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Abstract. Let L be a compactly generated multiplicative lattice with 1 compact in which every finite

product of compact elements is compact and M be a module over L. In this paper we generalize the

concepts of Baer elements,∗-elements and closed elements and obtain the relation between ∗-elements

and Baer elements and also closed elements and Baer elements. Some characterization are also obtain

for closed elements of M and minimal prime elements of M.
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1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and

join distributive multiplication in which the largest element 1 acts as a multiplicative identity.

An element a ∈ L is called proper if a < 1. A proper element p of L is said to be prime if

ab ≤ p implies a ≤ p or b ≤ p. If a ∈ L, b ∈ L, (a : b) is the join of all elements c in L

such that cb ≤ a. A proper element p of L is said to be primary if ab ≤ p implies a ≤ p or

bn ≤ p for some positive integer n. If a ∈ L then
p

a = ∨{x ∈ L | xn ¶ a, n ∈ Z+}. An

element a ∈ L is called a radical element if a =
p

a. An element a ∈ L is called compact if

a ¶ ∨
α

bα implies a ¶ bα1 ∨ bα2 ∨ . . .∨ bαn for some finite subset {α1,α2, . . . ,αn}. Throughout

this paper, L denotes a compactly generated multiplicative lattice with 1 compact and every

finite product of compact elements is compact. We shall denote by L∗ the set compact elements

of L. A nonempty subset F of L∗ is called a filter of L∗ if the following conditions are satisfied,

(i) x , y ∈ F implies x y ∈ F

(ii) x ∈ F, x ¶ y implies y ∈ F .
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Let F(L∗) denote the set of all filters of L. For a nonempty subset {Fα} ⊆ F(L∗), define

⋒Fα = {x ∈ L∗ | x ≥ f1 f2 · · · fn ∈ Fαi
, for some i = 1,2, . . . , n}. Then it is observed that,

F(L∗) = 〈F(L∗),⋒,∩〉 is a complete distributive lattice with ⋒ as the supremum and the set

theroretic
⋂

as the infimum. For a ∈ L∗ the smallest filter containing a is denoted by [a) and

it is given by [a) = {x ∈ L∗ | x ≥ an for some nonnegative integer n}. For a filter F ∈ F(L∗)
we denote,0F = ∨{x ∈ L∗ | xs = 0, for s ∈ F}.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L-module or

module over L if there is a multiplication between elements of L and M written as aB where

a ∈ L and B ∈ M which satisfies the following properties,

(i) (∨
α

aα)A= ∨
α

aαA ∀aα ∈ L, A∈ M

(ii) a(∨
α

Aα) = ∨
α

aAα ∀a ∈ L, Aα ∈ M

(iii) (ab)A= a(bA) ∀a, b ∈ L, A∈ M

(iv) 1B = B

(v) 0B = 0M for all a, aα, b ∈ L and A,Aα ∈ M , where 1 is the supremum of L and 0 is the

infimum of L. We denote by 0M and IM the least element and the greatest element of M.

Elements of L will generally be denoted by a, b, c, . . . and elements of M will generally

be denoted by A, B, C . . ..

Let M be a L-module. If N ∈ M and a ∈ L then (N : a) = ∨{X ∈ M | aX ¶ N}. If A, B ∈ M ,

then (A : B) = ∨{x ∈ L | xB ¶ A}. An L-module M is called a multiplication L-module if for

every element N ∈ M there exists an element a ∈ L such that N = aIM see [2]. In this paper

a lattice module M will be a multiplication lattice module, which is compactly generated with

the largest element IM compact. A proper element N of M is said to be prime if aX ¶ N implies

X ¶ N or aIM ¶ N that is a ¶ (N : IM ) for every a ∈ L, X ∈ M . If N is a prime element of

M then (N : IM ) is prime element of L [4]. An element N < IM in M is said to be primary if

aX ¶ N implies X ¶ N or an IM ¶ N that is an ¶ (N : IM ) for some integer n. An element N of

M is called a radical element if (N : IM ) =
p

(N : IM ). If aN = 0M implies a = 0 or N = 0M

for any a ∈ L and N ∈ M then M is called a torsion free L-module.

