EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 3, 2015, 332-342 ISSN 1307-5543 – www.ejpam.com

Baer Elements In Lattice Modules

C S Manjarekar¹, U N Kandale^{2,*}

¹ Department of Mathematics, Shivaji University, Kolhapur, India

² Department of General Engineering, Sharad Institute, Shivaji University, Kolhapur, India

Abstract. Let L be a compactly generated multiplicative lattice with 1 compact in which every finite product of compact elements is compact and M be a module over L. In this paper we generalize the concepts of Baer elements,*-elements and closed elements and obtain the relation between *-elements and Baer elements and also closed elements and Baer elements. Some characterization are also obtain for closed elements of M and minimal prime elements of M.

2010 Mathematics Subject Classifications: 13A99

Key Words and Phrases: Prime element, primary element, lattice modules, Baer element, *-element, closed element.

1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $a \in L$ is called proper if a < 1. A proper element p of L is said to be prime if $ab \leq p$ implies $a \leq p$ or $b \leq p$. If $a \in L$, $b \in L$, (a : b) is the join of all elements c in L such that $cb \leq a$. A proper element p of L is said to be primary if $ab \leq p$ implies $a \leq p$ or $b^n \leq p$ for some positive integer n. If $a \in L$ then $\sqrt{a} = \vee \{x \in L \mid x^n \leq a, n \in Z_+\}$. An element $a \in L$ is called a radical element if $a = \sqrt{a}$. An element $a \in L$ is called compact if $a \leq \vee b_a$ implies $a \leq b_{a1} \vee b_{a2} \vee \ldots \vee b_{an}$ for some finite subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. Throughout this paper, L denotes a compactly generated multiplicative lattice with 1 compact and every finite product of compact elements is compact. We shall denote by L_* the set compact elements of L. A nonempty subset F of L_* is called a filter of L_* if the following conditions are satisfied,

- (i) $x, y \in F$ implies $xy \in F$
- (ii) $x \in F, x \leq y$ implies $y \in F$.

Email addresses: csmanjrekar@yahoo.co.in (C Manjarekar), ujwalabiraje@gmail.com (U Kandale)

http://www.ejpam.com

© 2015 EJPAM All rights reserved.

^{*}Corresponding author.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L-module or module over L if there is a multiplication between elements of L and M written as *aB* where $a \in L$ and $B \in M$ which satisfies the following properties,

- (i) $(\bigvee_{\alpha} a_{\alpha})A = \bigvee_{\alpha} a_{\alpha}A \quad \forall a_{\alpha} \in L, A \in M$
- (ii) $a(\bigvee_{\alpha} A_{\alpha}) = \bigvee_{\alpha} a A_{\alpha} \quad \forall a \in L, A_{\alpha} \in M$
- (iii) $(ab)A = a(bA) \quad \forall a, b \in L, A \in M$
- (iv) 1B = B
- (v) $0B = 0_M$ for all $a, a_\alpha, b \in L$ and $A, A_\alpha \in M$, where 1 is the supremum of L and 0 is the infimum of L. We denote by 0_M and I_M the least element and the greatest element of M. Elements of L will generally be denoted by a, b, c, \ldots and elements of M will generally be denoted by $A, B, C \ldots$

Let M be a L-module. If $N \in M$ and $a \in L$ then $(N : a) = \bigvee \{X \in M \mid aX \leq N\}$. If $A, B \in M$, then $(A : B) = \bigvee \{x \in L \mid xB \leq A\}$. An L-module M is called a multiplication L-module if for every element $N \in M$ there exists an element $a \in L$ such that $N = aI_M$ see [2]. In this paper a lattice module M will be a multiplication lattice module, which is compactly generated with the largest element I_M compact. A proper element N of M is said to be prime if $aX \leq N$ implies $X \leq N$ or $aI_M \leq N$ that is $a \leq (N : I_M)$ for every $a \in L, X \in M$. If N is a prime element of M then $(N : I_M)$ is prime element of L [4]. An element $N < I_M$ in M is said to be primary if $aX \leq N$ implies $X \leq N$ or $a^n I_M \leq N$ that is $a^n \leq (N : I_M)$ for some integer n. An element N of M is called a radical element if $(N : I_M) = \sqrt{(N : I_M)}$. If $aN = 0_M$ implies a = 0 or $N = 0_M$ for any $a \in L$ and $N \in M$ then M is called a torsion free L-module.

2. Residuation properties

We state some elementary properties of residuation in the following theorem.

