An Algorithm for Explicit Form of Fundamental Units of Certain Real Quadratic Fields and Period Eight

Özen Özer ${ }^{1, *}$, Ayten Pekin ${ }^{2}$
${ }^{1}$ Kırklareli University Faculty of Art and Sciences Department of Mathematics, Kırklareli, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Istanbul University, Istanbul, Turkey

Abstract

In this paper, we have given an explicit formulation to determine the form of the fundamental units of certain real quadratic number fields. This new algorithm for such quadratic fields is first in the literature and it gives us a more practical way to calculate the fundamental unit. Where, the period in the continued fraction expansion of the quadratic irrational number of the certain real quadratic fields is equal to 8 .

2010 Mathematics Subject Classifications: 11A55, 11R27
Key Words and Phrases: real quadratic field, continued fraction, fundamental unit

1. Introduction and Notation

Determination of the fundamental units of quadratic fields has a great importance at many branches in number theory. Although the fundamental units of real quadratic fields of RichautDegert type are well-known, explicit form of the fundamental units are not known very well and these determinations were very limited except for these type an K. therefore, Tomita has described explicitly the form of the fundamental units of the real quadratic fields $Q(\sqrt{d})$ such that d is a square-free positive integer congruent to 1 modulo 4 and the period k_{d} in the continued fraction expansion of the quadratic irrational number $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$ in $Q(\sqrt{d})$ is equal to 3 and 4,5 respectively in [4] and [5]. Later, explicit form of the fundamental units for all real quadratic fields $Q(\sqrt{d})$ such that the period k_{d} in the continued fraction expansion of the quadratic irrational number ω_{d} is equal to 6 , has been described in [3].

In this paper, we will deal with all real quadratic fields $Q(\sqrt{d})$ such that d is a square free positive integer congruent to 1 modulo 4 and the period k_{d} in the continued fraction expansion of the quadratic irrational number $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$ in $Q(\sqrt{d})$ is equal to 8 and describe explicitly T_{d}, U_{d} in the fundamental unit $\varepsilon_{d}=\left(\frac{T_{d}+U_{d} \sqrt{d}}{2}\right)>1$ of $Q(\sqrt{d})$ and d itself by using at most five parameters appearing in the continued fraction expansion of ω_{d}.

[^0]Let $I(d)$ be the set of all quadratic irrational numbers in $Q(\sqrt{d})$. For an element ξ of $I(d)$ if $\xi>1,-1<\xi^{\prime}<0$ then ξ is called reduced, where ξ^{\prime} is the conjugate of ξ with respect to Q. More information on reduced irrational numbers may be found in [2]. We denote by $R(d)$ the set of all reduced quadratic irrational numbers in $I(d)$. It is well known that if an element ξ of $I(d)$ is in $R(d)$ then the continued fractional expansion of ξ is purely periodic. Moreover, the denominator of its modular automorphism is equal to fundamental unit ε_{d} of $Q(\sqrt{d})$ and the norm of ε_{d} is $(-1)^{k_{d}}$ [3]. In this paper [x] means the greatest integer less than or equal to x and continued fraction with period k is generally denoted by $\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{k}}\right]$.

2. Preliminaries and Lemmas

In this section some of the important required preliminaries and lemmas are given.
Now, for any square-free positive integer d, we can put $d=a^{2}+b$ with $a, b \in Z, 0<b \leq 2 a$. Here, since $\sqrt{d}-1<a<\sqrt{d}$ the integers a and b are uniquely determined by d.

Let d be a square-free positive integer congruent to 1 modulo 4 , then we consider the following two cases:

Case 1. If a is even, then $b=4 \ell+1$ with $l \in Z, \ell \geq 0$.
Case 2. If a is odd, then $b=4 \ell$ with $l \in Z, \ell \geq 1$.
Let denote by D the set of all positive square-free integers and by $D_{t}{ }^{k}$ the set of all positive square-free integer d such that $d \equiv k(8)$ and $b \equiv t(8)$. Hence, we have $D_{t}{ }^{k}=\{d \in Z \mid d \equiv k(8), b \equiv t(8)\}$. Then, we get some remarks as follows:

Remark 1. d can be congruent to 1 or 5 modulo 8 since d is congruent to 1 modulo 4 .
In the case of $d \equiv 1(8), b$ can be congruent to 0,1 or 5 modulo 8 . Therefore, the set of all positive square-free integers congruent to 1 modulo 8 is equal $D_{0}{ }^{1} \cup D_{1}{ }^{1} \cup D_{5}{ }^{1}$. Thus the set of all positive square free integers congruent to 1 modulo 8 is the union of $D_{0}{ }^{1}, D_{1}{ }^{1}, D_{5}{ }^{1}$.