2. Residuation properties

We state some elementary properties of residuation in the following theorem.

Theorem 1. Let L be a multiplicative lattice and M be a multiplication lattice module over L.For

x , y ∈ L and Z ,A, B ∈ M, where (0M : IM ) is a radical element. We have the following identities,

(i) x ¶ y implies (0M : y)¶ (0M : x) and 0M : (0M : x)¶ 0M : (0M : y)

(ii) x ¶ 0M : (0M : x)

(iii) 0M : [0M : (0M : x)] = (0M : x)
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(iv) (0M : x) = (0m : xn) for every n ∈ Z+

(v) 0M : (0M : x)∧ 0M : (0M : y) = 0M : (0M : x y) = 0M : [0M : (x ∧ y)]

(vi) (0M : a) = 0M implies (0M : an) = 0 for every n ∈ Z+

(vii) x ∨ y = 1 implies (0M : x)∨ (0M : y) = 0M : (x ∧ y) = 0M : x y

(viii) For Z in M, Z ¶ 0M : (0M : Z)

(ix) A¶ B implies (0M : B)¶ (0M : A)

(x) 0M : [0M : (0M : A)] = 0M : A

(xi) 0M : x IM = 0M : xn IM for some positive integer n.

We define, 0F M = ∨{X ∈ M∗ | sX = 0M for some s ∈ F}, where M∗ is the set of compact

elements of M.

The proofs of the following theorems are simple

Theorem 2. Let F ⊆ L be a filter of F(L∗) and let X be a compact element of M. Then X ¶ 0F M

if and only if sX = 0M for some s ∈ F.

Theorem 3. For F ∈ F(L∗), 0F M = ∨{(0M : x) | x ∈ F}.
Theorem 4. For F1, F2 ∈ F(L∗)

(i) F1 ⊆ F2 implies 0F1M ¶ 0F2M .

(ii) 0F1M ∧ 0F2M = 0(F1

⋂

F2)M

3. Baer Elements

A study of Baer elements, ∗-elements and closed elements carried out by D D Anderson, et

al. [1]. We generalize these concepts for lattice modules.

Definition 1. An element A ∈ M is said to be Baer element if for x ∈ L∗, x IM ¶ A implies

0M : (0M : x IM )¶ A.

Definition 2. An element A of M is said to be ∗-element if A= 0F M for some filter F ∈ F(L∗) such

that zero does not belong to F.

Definition 3. An element A of M is said to be closed element if A= 0M : (0M : A).

The next result establishes the relation between closed element and Baer element.

Theorem 5. Every closed element is a Baer element.

Proof. Let A be a closed element of M and x be a compact element of L∗ such that x IM ¶ A.

Then 0M : (0M : x IM ) ¶ 0M : (0M : A) = A as A is a closed. This shows that A is a Baer

element.
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Definition 4. An element P of M is called a minimal prime element over A∈ M if A¶ P and there

is no other prime element Q of M such that A¶Q < P.

The following result gives the characterization of a minimal prime element over an ele-

ment.

Theorem 6. Let a be proper element of L and P be a prime element of M with aIM ¶ P. Then the

following statements are equivalent,

(i) P is minimal prime element over aIM .

(ii) For each compact element x in L, x IM ¶ P, there is compact element y in L such that y IM � P

and xn y IM ¶ aIM = A for some positive integer n.

Proof. (i)⇒ (ii)
Let P be a minimal prime over aIM and suppose x IM ¶ P. Let

S = {xn y | y 6¶ (P : IM ) and n is a positive integer }.