Theorem 1. Let *L* be a multiplicative lattice and *M* be a multiplication lattice module over *L*. For $x, y \in L$ and $Z, A, B \in M$, where $(0_M : I_M)$ is a radical element. We have the following identities,

- (i) $x \le y$ implies $(0_M : y) \le (0_M : x)$ and $0_M : (0_M : x) \le 0_M : (0_M : y)$
- (*ii*) $x \leq 0_M : (0_M : x)$
- (*iii*) $0_M : [0_M : (0_M : x)] = (0_M : x)$

- (iv) $(0_M : x) = (0_m : x^n)$ for every $n \in Z_+$
- (v) $0_M : (0_M : x) \land 0_M : (0_M : y) = 0_M : (0_M : xy) = 0_M : [0_M : (x \land y)]$
- (vi) $(0_M : a) = 0_M$ implies $(0_M : a^n) = 0$ for every $n \in Z_+$
- (vii) $x \lor y = 1$ implies $(0_M : x) \lor (0_M : y) = 0_M : (x \land y) = 0_M : xy$
- (viii) For Z in M, $Z \leq 0_M : (0_M : Z)$
- (ix) $A \leq B$ implies $(0_M : B) \leq (0_M : A)$
- (x) $0_M : [0_M : (0_M : A)] = 0_M : A$
- (xi) $0_M : xI_M = 0_M : x^nI_M$ for some positive integer n.

We define, $0_{FM} = \bigvee \{X \in M_* \mid sX = 0_M \text{ for some } s \in F\}$, where M_* is the set of compact elements of M.

The proofs of the following theorems are simple

Theorem 2. Let $F \subseteq L$ be a filter of F(L*) and let X be a compact element of M. Then $X \leq 0_{FM}$ if and only if $sX = 0_M$ for some $s \in F$.

Theorem 3. For $F \in F(L_*)$, $0_{FM} = \lor \{(0_M : x) \mid x \in F\}$.

Theorem 4. For $F_1, F_2 \in F(L_*)$

- (i) $F_1 \subseteq F_2$ implies $0_{F_1M} \leq 0_{F_2M}$.
- (*ii*) $0_{F_1M} \wedge 0_{F_2M} = 0_{(F_1 \bigcap F_2)M}$

3. Baer Elements

A study of Baer elements, *-elements and closed elements carried out by D D Anderson, *et al.* [1]. We generalize these concepts for lattice modules.

Definition 1. An element $A \in M$ is said to be Baer element if for $x \in L^*$, $xI_M \leq A$ implies $0_M : (0_M : xI_M) \leq A$.

Definition 2. An element A of M is said to be *-element if $A = 0_{FM}$ for some filter $F \in F(L_*)$ such that zero does not belong to F.

Definition 3. An element A of M is said to be closed element if $A = 0_M : (0_M : A)$.

The next result establishes the relation between closed element and Baer element.

Theorem 5. Every closed element is a Baer element.

Proof. Let A be a closed element of M and x be a compact element of L_* such that $xI_M \leq A$. Then $0_M : (0_M : xI_M) \leq 0_M : (0_M : A) = A$ as A is a closed. This shows that A is a Baer element. **Definition 4.** An element *P* of *M* is called a minimal prime element over $A \in M$ if $A \leq P$ and there is no other prime element *Q* of *M* such that $A \leq Q < P$.

The following result gives the characterization of a minimal prime element over an element.

Theorem 6. Let a be proper element of *L* and *P* be a prime element of *M* with $aI_M \leq P$. Then the following statements are equivalent,

- (i) P is minimal prime element over aI_M .
- (ii) For each compact element x in L, $xI_M \leq P$, there is compact element y in L such that $yI_M \notin P$ and $x^n yI_M \leq aI_M = A$ for some positive integer n.

Proof. $(i) \Rightarrow (ii)$

Let P be a minimal prime over aI_M and suppose $xI_M \leq P$. Let

 $S = \{x^n y \mid y \not\leq (P : I_M) \text{ and } n \text{ is a positive integer } \}.$

It is clear that, S is a multiplicatively closed set. Suppose $x^n y \leq aI_M$ for any integer n and for any $yI_M \notin P$, where y is compact in L. By the separation lemma (see [5]), there is a prime element $(Q : I_M)$ of L such that $(P : I_M) \leq (Q : I_M)$ and $t \leq (Q : I_M)$ for all $t \in S$. Then we have $(Q : I_M) \leq (P : I_M)$ since otherwise $x^n(Q : I_M) \in S$ and $x^n(Q : I_M) \leq (Q : I_M)$ a contradiction. Hence $(P : I_M) = (Q : I_M)$. It follows that P = Q (see [3]. But then for $t \in S$, $t \leq x \leq (P : I_M) = (Q : I_M)$ a contraduction.