In the case of $d \equiv 5(8)$, b can be congruent to 1,4 or 5 modulo 8 . So the set of all positive square-free integers congruent to 5 modulo 8 is equal to $D_{1}^{5} \cup D_{4}^{5} \cup D_{5}{ }^{5}$.

Remark 2. Let d be a square-free positive integer congruent to 1 modulo 4, then:

- If a is even; b can only be congruent to 1 or 5 modulo 8 since $b \equiv 1(\bmod 4)$ when a is even. Then, d belongs to $D_{1}^{5} \cup D_{5}^{5} \cup D_{5}^{1} \cup D_{1}^{1}$ in the case of a is even.
- If a is odd; b can be only be congruent to 0 or 4 modulo 8 since $b \equiv 0(\bmod 4)$ when a is odd. Then, d belongs to $D_{0}{ }^{1} \cup D_{4}{ }^{5}$ in the case of a is odd.

Remark 3. The sets $D_{0}{ }^{1}, D_{1}{ }^{1}, D_{5}{ }^{1}, D_{1}{ }^{5}, D_{4}{ }^{5}$ and $D_{5}{ }^{5}$ are represented as follows:

$$
\begin{aligned}
& D_{0}^{1}=\left\{d \in D \mid d=a^{2}+8 m, a \equiv 1(\bmod 2), 0<4 m<a\right\} \\
& D_{1}^{1}=\left\{d \in D \mid d=a^{2}+8 m+1, a \equiv 0(\bmod 4), 0 \leq 4 m<a\right\} \\
& D_{5}^{1}=\left\{d \in D \mid d=a^{2}+8 m+5, a \equiv 2(\bmod 4), 0 \leq 4 m<a-2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}{ }^{5}=\left\{d \in D \mid d=a^{2}+8 m+1, a \equiv 2(\bmod 4), 0 \leq 4 m<a\right\} \\
& D_{4}^{5}=\left\{d \in D \mid d=a^{2}+8 m+4, a \equiv 1(\bmod 2), 0 \leq 4 m<a-2\right\} \\
& D_{5}^{5}=\left\{d \in D \mid d=a^{2}+8 m+5, a \equiv 0(\bmod 4), 0 \leq 4 m<a-2\right\}
\end{aligned}
$$

Now in order to prove our theorems we need the following lemmas.
Lemma 1. For a square-free positive integer $d>5$ congruent to 1 modulo 4 , we put $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$, $q_{0}=\left[\omega_{d}\right] \omega_{R}=q_{0}-1+\omega$. Then $\omega_{d} \notin R(d)$, but $\omega_{R} \in R(d)$ holds. Moreover for the period k of ω_{R}, we get $\omega_{R}=\left[\overline{2 q_{0}-1, q_{1}, \ldots, q_{k-1}}\right]$ and $\omega_{d}=\left[q_{0}, \overline{q_{1}, \ldots, q_{k-1}, 2 q_{0}-1}\right]$. Furthermore, let $\omega_{R}=\frac{\left(P_{k-1} \omega_{R}+P_{k-2}\right)}{\left(Q_{k-1} \omega_{R}+Q_{k-2}\right)}=\left[2 q_{0}-1, q_{1}, \ldots, q_{k-1}, \omega_{R}\right]$ be a modular automorphism of ω_{R}, then the fundamental unit ε_{d} of $Q(\sqrt{d})$ is given by the following formula:

$$
\varepsilon_{d}=\left(\frac{T_{d}+U_{d} \sqrt{d}}{2}\right)>1,
$$

where $T_{d}=\left(2 q_{0}-1\right) Q_{k-1}+2 Q_{k-2}, U_{d}=Q_{k-1}$, and Q_{i} is determined by $Q_{-1}=0, Q_{0}=1$, $Q_{i+1}=q_{i+1} Q_{i}+Q_{i-1},(i \geq 0)$.