It is clear that, S is a multiplicatively closed set. Suppose xn y 6¶ aIM for any integer n and

for any y IM � P, where y is compact in L. By the separation lemma (see [5]), there is a prime

element (Q : IM ) of L such that (P : IM ) ¶ (Q : IM ) and t 6¶ (Q : IM ) for all t ∈ S. Then

we have (Q : IM ) ¶ (P : IM ) since otherwise xn(Q : IM ) ∈ S and xn(Q : IM ) 6¶ (Q : IM ) a

contradiction. Hence (P : IM ) = (Q : IM ). It follows that P = Q (see [3]. But then for t ∈ S,

t ¶ x ¶ (P : IM ) = (Q : IM ) a contraduction.

(ii)⇒ (i)
Suppose for any x in L, x IM ¶ P, there is y in L such that y IM 6¶ P and xn y IM ¶ aIM for

some positive integer n. Also suppose that there is a prime element Q of M with aIM ¶Q < P.

Choose, x IM ¶ P and x IM 6¶ Q. By hyphothesis, there is a compact element y in L such that

y IM 6¶ P and integer n such that xn y IM ¶ aIM ¶ Q. As x IM � Q, x � (Q : IM ). Since Q is

a prime element of M, (Q : IM ) is also prime element of L (see [4]). Hence xn � (Q : IM ).

Thus, xn 6¶ (Q : IM ) and y 6¶ (Q : IM ) where (Q : IM ) is a prime element of L, which is a

contradiction.

In the next result, we prove the important property of a minimal prime element.

Theorem 7. Let M be an lattice module. Every minimal prime element of M is a ∗-element where

0F M is prime element.

Proof. Let p be a minimal prime element of M. Define the set F = {x ∈ L∗ | x IM � P}. We

first show that F is a filter of F(L∗). Let x and y be compact element of L such that x , y ∈ F .

So x IM � P and y IM � P. As P is prime, x y IM � P. This shows that x y ∈ F . Now let x ∈ F

and x ¶ y . Hence x IM � P implies y IM � P and y ∈ F . If 0 ∈ F then we have 0IM � P that

is 0M � P a contradction. Thus F ∈ F(L∗) and 0 /∈ F . Now we show that P = 0F M . Let x be a

compact element of L such that x IM ¶ P. By Theorem 6 it follows that there exist a compact

element y ∈ L such that y IM � P and xn y IM = 0M for some positive integer n. We have y ∈ F

and xn IM ¶ 0F M . As 0F M is prime element, so x IM ¶ 0F M implies P ¶ 0F M . Now let x be a
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compact element of L such that x IM ¶ 0F M . Then by Theorem 2, r x IM = 0M for some r ∈ F .

So we have r x IM ¶ P and r IM � P. As P is prime, x IM ¶ P and 0F M ¶ P which shows that

P = 0F M . Thus every minimal prime element of M is ∗-element.

The relation between ∗-element and Baer element is proved in the next result.

Theorem 8. Each ∗-element of M is a Baer element.

Proof. Suppose an element A of M is ∗-element. Hence A= 0F M for some filter F ∈ F(L∗)
such that 0 /∈ F . Let x ∈ L∗ such that x IM ¶ A. Then we have r x IM = 0M that is x IM ¶ (0M : r)

for some r ∈ F by Theorem 2. Therefore by (i) and (iii) of Theorem 1 we get

0M : (0M : x IM )¶ 0M : [0M : (0M : r)] = (0M : r).

Hence by Theorem 3, 0M : (0M : x IM ) ¶ ∨
s∈F
(0M : s) = 0F M = A. This shows that A is a Baer

element.

The next result we prove the existence of closed and Baer elements.

Theorem 9. Let M be multiplication lattice module. For any x ∈ L, (0M : x) is both Baer and

closed element.

Proof. For an element x ∈ L∗, let x IM ¶ (0M : x), then

0M : (0M : x IM )¶ 0M : [0M : (0M : x)] = (0M : x)

by (i) and (iii) of Theorem 1. Thus (0M : x) is a Baer element. Again from (iii) of Theorem 1,

(0M : x) = 0M : (0M : (0M : x)). This shows that (0M : x) is a closed element.

In the following theorem we prove the characterization of closed element in terms of Baer

element.

Theorem 10. For a ∈ L∗, aIM is closed if and only if aIM is a Baer element.