 $(ii) \Rightarrow (i)$

Suppose for any x in L, $xI_M \leq P$, there is y in L such that $yI_M \leq P$ and $x^n yI_M \leq aI_M$ for some positive integer n. Also suppose that there is a prime element Q of M with $aI_M \leq Q < P$. Choose, $xI_M \leq P$ and $xI_M \leq Q$. By hyphothesis, there is a compact element y in L such that $yI_M \leq P$ and integer n such that $x^n yI_M \leq aI_M \leq Q$. As $xI_M \notin Q$, $x \notin (Q : I_M)$. Since Q is a prime element of M, $(Q : I_M)$ is also prime element of L (see [4]). Hence $x^n \notin (Q : I_M)$. Thus, $x^n \not\leq (Q : I_M)$ and $y \leq (Q : I_M)$ where $(Q : I_M)$ is a prime element of L, which is a contradiction.

In the next result, we prove the important property of a minimal prime element.

Theorem 7. Let *M* be an lattice module. Every minimal prime element of *M* is a *-element where 0_{FM} is prime element.

Proof. Let p be a minimal prime element of M. Define the set $F = \{x \in L_* \mid xI_M \notin P\}$. We first show that F is a filter of $F(L_*)$. Let x and y be compact element of L such that $x, y \in F$. So $xI_M \notin P$ and $yI_M \notin P$. As P is prime, $xyI_M \notin P$. This shows that $xy \in F$. Now let $x \in F$ and $x \leq y$. Hence $xI_M \notin P$ implies $yI_M \notin P$ and $y \in F$. If $0 \in F$ then we have $0I_M \notin P$ that is $0_M \notin P$ a contradiction. Thus $F \in F(L_*)$ and $0 \notin F$. Now we show that $P = 0_{FM}$. Let x be a compact element of L such that $xI_M \leq P$. By Theorem 6 it follows that there exist a compact element $y \in L$ such that $yI_M \notin P$ and $x^n yI_M = 0_M$ for some positive integer n. We have $y \in F$ and $x^n I_M \leq 0_{FM}$. As 0_{FM} is prime element, so $xI_M \leq 0_{FM}$ implies $P \leq 0_{FM}$. Now let x be a

compact element of L such that $xI_M \leq 0_{FM}$. Then by Theorem 2, $rxI_M = 0_M$ for some $r \in F$. So we have $rxI_M \leq P$ and $rI_M \notin P$. As P is prime, $xI_M \leq P$ and $0_{FM} \leq P$ which shows that $P = 0_{FM}$. Thus every minimal prime element of M is *-element.

The relation between *-element and Baer element is proved in the next result.

Theorem 8. Each *-element of M is a Baer element.

Proof. Suppose an element A of M is *-element. Hence $A = 0_{FM}$ for some filter $F \in F(L_*)$ such that $0 \notin F$. Let $x \in L_*$ such that $xI_M \leq A$. Then we have $rxI_M = 0_M$ that is $xI_M \leq (0_M : r)$ for some $r \in F$ by Theorem 2. Therefore by (*i*) and (*iii*) of Theorem 1 we get

 $0_M : (0_M : xI_M) \le 0_M : [0_M : (0_M : r)] = (0_M : r).$

Hence by Theorem 3, $0_M : (0_M : xI_M) \leq \bigvee_{s \in F} (0_M : s) = 0_{FM} = A$. This shows that A is a Baer element.

The next result we prove the existence of closed and Baer elements.

Theorem 9. Let M be multiplication lattice module. For any $x \in L$, $(0_M : x)$ is both Baer and closed element.

Proof. For an element $x \in L_*$, let $xI_M \leq (0_M : x)$, then

$$0_M : (0_M : xI_M) \le 0_M : [0_M : (0_M : x)] = (0_M : x)$$

by (*i*) and (*iii*) of Theorem 1. Thus $(0_M : x)$ is a Baer element. Again from (*iii*) of Theorem 1, $(0_M : x) = 0_M : (0_M : (0_M : x))$. This shows that $(0_M : x)$ is a closed element.

In the following theorem we prove the characterization of closed element in terms of Baer element.

Theorem 10. For $a \in L_*$, aI_M is closed if and only if aI_M is a Baer element.

Proof. Let L_* be the set of all compact element of L and aI_M be a Baer element of M. We show that $aI_M = 0_M : (0_M : aI_M)$. As $aI_M \le aI_M$, we have $[0_M : (0_M : aI_M)] \le aI_M$. But $aI_M(0_M : aI_M) \le 0_M$ implies $aI_M \le 0_M : (0_M : aI_M)$. Therefore $0_M : (0_M : aI_M) = aI_M$. Thus aI_M is closed. The converse is proved in Theorem 5.

Theorem 11. For a nonzero compact element a in L, $0_M : a = 0_{[a]}$.

