
\end{aligned}
$$

Thus if $x=x_{1} \vee x_{2} \vee \ldots \vee x_{n}$ is compact element such that $x I_{M}=\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) I_{M} \leqslant A \leqslant z I_{M}$, we get $0_{M}: x I_{M} \leqslant 0_{M}: y I_{M}$. As $z I_{M}$ is a Baer element we have

$$
y I_{M} \leqslant 0_{M}:\left(0_{M}: y I_{M}\right) \leqslant 0_{M}:\left(0_{M}: x I_{M}\right) \leqslant z I_{M} .
$$

Therefore $B \leqslant z I_{M}$. This shows that $\underline{\bigvee}\left\{0_{M}:\left(0_{M}: x I_{M}\right) \mid x \in L_{*}\right.$ and $\left.x I_{M} \leqslant A\right\}$ is the smallest Baer element greater than A.

Notation : For a family $\left\{A_{\alpha}\right\}$ of closed elements of M we define,

$$
A \nabla B=\vee\left\{z I_{M}, z \in L_{*} \mid 0_{M}:(x \vee y) I_{M} \leqslant 0_{M}: z I_{M}\right.
$$

for some $x I_{M} \leqslant A$ and $\left.y I_{M} \leqslant B\right\}$. Then we have the following important result.
The property of closed elements is proved in the next theorem.
Theorem 24. If A and B are closed elements of $M A \nabla B$ is the smallest closed element greater than A as well as B.

Proof. We show that $A \nabla B$ is closed greater than A as well as B . Let $C=A \nabla B$. We always have $C \leqslant 0_{M}:\left(0_{M}: C\right)$ where $C \in M$. Let x be compact element in L such that $x I_{M} \leqslant 0_{M}:\left(0_{M}: C\right)$. Then $0_{M}: C \leqslant 0_{M}: x I_{M}$. This implies that

$$
0_{M}:(y \vee z) I_{M} \leqslant 0_{M}: C \leqslant 0_{M}: x I_{M}
$$

where $y, z \in L_{*}, y I_{M} \leqslant A$ and $z I_{M} \leqslant B$. But $y I_{M} \leqslant A \nabla B, z I_{M} \leqslant A \nabla B$. Hence $0_{M}:(r \vee s) I_{M} \leqslant 0_{M}: y I_{M}$ and $0_{M}:(u \vee v) I_{M} \leqslant 0_{M}: z I_{M}$ where $r I_{M}, u I_{M} \leqslant A$ and $s I_{M}, v I_{M} \leqslant B$. Therefore $0_{M}:(r \vee s) I_{M} \wedge 0_{M}:(u \vee v) I_{M} \leqslant 0_{M}: y I_{M} \wedge 0_{M}: z I_{M}$. Consequently

$$
0_{M}:(r \vee s \vee u \vee v) I_{M} \leqslant 0_{M}:(y \vee z) I_{M} \leqslant 0_{M}: x I_{M},
$$

where $(r \vee u) I_{M} \leqslant A$ and $(s \vee v) I_{M} \leqslant B$. This implies that $x I_{M} \leqslant C$. Hence $0_{M}:\left(0_{M}: C\right) \leqslant C$. This gives $0_{M}:\left(0_{M}: C\right)=C$ and C is closed. As $0_{M} ; s I_{M} \leqslant 0_{M}: s I_{M}$ for any element s in L , it follows that $A, B \leqslant A \nabla B$. Suppose that W is closed element such that $A, B \leqslant W$ and let $x \in L_{*}$ be such that $0_{M}:(u \vee v) I_{M} \leqslant 0_{M}: x I_{M}$ for some $u I_{M} \leqslant A$ and $v I_{M} \leqslant B$. Note that W is a closed element and $(u \vee v) I_{M} \leqslant W$. Hence we have $0_{M}:\left[0_{M}:(u \vee v) I_{M}\right] \leqslant 0_{M}:\left(0_{M}: W\right)=W$. Again note that $0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left[0_{M}:(u \vee v) I_{M}\right] \leqslant W$ and $x I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right)$. Therefore $x I_{M} \leqslant W$ and hence $A \nabla B \leqslant W$. Consequently, it proves that $A \nabla B$ is the smallest closed element greater than A as well as B.

Theorem 25. If A and B are closed elements of M then $A \nabla B=0_{M}:\left[0_{M}:(A \vee B)\right]$.
Proof. By Theorem 24, we have $A \vee B \leqslant A \nabla B$. Hence $0_{M}:\left[0_{M}:(A \vee B)\right] \leqslant A \nabla B$ as $A \nabla B$ is a closed element. Let $x I_{M} \leqslant A \nabla B, x \in L_{*}$. Then $0_{M}:(u \vee v) I_{M} \leqslant 0_{M}: x I_{M}$, for some $u I_{M} \leqslant A$ and $v I_{M} \leqslant B$. Consequently, we have

$$
x I_{M} \leqslant 0_{M}:\left(0_{M}: x I_{M}\right) \leqslant 0_{M}:\left[0_{M}:(u \vee v) I_{M}\right] \leqslant 0_{M}:\left[0_{M}:(A \vee B)\right] .
$$

Hence $A \nabla B \leqslant\left(0_{M}: 0_{M}:(A \vee B)\right)$. Thus $A \nabla B=0_{M}:\left[0_{M}:(A \vee B)\right]$.

ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful. We dedicate this research article to Prof Dr U Tekir \& Prof Dr C Jayram.

References

[1] D.D. Anderson, C. Jayaram, and P.A. Phiri. Baer lattices. Acta Scientiarum Mathematicarum, Vol 59. pps 61-74. 1994.
[2] F. Callialp and U. Tekir. Multiplication lattice modules, Iranian journal of science and technology, Vol A4. pps 309-313. 2011.
[3] J. A. Johnson. a-adic completions of Noetherian lattice modules. Fundamenta Mathematica, Vol 66. pps. 341-371. 1970.
[4] A. KKhouja-Al Eaman. Maximal elements and prime elements in Lattice Modules. Damascus University Journal for Basic Sciences, Vol 19(2). 2003.
[5] N.K. Thakare and C.S. Manjarekar. Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character. Proceedings of the international symposium on Algebra and its applications, Marcel Dekker and Bessel. pps 265-276. 1984.

[^0]: *Corresponding author.

 Email addresses: csmanjrekar@yahoo.co.in (C Manjarekar), ujwalabiraje@gmail.com (U Kandale)