Proof. Let L∗ be the set of all compact element of L and aIM be a Baer element of M. We

show that aIM = 0M : (0M : aIM ). As aIM ¶ aIM , we have [0M : (0M : aIM )] ¶ aIM . But

aIM (0M : aIM ) ¶ 0M implies aIM ¶ 0M : (0M : aIM ). Therefore 0M : (0M : aIM ) = aIM . Thus

aIM is closed. The converse is proved in Theorem 5.

Theorem 11. For a nonzero compact element a in L, 0M : a = 0[a).

Proof. We note that F = [a) = {z ∈ L∗ | z ≥ an for some n ∈ Z+} ∈ F(L∗) and

0F M = ∨{X ∈ M∗ | sX = 0M for some s ∈ F}. Now let z be compact element of L such that

z ∈ F ∩{0}. Then z ∈ F and z = 0. As z ∈ F, z ≥ an for some n ∈ Z+. Hence a ¶
p

z = 0 which

shows that a = 0. This contradiction implies that 0 /∈ F . Now we show that 0M : a = 0F M . As

a is a compact element in L, a ∈ F . So we have 0M : a ¶ 0F M = ∨{(0M : x) | x ∈ F}. Let Z be

a compact element in M and Z ¶ 0F M . Then by Theorem 2 sZ = 0M for some s ∈ F . So s ≥ an

for some n ∈ Z+. We note that 0M : an = 0M : a. Consequently, we have anZ ¶ sZ = 0M . This

implies that Z ¶ (0M : an) = (0M : a). Consequently, 0F ¶ (0M : a) and (0M : a) = 0F .

The following theorem establishes the property of Baer, closed and ∗-element.
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Theorem 12. Suppose L has no divisors of zero then the element 0M is always a Baer, closed and

∗-element whereas 1M is Baer and closed.

Proof. Let x be a nonzero element of L. From Theorem 9,for any x ∈ L, 0M : x is both Baer

and closed and by Theorem 11 for a nonzero compact element x of L, 0M : x = 0[x). To show

that 0M a is Baer element,take x ∈ L∗ such that x IM ¶ 0M . We have

0M : (0M : x IM )¶ OM : (0M : 0M ) = 0M .

Hence 0M is a Baer element. As 0M = 0M : (0M : 0M ), 0M is closed. Every Baer element is a

∗-element. To show that 1M is a Baer element. Take any x ∈ L∗ such that x IM ¶ 1M . We have

0M : (0M : x IM ) = 0M : [∨{a ∈ L | ax IM = 0M}] = 0M : 0 = 1M . So 1M is a Baer element.

Now 0M : (0M : 1M ) = 0M : [∨{a ∈ L | aIM = 0M}] = 1M and 1M is closed.

Remark 1. For defining the ∗-element, the condition 0 /∈ F is necessary.

Suppose if possible X is a ∗-element. Hence X = 0F M , for some filter F such that 0 /∈ F. Then

we have X = ∨{(0M : r) | r ∈ F}. Now 0M : 0 = ∨{A ∈ M | 0A= 0M} = 1M . Thus only 1M will

be a ∗-element. Hence, for defining a ∗-element we take F such that 0 /∈ F.

Theorem 13. If {Aα}α is a family of Baer elements then ∧
α

Aα is a Baer element.

Proof. Let x ∈ L∗ such that x IM ¶ ∧
α

Aα. Then for each α, x IM ¶ Aα. As each Aα is a

Baer element, 0M : (0M : x IM ) ¶ Aα. Hence 0M : (0M : x IM ) ¶ ∧
α

Aα. Thus ∧
α

Aα is a Baer

element.

The next result we prove the relation between minimal prime element and Baer element.

Theorem 14. If A is a meet of minimal prime elements then A is a Baer element.

Proof. From Theorem 7, every minimal prime element of M is a ∗-element and by Theorem

8, each ∗-element of M is a Baer element. From these two results,every minimal prime element

is a Baer element. So meet of all minimal prime elements is a Baer element, by Theorem 13.