Proof. We note that $F = [a] = \{z \in L_* \mid z \ge a^n \text{ for some } n \in Z_+\} \in F(L_*)$ and

 $0_{FM} = \bigvee \{X \in M_* \mid sX = 0_M \text{ for some } s \in F\}$. Now let z be compact element of L such that $z \in F \cap \{0\}$. Then $z \in F$ and z = 0. As $z \in F, z \ge a^n$ for some $n \in Z_+$. Hence $a \le \sqrt{z} = 0$ which shows that a = 0. This contradiction implies that $0 \notin F$. Now we show that $0_M : a = 0_{FM}$. As a is a compact element in L, $a \in F$. So we have $0_M : a \le 0_{FM} = \bigvee \{(0_M : x) \mid x \in F\}$. Let Z be a compact element in M and $Z \le 0_{FM}$. Then by Theorem $2 sZ = 0_M$ for some $s \in F$. So $s \ge a^n$ for some $n \in Z_+$. We note that $0_M : a^n = 0_M : a$. Consequently, we have $a^n Z \le sZ = 0_M$. This implies that $Z \le (0_M : a^n) = (0_M : a)$. Consequently, $0_F \le (0_M : a)$ and $(0_M : a) = 0_F$.

The following theorem establishes the property of Baer, closed and *-element.

Theorem 12. Suppose *L* has no divisors of zero then the element 0_M is always a Baer, closed and *-element whereas 1_M is Baer and closed.

Proof. Let x be a nonzero element of L. From Theorem 9, for any $x \in L$, $0_M : x$ is both Baer and closed and by Theorem 11 for a nonzero compact element x of L, $0_M : x = 0_{[x]}$. To show that 0_M a is Baer element, take $x \in L_*$ such that $xI_M \leq 0_M$. We have

$$0_M : (0_M : xI_M) \le O_M : (0_M : 0_M) = 0_M.$$

Hence 0_M is a Baer element. As $0_M = 0_M : (0_M : 0_M)$, 0_M is closed. Every Baer element is a *-element. To show that 1_M is a Baer element. Take any $x \in L_*$ such that $xI_M \leq 1_M$. We have $0_M : (0_M : xI_M) = 0_M : [\lor \{a \in L \mid axI_M = 0_M\}] = 0_M : 0 = 1_M$. So 1_M is a Baer element. Now $0_M : (0_M : 1_M) = 0_M : [\lor \{a \in L \mid aI_M = 0_M\}] = 1_M$ and 1_M is closed.

Remark 1. For defining the *-element, the condition $0 \notin F$ is necessary.

Suppose if possible X is a *-element. Hence $X = 0_{FM}$, for some filter F such that $0 \notin F$. Then we have $X = \vee \{(0_M : r) \mid r \in F\}$. Now $0_M : 0 = \vee \{A \in M \mid 0A = 0_M\} = 1_M$. Thus only 1_M will be a *-element. Hence, for defining a *-element we take F such that $0 \notin F$.

Theorem 13. If $\{A_{\alpha}\}_{\alpha}$ is a family of Baer elements then $\bigwedge A_{\alpha}$ is a Baer element.

Proof. Let $x \in L_*$ such that $xI_M \leq \bigwedge_{\alpha} A_{\alpha}$. Then for each $\alpha, xI_M \leq A_{\alpha}$. As each A_{α} is a Baer element, $0_M : (0_M : xI_M) \leq A_{\alpha}$. Hence $0_M : (0_M : xI_M) \leq \bigwedge_{\alpha} A_{\alpha}$. Thus $\bigwedge_{\alpha} A_{\alpha}$ is a Baer element.

The next result we prove the relation between minimal prime element and Baer element.

Theorem 14. If A is a meet of minimal prime elements then A is a Baer element.

Proof. From Theorem 7, every minimal prime element of M is a *-element and by Theorem 8, each *-element of M is a Baer element. From these two results, every minimal prime element is a Baer element. So meet of all minimal prime elements is a Baer element, by Theorem 13.

Theorem 15. If $\{A_{\alpha}\}_{\alpha}$ is a family of closed elements then $\bigwedge_{\alpha} A_{\alpha}$ is a closed element.

Proof. We have $\bigwedge_{\alpha} A_{\alpha} \leq A_{\alpha}$ for each α . As each A_{α} is a closed element we have $0_{M} : [0_{M} : (\land A_{\alpha})] \leq 0_{M} : (0_{M} : A_{\alpha}) = A_{\alpha}$. This gives $0_{M} : [0_{M} : (\land A_{\alpha})] \leq \bigwedge_{\alpha} A_{\alpha}$. Now let Z be an element of M such that $Z \leq \bigwedge_{\alpha} A_{\alpha}$. Then we have $Z \leq 0_{M} : (0_{M} : Z) \leq 0_{M} : (0_{M} : \land A_{\alpha})$, by (*ix*) of Theorem 1. This gives $\bigwedge_{\alpha} A_{\alpha} \leq 0_{M} : [0_{M} : (\bigwedge_{\alpha} A_{\alpha})]$. Thus we get $0_{M} : [0_{M} : (\bigwedge_{\alpha} A_{\alpha})] = \bigwedge_{\alpha} A_{\alpha}$. \Box

Here is an important property of largest element of M which is compact.

Theorem 16. 1_M is never a *-element where 1_M is compact and M is torsion free L-module.

Proof. Suppose that 1_M is a *-element. Then there exist some filter $F \in F(L_*)$ such that $1_M = 0_{FM}$, where $0 \notin F$. Then as 1_M is compact and $1_M = 0_{FM} = \lor \{(0_M : x) \mid x \in F\}, 1_M = (0_M : x_1) \lor (0_M : x_2) \lor \ldots \lor (0_M : x_n)$ for some $x_1, x_2, \ldots, x_n \in F$. Consequently, as 1_M is closed,

$$1_M = 0_M : (0_M : 1_M) = 0_M : [0_M : ((0_M : x_1) \lor (0_M : x_2) \lor \dots \lor (0_M : x_n))]$$

= 0_M : [0_M : (0_M : x_1) \land 0_M : (0_M : x_2) \land \dots \land 0_M : (0_M : x_n)].

Therefore $1_M = 0_M : [0_M : (0_M : (x_1x_2...x_n)] = 0_M : (x_1x_2...x_n)$, by (*iii*) and (ν) of Theorem 1. This implies that $x_1x_2...x_n = 0$. Since $x_1, x_2, ..., x_n$ are in F. We have $0 = x_1x_2...x_n \in F$. Which is a contradiction as $0 \notin F$.

The next result we prove the characterization of a Baer element.

Theorem 17. The following statements are equivalent,

- (i) An element $A \in M$ is a Baer element.
- (ii) For any element $x, y \in L$ such that x is compact $0_M : xI_M = 0_M : yI_M$ and $xI_M \leq A$ implies $yI_M \leq A$.
- (iii) For any element $x, y \in L_*, 0_M : x = 0_M : y$ and $xI_M \leq A$ implies $yI_M \leq A$.

Proof. (i) \Rightarrow (ii)

Assume that A is a Baer element of M. Let $x, y \in L$ be such that x is compact, $xI_M \leq A$, and $0_M : xI_M = 0_M : yI_M$. Then by Theorem 1, $yI_M \leq 0_M : (0_M : yI_M) = 0_M : (0_M : xI_M) \leq A$, since A is a Baer element.

(ii) ⇒ (iii)

Obvious.

 $(iii) \Rightarrow (i)$

Assume that for any element $x, y \in L_*, 0_M : xI_M = 0_M : yI_M$ and $xI_M \leq A$ implies $yI_M \leq A$. We show that $A \in M$ is a Baer element. Let $x \in L_*$ be such that $xI_M \leq A$. We have

 $0_M : xI_M = 0_M : [0_M : (0_M : xI_M)]$. Hence by (*iii*), we have $0_M : (0_M : xI_M) \leq A$. Hence, A is a Baer element.

In the following theorem we prove the relation between Baer element of a lattice module and radical element of a multiplicative lattice.

Theorem 18. If A is Baer element of M then $A : I_M$ is a radical element.

Proof. Let A be Baer element of a lattice module M. We show that $(A : I_M) = \sqrt{(A : I_M)}$. Assume that x is compact element such that $x^n I_M \leq A$ for some positive integer n. We have $0_M : xI_M = 0_M : x^n I_M$, by (*xii*) of Theorem 1 and hence by above theorem $xI_M \leq A$ that is $x \leq (A : I_M)$. Hence $\sqrt{(A : I_M)} \leq (A : I_M)$ and we have $\sqrt{(A : I_M)} = (A : I_M)$ i.e. $(A : I_M)$ is a radical element.

Theorem 19. If A is a Baer element then every minimal prime element over A is a Baer element.

Proof. Let A be a Baer element and P be a minimal prime in M over A. Assume that $0_M : x = 0_M : z$ for some $x, z \in L$ such that x is compact and $xI_M \leq P$. There exists a compact element $y \in L$ such that $yI_M \notin P$ and $x^n yI_M \leq A \leq P$ for some positive integer n, by Theorem 14. Note that $0_M : yx = (0_M : x) : y = (0_M : x^n) : y = 0_M : x^n y = 0_M : yx^n = 0_M : yz$. As A is a Baer element. By Theorem 17, $xyI_M \leq A$ implies $yzI_M \leq A \leq P$. Hence $zI_M \leq P$ as P is prime. So again by Theorem 17, P is a Baer element.

The characterization of minimal prime element of M is proved in the next theorem.