Theorem 15. If {Aα}α is a family of closed elements then ∧
α

Aα is a closed element.

Proof. We have ∧
α

Aα ¶ Aα for each α. As each Aα is a closed element we have

0M : [0M : (∧Aα)]¶ 0M : (0M : Aα) = Aα. This gives 0M : [0M : (∧
α

Aα)]¶ ∧
α

Aα. Now let Z be an

element of M such that Z ¶ ∧
α

Aα. Then we have Z ¶ 0M : (0M : Z) ¶ 0M : (0M : ∧
α

Aα), by (ix)

of Theorem 1. This gives ∧
α

Aα ¶ 0M : [0M : (∧
α

Aα)]. Thus we get 0M : [0M : (∧
α

Aα)] = ∧
α

Aα.

Here is an important property of largest element of M which is compact.

Theorem 16. 1M is never a ∗-element where 1M is compact and M is torsion free L-module.
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Proof. Suppose that 1M is a ∗-element. Then there exist some filter F ∈ F(L∗) such that

1M = 0F M , where 0 /∈ F . Then as 1M is compact and 1M = 0F M = ∨{(0M : x) | x ∈ F},
1M = (0M : x1)∨ (0M : x2)∨ . . .∨ (0M : xn) for some x1, x2, . . . , xn ∈ F . Consequently, as 1M

is closed,

1M =0M : (0M : 1M ) = 0M : [0M : ((0M : x1)∨ (0M : x2)∨ . . .∨ (0M : xn))]

=0M : [0M : (0M : x1)∧ 0M : (0M : x2)∧ . . .∧ 0M : (0M : xn)].

Therefore 1M = 0M : [0M : (0M : (x1 x2 . . . xn)] = 0M : (x1 x2 . . . xn), by (iii) and (v) of Theorem

1. This implies that x1 x2 . . . xn = 0. Since x1, x2, . . . , xn are in F. We have 0 = x1 x2 . . . xn ∈ F .

Which is a contradiction as 0 /∈ F .

The next result we prove the characterization of a Baer element.

Theorem 17. The following statements are equivalent,

(i) An element A∈ M is a Baer element.

(ii) For any element x , y ∈ L such that x is compact 0M : x IM = 0M : y IM and x IM ¶ A implies

y IM ¶ A.

(iii) For any element x , y ∈ L∗, 0M : x = 0M : y and x IM ¶ A implies y IM ¶ A.

Proof. (i)⇒ (ii)
Assume that A is a Baer element of M. Let x , y ∈ L be such that x is compact, x IM ¶ A, and

0M : x IM = 0M : y IM . Then by Theorem 1, y IM ¶ 0M : (0M : y IM ) = 0M : (0M : x IM ) ¶ A,

since A is a Baer element.

(ii)⇒ (iii)
Obvious.

(iii)⇒ (i)
Assume that for any element x , y ∈ L∗, 0M : x IM = 0M : y IM and x IM ¶ A implies y IM ¶ A.

We show that A∈ M is a Baer element. Let x ∈ L∗ be such that x IM ¶ A. We have

0M : x IM = 0M : [0M : (0M : x IM )]. Hence by (iii), we have 0M : (0M : x IM ) ¶ A. Hence, A is

a Baer element.

In the following theorem we prove the relation between Baer element of a lattice module

and radical element of a multiplicative lattice.

Theorem 18. If A is Baer element of M then A : IM is a radical element.

Proof. Let A be Baer element of a lattice module M. We show that (A : IM ) =
p

(A : IM ).

Assume that x is compact element such that xn IM ¶ A for some positive integer n. We have

0M : x IM = 0M : xn IM , by (xii) of Theorem 1 and hence by above theorem x IM ¶ A that is

x ¶ (A : IM ). Hence
p

(A : IM ) ¶ (A : IM ) and we have
p

(A : IM ) = (A : IM ) i.e.(A : IM ) is a

radical element.