Theorem 20. Let *L* be a lattice module and *P* be a prime element of *M*. Then *P* is a minimal prime element if and only if for $x \in L_*$, *P* contains precisely one of xI_M and $0_M : x$.

Proof. If part:

Assume that for $x \in L_*$, P contains precisely one of xI_M and $0_M : x$. First assume that P contains xI_M . But $0_M : x \notin P$. Therefore there exists a compact element y in L such that $yI_M \leq 0_M : x$ but $yI_M \notin P$. Thus $xyI_M \leq 0_M$. This shows that for each compact element x in $L, xI_M \leq P$, there exist a compact element y in L such that $yI_M \notin P$ and $xyI_M \leq 0_M$. By Theorem 6, it follows that P is a minimal prime element of M. Next assume that $0_M : x \leq P$ but $xI_M \notin P$. Let z be a compact element of L such that $zI_M \leq (0_M : x) \leq P$. But $xI_M \notin P$ and $xzI_M \leq 0_M$. Consequently, by Theorem 6 P is a minimal prime element. Thus the condition is sufficient. Only if part:

Assume that P is a minimal prime element of M. Let x be a compact element of L. Suppose if possible $xI_M \leq P$. Then by Theorem 6, there exist a compact element y in L such that $yI_M \notin P$ and $x^n yI_M = 0_M$ for some positive integer n. Consequently, $yI_M \leq 0_M : x^n = 0_M : x$. This implies that $0_M : x \notin P$. Now suppose if possible $xI_M \notin P$ and $0_M : x \notin P$. Then there exist a compact element y in L such that $yI_M \leq 0_M : x$ but $yI_M \notin P$ and $0_M : x \notin P$. Then there exist a compact element y in L such that $yI_M \leq 0_M : x$ but $yI_M \notin P$. Hence we have $xyI_M \leq 0_M$ and so $xyI_M \leq P$. But $xI_M \notin P$ and $yI_M \notin P$ which contradicts the fact that P is prime element of M. This shows that P contains precisely one of xI_M and $(0_M : x)$.

The relation between *-element of M and a minimal prime element over it is established in the next theorem.

Theorem 21. If A is a *-element of M then every minimal prime over A is a minimal prime.

Proof. Let P be a minimal prime element of M over A. We know by Theorem 8 and Theorem 18, a *-element A is a Baer element and $(A : I_M)$ is a radical element. Let $x \in L_*$ be such that $xI_M \leq P$. But P is a minimal prime over A. Then by Theorem 2 there exists $y \in L_*$ such that $yI_M \notin P$ and $x^n yI_M \leq A$ i.e. $x^n y \leq A : I_M$. So $x^n y^n \leq A : I_M$ i.e. $xy \leq \sqrt{(A : I_M)} = (A : I_M)$. By hyphothesis, xy is compact and $xyI_M \leq A = 0_{FM}$, for some filter F of L_* such that $0 \notin F$. Hence $xyI_M d = 0_M$ for some $d \in F$. We show that there is no compact element x in F such that $xI_M \leq P$. Suppose there is compact element z in L such that $zI_M \leq P$ and $z \in F$. Then by Theorem 3, $0_M : z \leq 0_F = A \leq P$. This contradict the fact that P contains precisely one of zI_M and $0_M : z$ where $z \in L_*$. Hence there is no compact element x in F such that $xI_M \leq P$. This implies that $dI_M \notin P$. As P is prime, $dI_M \notin P$ and $yI_M \notin P$ implies $ydI_M \notin P$. Thus $xydI_M = 0_M \leq P$ and $ydI_M \notin P$. Therefore by Theorem 6, P is minimal prime.

Remark 2. By Theorem 7, we infer that every minimal prime element is a *-element and it is a Baer element. Therefore by Theorem 21, if A is the meet of all minimal prime elements containing it, A is a Baer element.

Notation: For a family $\{A_{\alpha}\}$ of Baer elements of L we define,

$$\forall A_{\alpha} = \lor \{ xI_M, x \in L_* \mid 0_M : (x_1 \lor x_2 \ldots \lor x_n)I_M \leq 0_M : xI_M,$$

for some compact elements $x_j I_M \leq A_{\alpha j}$ and some j = 1, 2, ..., n.

The important property of a family of Baer elements is established in the next theorem.

Theorem 22. If $\{A_{\alpha}\}$ is a family of Baer elements of $L, \forall A_{\alpha}$ is the smallest Baer element greater than each A_{α} .

Proof. We first show that $\forall A_{\alpha}$ is a Baer element greater than each A_{α} . Let x be a compact element of L such that $xI_M \leq \forall A_{\alpha}$. Then there exist compact elements x_1, x_2, \ldots, x_n such that $0_M : (x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : xI_M$ and $x_jI_M \leq A_{\alpha j} \ j = 1, 2, \ldots, n$. Next we show that $0_M : (0_M : xI_M) \leq \forall A_{\alpha}$. Let z be compact element in L such that $zI_M \leq 0_M : (0_M : xI_M)$. Then $0_M : zI_M \geq 0_M : [0_M : (0_M : xI_M)]$. That is $0_M : xI_M \leq 0_M : zI_M$ (by Theorem 1, (x) and (xi)). Therefore $0_M : (x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : zI_M$. This implies that $zI_M \leq \forall A_{\alpha}$. Thus $0_M : (0_M : xI_M) \leq \forall A_{\alpha}$. This shows that $\forall A_{\alpha}$ is a Baer element. Let z be a compact element in L such that $zI_M \leq A_{\alpha}$ for some α . But $0_M : zI_M \leq 0_M : zI_M$. Thus $zI_M \leq \forall A_{\alpha}$. Hence each $A_{\alpha} \leq \forall A_{\alpha}$. Let B be a Baer element such that $A_{\alpha} \leq B$ for each α and let x be a compact element ($x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : xI_M$ for some compact elements $x_jI_M \leq A_{\alpha j}$, $j = 1, 2, \ldots, n$ so that $xI_M \leq \forall A_{\alpha}$. Note that B is a Baer element and the compact element ($x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : (x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : xI_M$ for some compact elements $x_jI_M \leq A_{\alpha j}$, $j = 1, 2, \ldots, n$ so that $xI_M \leq \forall A_{\alpha}$. Note that B is a Baer element and the compact element ($x_1 \lor x_2 \lor \ldots \lor x_n)I_M \leq 0_M : (x_1 \lor x_2 \lor \ldots \lor x_n)I_M] \leq B$. Again note that $0_M : (0_M : xI_M) \leq 0_M : [0_M : (x_1 \lor x_2 \lor \ldots \lor x_n)I_M]$ and $xI_M \leq 0_M : (0_M : xI_M)$. Therefore $xI_M \leq B$ and hence $\forall A_{\alpha} \leq B$. Consequently $\forall A_{\alpha}$ is the smallest Baer element greater than each A_{α} .

Theorem 23. For any proper element $A \in M$, $\forall \{0_M : (0_M : xI_M) \mid x \in L_* \text{ and } xI_M \leq A\}$ is the smallest Baer element greater than A.

Proof. First we show that $0_M : (0_M : xI_M)$ is a Baer element i.e. we show that for any $x \in L_*, xI_M \leq 0_M : (0_M : xI_M)$ implies $0_M : (0_M : xI_M) \leq 0_M : (0_M : xI_M)$ which holds obviously. Hence by Theorem 22, $B = \bigcup \{0_M : (0_M : xI_M) | x \in L_* \text{ and } xI_M \leq A\}$ is the smallest Baer element containing each $0_M : (0_M : xI_M)$ for $xI_M \leq A$. Let a compact element x in L be such that $xI_M \leq A$. Then we have $xI_M \leq 0_M : (0_M : xI_M) \leq B$. Thus $A \leq B$. Let zI_M be a Baer element in M such that $A \leq zI_M$ and let y be compact element in L such that $yI_M \leq B$. Then $0_M : (z_1 \lor z_2 \lor \ldots \lor z_n)I_M \leq 0_M : yI_M$, for some compact elements $z_iI_M \leq 0_M : (0_M : x_iI_M)$, where $i = 1, 2, \ldots, n$. Thus $0_M : x_iI_M \leq 0_M : z_iI_M$ for each i. This gives

$$\begin{aligned} 0_M : & (x_1 \lor x_2 \lor \ldots \lor x_n) I_M = 0_M : x_1 I_M \land 0_M : x_2 I_M \land \ldots 0_M : x_n I_M \\ \leqslant & 0_M : z_1 I_M \land 0_M : z_2 I_M \land \ldots \land 0_M : z_n I_M \\ = & 0_M : (z_1 \lor z_2 \lor \ldots \lor z_n) I_M \leqslant 0_M : y I_M. \end{aligned}$$

Thus if $x = x_1 \lor x_2 \lor \ldots \lor x_n$ is compact element such that $xI_M = (x_1 \lor x_2 \lor \ldots \lor x_n)I_M \le A \le zI_M$, we get $0_M : xI_M \le 0_M : yI_M$. As zI_M is a Baer element we have

$$yI_M \leq 0_M : (0_M : yI_M) \leq 0_M : (0_M : xI_M) \leq zI_M.$$

Therefore $B \leq zI_M$. This shows that $\forall \{0_M : (0_M : xI_M) \mid x \in L_* \text{ and } xI_M \leq A\}$ is the smallest Baer element greater than A.