Theorem 19. If A is a Baer element then every minimal prime element over A is a Baer element.
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Proof. Let A be a Baer element and P be a minimal prime in M over A. Assume that

0M : x = 0M : z for some x , z ∈ L such that x is compact and x IM ¶ P. There exists a compact

element y ∈ L such that y IM � P and xn y IM ¶ A¶ P for some positive integer n, by Theorem

14. Note that 0M : y x = (0M : x) : y = (0M : xn) : y = 0M : xn y = 0M : y xn = 0M : yz. As A

is a Baer element. By Theorem 17, x y IM ¶ A implies yzIM ¶ A¶ P. Hence zIM ¶ P as P is

prime. So again by Theorem 17, P is a Baer element.

The characterization of minimal prime element of M is proved in the next theorem.

Theorem 20. Let L be a lattice module and P be a prime element of M. Then P is a minimal prime

element if and only if for x ∈ L∗, P contains precisely one of x IM and 0M : x.

Proof. If part:

Assume that for x ∈ L∗,P contains precisely one of x IM and 0M : x . First assume that P contains

x IM . But 0M : x � P. Therefore there exists a compact element y in L such that y IM ¶ 0M : x

but y IM � P. Thus x y IM ¶ 0M . This shows that for each compact element x in L,x IM ¶ P,

there exist a compact element y in L such that y IM � P and x y IM ¶ 0M . By Theorem 6, it

follows that P is a minimal prime element of M. Next assume that 0M : x ¶ P but x IM � P.

Let z be a compact element of L such that zIM ¶ (0M : x) ¶ P. But x IM � P and xzIM ¶ 0M .

Consequently, by Theorem 6 P is a minimal prime element. Thus the condition is sufficient.

Only if part:

Assume that P is a minimal prime element of M. Let x be a compact element of L. Suppose if

possible x IM ¶ P. Then by Theorem 6, there exist a compact element y in L such that y IM � P

and xn y IM = 0M for some positive integer n. Consequently, y IM ¶ 0M : xn = 0M : x . This

implies that 0M : x � P. Now suppose if possible x IM � P and 0M : x � P. Then there exist a

compact element y in L such that y IM ¶ 0M : x but y IM � P. Hence we have x y IM ¶ 0M and

so x y IM ¶ P. But x IM � P and y IM � P which contradicts the fact that P is prime element of

M. This shows that P contains precisely one of x IM and (0M : x).

The relation between ∗-element of M and a minimal prime element over it is established

in the next theorem.

Theorem 21. If A is a ∗-element of M then every minimal prime over A is a minimal prime.

Proof. Let P be a minimal prime element of M over A. We know by Theorem 8 and Theorem

18, a ∗-element A is a Baer element and (A : IM ) is a radical element. Let x ∈ L∗ be such that

x IM ¶ P. But P is a minimal prime over A. Then by Theorem 2 there exists y ∈ L∗ such that

y IM � P and xn y IM ¶ A i.e. xn y ¶ A : IM . So xn yn ¶ A : IM i.e. x y ¶
p

(A : IM ) = (A : IM ).

By hyphothesis, x y is compact and x y IM ¶ A= 0F M , for some filter F of L∗ such that 0 /∈ F .

Hence x y IM d = 0M for some d ∈ F . We show that there is no compact element x in F such

that x IM ¶ P. Suppose there is compact element z in L such that zIM ¶ P and z ∈ F . Then

by Theorem 3, 0M : z ¶ 0F = A¶ P. This contradict the fact that P contains precisely one of

zIM and 0M : z where z ∈ L∗. Hence there is no compact element x in F such that x IM ¶ P.

This implies that dIM 6¶ P. As P is prime, dIM 6¶ P and y IM 6¶ P implies yd IM 6¶ P. Thus

x yd IM = 0M ¶ P and yd IM 6¶ P. Therefore by Theorem 6, P is minimal prime.
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Remark 2. By Theorem 7, we infer that every minimal prime element is a ∗-element and it is a

Baer element. Therefore by Theorem 21, if A is the meet of all minimal prime elements containing

it, A is a Baer element.

Notation: For a family {Aα} of Baer elements of L we define,

⊻Aα = ∨{x IM , x ∈ L∗ | 0M : (x1 ∨ x2 . . .∨ xn)IM ¶ 0M : x IM ,

for some compact elements x j IM ¶ Aα j and some j = 1,2, . . . , n}.
The important property of a family of Baer elements is established in the next theorem.

Theorem 22. If {Aα} is a family of Baer elements of L,⊻Aα is the smallest Baer element greater

than each Aα.

Proof. We first show that ⊻Aα is a Baer element greater than each Aα. Let x be a compact

element of L such that x IM ¶ ⊻Aα. Then there exist compact elements x1, x2, . . . , xn such that

0M : (x1 ∨ x2 ∨ . . . ∨ xn)IM ¶ 0M : x IM and x j IM ¶ Aα j j = 1,2, . . . , n. Next we show that

0M : (0M : x IM )¶ ⊻Aα. Let z be compact element in L such that zIM ¶ 0M : (0M : x IM ). Then

0M : zIM ≥ 0M : [0M : (0M : x IM )]. That is 0M : x IM ¶ 0M : zIM (by Theorem 1, (x) and

(xi)). Therefore 0M : (x1 ∨ x2 ∨ . . . ∨ xn)IM ¶ 0M : zIM . This implies that zIM ¶ ⊻Aα. Thus

0M : (0M : x IM ) ¶ ⊻Aα. This shows that ⊻Aα is a Baer element. Let z be a compact element

in L such that zIM ¶ Aα for some α. But 0M : zIM ¶ 0M : zIM . Thus zIM ¶ ⊻Aα. Hence each

Aα ¶ ⊻Aα. Let B be a Baer element such that Aα ¶ B for each α and let x be a compact element

in L such that 0M : (x1 ∨ x2 ∨ . . .∨ xn)IM ¶ 0M : x IM for some compact elements x j IM ¶ Aα j ,

j = 1,2, . . . , n so that x IM ¶ ⊻Aα. Note that B is a Baer element and the compact element

(x1 ∨ x2 ∨ . . . ∨ xn)IM ¶ B. Hence 0M : [0M : (x1 ∨ x2 ∨ . . . ∨ xn)IM ] ¶ B. Again note that

0M : (0M : x IM ) ¶ 0M : [0M : (x1 ∨ x2 ∨ . . . ∨ xn)IM ] and x IM ¶ 0M : (0M : x IM ). Therefore

x IM ¶ B and hence ⊻Aα ¶ B. Consequently ⊻Aα is the smallest Baer element greater than

each Aα.

Theorem 23. For any proper element A ∈ M, ⊻{0M : (0M : x IM ) | x ∈ L∗ and x IM ¶ A} is the

smallest Baer element greater than A.

Proof. First we show that 0M : (0M : x IM ) is a Baer element i.e. we show that for any

x ∈ L∗, x IM ¶ 0M : (0M : x IM ) implies 0M : (0M : x IM ) ¶ 0M : (0M : x IM ) which holds

obviously. Hence by Theorem 22, B = ⊻{0M : (0M : x IM ) | x ∈ L∗ and x IM ¶ A} is the smallest

Baer element containing each 0M : (0M : x IM ) for x IM ¶ A. Let a compact element x in L be

such that x IM ¶ A. Then we have x IM ¶ 0M : (0M : x IM ) ¶ B. Thus A¶ B. Let zIM be a Baer

element in M such that A¶ zIM and let y be compact element in L such that y IM ¶ B. Then