Notation : For a family $\{A_{\alpha}\}$ of closed elements of M we define,

$$A \bigtriangledown B = \lor \{ zI_M, z \in L_* \mid 0_M : (x \lor y)I_M \leq 0_M : zI_M \}$$

for some $xI_M \leq A$ and $yI_M \leq B$ }. Then we have the following important result.

The property of closed elements is proved in the next theorem.

Theorem 24. If A and B are closed elements of $M \land \bigtriangledown B$ is the smallest closed element greater than A as well as B.

Proof. We show that $A \bigtriangledown B$ is closed greater than A as well as B. Let $C = A \bigtriangledown B$. We always have $C \leq 0_M : (0_M : C)$ where $C \in M$. Let x be compact element in L such that $xI_M \leq 0_M : (0_M : C)$. Then $0_M : C \leq 0_M : xI_M$. This implies that

$$0_M : (y \lor z)I_M \le 0_M : C \le 0_M : xI_M$$

where $y, z \in L_*$, $yI_M \leq A$ and $zI_M \leq B$. But $yI_M \leq A \bigtriangledown B$, $zI_M \leq A \bigtriangledown B$. Hence $0_M : (r \lor s)I_M \leq 0_M : yI_M$ and $0_M : (u \lor v)I_M \leq 0_M : zI_M$ where $rI_M, uI_M \leq A$ and $sI_M, vI_M \leq B$. Therefore $0_M : (r \lor s)I_M \land 0_M : (u \lor v)I_M \leq 0_M : yI_M \land 0_M : zI_M$. Consequently

$$0_M : (r \lor s \lor u \lor v)I_M \leq 0_M : (y \lor z)I_M \leq 0_M : xI_M,$$

where $(r \lor u)I_M \leq A$ and $(s \lor v)I_M \leq B$. This implies that $xI_M \leq C$. Hence $0_M : (0_M : C) \leq C$. This gives $0_M : (0_M : C) = C$ and C is closed. As $0_M ; sI_M \leq 0_M : sI_M$ for any element s in L, it follows that $A, B \leq A \bigtriangledown B$. Suppose that W is closed element such that $A, B \leq W$ and let $x \in L_*$ be such that $0_M : (u \lor v)I_M \leq 0_M : xI_M$ for some $uI_M \leq A$ and $vI_M \leq B$. Note that W is a closed element and $(u \lor v)I_M \leq W$. Hence we have $0_M : [0_M : (u \lor v)I_M] \leq 0_M : (0_M : W) = W$. Again note that $0_M : (0_M : xI_M) \leq 0_M : [0_M : (u \lor v)I_M] \leq W$ and $xI_M \leq 0_M : (0_M : xI_M)$. Therefore $xI_M \leq W$ and hence $A \bigtriangledown B \leq W$. Consequently, it proves that $A \bigtriangledown B$ is the smallest closed element greater than A as well as B.

Theorem 25. If A and B are closed elements of M then $A \bigtriangledown B = 0_M : [0_M : (A \lor B)].$

Proof. By Theorem 24, we have $A \lor B \leq A \bigtriangledown B$. Hence $0_M : [0_M : (A \lor B)] \leq A \bigtriangledown B$ as $A \bigtriangledown B$ is a closed element. Let $xI_M \leq A \bigtriangledown B, x \in L_*$. Then $0_M : (u \lor v)I_M \leq 0_M : xI_M$, for some $uI_M \leq A$ and $vI_M \leq B$. Consequently, we have

$$xI_M \leq 0_M : (0_M : xI_M) \leq 0_M : [0_M : (u \lor v)I_M] \leq 0_M : [0_M : (A \lor B)].$$

Hence $A \bigtriangledown B \leq (0_M : 0_M : (A \lor B))$. Thus $A \bigtriangledown B = 0_M : [0_M : (A \lor B)]$.

341

REFERENCES

ACKNOWLEDGEMENTS The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful. We dedicate this research article to *Prof Dr U Tekir & Prof Dr C Jayram*.

References

- [1] D.D. Anderson, C. Jayaram, and P.A. Phiri. *Baer lattices*. Acta Scientiarum Mathematicarum, Vol 59. pps 61-74. 1994.
- [2] F. Callialp and U. Tekir. *Multiplication lattice modules*, Iranian journal of science and technology, Vol A4. pps 309-313. 2011.
- [3] J. A. Johnson. *a-adic completions of Noetherian lattice modules*. Fundamenta Mathematica, Vol 66. pps. 341-371. 1970.
- [4] A. KKhouja-Al Eaman. *Maximal elements and prime elements in Lattice Modules*. Damascus University Journal for Basic Sciences, Vol 19(2). 2003.
- [5] N.K. Thakare and C.S. Manjarekar. *Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character*. Proceedings of the international symposium on Algebra and its applications, Marcel Dekker and Bessel. pps 265-276. 1984.