0M : (z1 ∨ z2 ∨ . . . ∨ zn)IM ¶ 0M : y IM , for some compact elements zi IM ¶ 0M : (0M : x i IM ),

where i = 1,2, . . . , n. Thus 0M : x i IM ¶ 0M : zi IM for each i. This gives

0M :(x1 ∨ x2 ∨ . . .∨ xn)IM = 0M : x1 IM ∧ 0M : x2 IM ∧ . . . 0M : xn IM

¶0M : z1 IM ∧ 0M : z2 IM ∧ . . .∧ 0M : zn IM

=0M : (z1 ∨ z2 ∨ . . .∨ zn)IM ¶ 0M : y IM .
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Thus if x = x1∨x2∨. . .∨xn is compact element such that x IM = (x1∨x2∨. . .∨xn)IM ¶ A¶ zIM ,

we get 0M : x IM ¶ 0M : y IM . As zIM is a Baer element we have

y IM ¶ 0M : (0M : y IM )¶ 0M : (0M : x IM )¶ zIM .

Therefore B ¶ zIM . This shows that ⊻{0M : (0M : x IM ) | x ∈ L∗ and x IM ¶ A} is the smallest

Baer element greater than A.

Notation : For a family {Aα} of closed elements of M we define,

A▽ B = ∨{zIM , z ∈ L∗ | 0M : (x ∨ y)IM ¶ 0M : zIM

for some x IM ¶ A and y IM ¶ B}. Then we have the following important result.

The property of closed elements is proved in the next theorem.

Theorem 24. If A and B are closed elements of M A▽ B is the smallest closed element greater

than A as well as B.

Proof. We show that A▽ B is closed greater than A as well as B. Let C = A▽ B. We

always have C ¶ 0M : (0M : C) where C ∈ M . Let x be compact element in L such that

x IM ¶ 0M : (0M : C). Then 0M : C ¶ 0M : x IM . This implies that

0M : (y ∨ z)IM ¶ 0M : C ¶ 0M : x IM

where y, z ∈ L∗, y IM ¶ A and zIM ¶ B. But y IM ¶ A▽ B, zIM ¶ A▽ B. Hence

0M : (r∨s)IM ¶ 0M : y IM and 0M : (u∨v)IM ¶ 0M : zIM where r IM ,uIM ¶ A and sIM , vIM ¶ B.

Therefore 0M : (r ∨ s)IM ∧ 0M : (u∨ v)IM ¶ 0M : y IM ∧ 0M : zIM . Consequently

0M : (r ∨ s ∨ u∨ v)IM ¶ 0M : (y ∨ z)IM ¶ 0M : x IM ,

where (r ∨ u)IM ¶ A and (s ∨ v)IM ¶ B. This implies that x IM ¶ C . Hence 0M : (0M : C) ¶ C .

This gives 0M : (0M : C) = C and C is closed. As 0M ; sIM ¶ 0M : sIM for any element s in L, it

follows that A, B ¶ A▽ B. Suppose that W is closed element such that A, B ¶W and let x ∈ L∗
be such that 0M : (u∨ v)IM ¶ 0M : x IM for some uIM ¶ A and vIM ¶ B. Note that W is a closed

element and (u ∨ v)IM ¶ W . Hence we have 0M : [0M : (u ∨ v)IM ] ¶ 0M : (0M : W ) = W .

Again note that 0M : (0M : x IM ) ¶ 0M : [0M : (u ∨ v)IM ] ¶ W and x IM ¶ 0M : (0M : x IM ).

Therefore x IM ¶W and hence A▽ B ¶W . Consequently, it proves that A▽ B is the smallest

closed element greater than A as well as B.

Theorem 25. If A and B are closed elements of M then A▽ B = 0M : [0M : (A∨ B)].

Proof. By Theorem 24, we have A∨B ¶ A▽B. Hence 0M : [0M : (A∨B)]¶ A▽B as A▽B is

a closed element. Let x IM ¶ A▽B, x ∈ L∗. Then 0M : (u∨ v)IM ¶ 0M : x IM , for some uIM ¶ A

and vIM ¶ B. Consequently, we have

x IM ¶ 0M : (0M : x IM )¶ 0M : [0M : (u∨ v)IM ]¶ 0M : [0M : (A∨ B)].

Hence A▽ B ¶ (0M : 0M : (A∨ B)). Thus A▽ B = 0M : [0M : (A∨ B)].
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