Proof. See [5, Lemma 1].
Lemma 2. For a square-free positive integer d, we put $d=a^{2}+b(0<b \leq 2 a), a, b \in Z$. Moreover let $\omega_{i}=\ell_{i}+\frac{1}{\omega_{i+1}}\left(\ell_{i}=\left[\omega_{i}\right], i \geq 0\right)$ be the continued fraction expansion of $\omega=\omega_{0}$ in $R(d)$. Then each ω_{i} is expressed in the form $\omega_{i}=\frac{a-r_{i}+\sqrt{d}}{c_{i}}\left(c_{i}, r_{i} \in Z\right)$, and ℓ_{i}, c_{i}, r_{i} can be obtained from the following recurrence formula:

$$
\begin{aligned}
\omega_{0} & =\frac{a-r_{0}+\sqrt{d}}{c_{0}}, \\
2 a-r_{i} & =c_{i} \ell_{i}+r_{i+1}, \\
c_{i+1} & =c_{i-1}+\left(r_{i+1}-r_{i}\right) \ell_{i} \quad(i \geq 0), \text { where } 0 \leq r_{i+1}<c_{i}, c_{-1}=\frac{\left(b+2 a r_{0}-r_{0}^{2}\right)}{c_{0}} .
\end{aligned}
$$

Moreover for the period $k \geq 1$ of ω_{0}, we get

$$
\begin{aligned}
\ell_{i} & =\ell_{k-i} \quad(1 \leq i \leq k-1), \\
r_{i} & =r_{k-i+1}, c_{i}=c_{k-i} \quad(1 \leq i \leq k) .
\end{aligned}
$$

Proof. See [1, Proposition 1].
Lemma 3. For a square-free positive integer d congruent to 1 modulo 4 , we put $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$, $q_{0}=\left[\omega_{d}\right]$ and $\omega_{R}=q_{0}-1+\left[\omega_{d}\right]$.

If we put $\omega=\omega_{R}$ in Lemma 2., then we have the following recurrence formula:

$$
\begin{aligned}
& r_{0}=r_{1}=a-l_{0}=a-2 q_{0}+1, \\
& c_{0}=2, c_{1}=c_{-1}=\frac{\left(b+2 a r_{0}-r_{0}^{2}\right)}{c_{0}}, \\
& \ell_{0}=2 q_{0}-1, \ell_{i}=q_{i} \quad(1 \leq i \leq k-1) .
\end{aligned}
$$

Proof. It can be easily proved by using Lemma 2.

3. Theorems

Theorem 1. Let $d=a^{2}+b \equiv 1 \bmod (4)$ is a square free integer for positive integers a and b satisfying $0<b \leq 2 a$. Let the period k_{d} of the integral basis element of $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$ in $Q(\sqrt{d})$ be 8. If a is odd then,

$$
w_{d}=\left[\frac{a+1}{2}, l_{1}, l_{2}, l_{3}, \frac{s_{1}\left(C+l_{3} A\right)-2 l_{2} B-r A}{C\left(r-s_{1} l_{3}\right)+B^{2}}, l_{3}, l_{2}, l_{1}, a\right]
$$

where $(i=1,2,3,4), l_{i} \geq 1$. Then the coefficients T_{d} and U_{d} of ε_{d}

$$
\left(T_{d}, U_{d}\right)=\left(\left[\left(A r+s_{1} l_{1}\right)\left(C^{2} l_{4}+2 A C\right)+2\left(C\left(B l_{4}+\ell_{2}\right)+B\right)\right], C\left(C l_{4}+2 A\right)\right)
$$

and

$$
d=\left(A r+s_{1} l_{1}\right)^{2}+4 r l_{2}+4 s_{1}
$$

hold. Where A, B, C are determined by $A=l_{1} l_{2}+1, B=l_{2} l_{3}+1$, and $C=l_{1}+A l_{3}$, moreover r and s are uniquely determined with the equalities $a=A r+s_{1} l_{1}$ and

$$
B\left(B l_{4}+2 l_{2}\right)=s_{1}\left[C\left(1+l_{3} l_{4}\right)+A l_{3}\right]-r\left(A+C l_{4}\right)
$$

Proof. Let a be an odd integer then $d \in D_{0}^{1} \cup D_{4}^{5}$. Since $q_{0}=\omega_{d}=\frac{a+1}{2}$ then from Lemma 3 we obtain

$$
\begin{align*}
& r_{0}=r_{1}=a-2 q_{0}+1=0, \\
& c_{0}=2 \tag{1}\\
& l_{0}=a
\end{align*}
$$

and from the Lemma 2: $l_{1}=7, l_{2}=l_{6}, l_{3}=l_{5}, w_{d}=\left[\frac{a+1}{2}, \overline{l_{1}, l_{2}, l_{3}, l_{4}, l_{3}, l_{2}, l_{1}, a}\right]$ hold for $k_{d}=8$. Furthermore we have $r_{1}=r_{8}, r_{2}=r_{7}, r_{3}=r_{6}, r_{4}=r_{5}, c_{1}=c_{7}, c_{2}=c_{6}, c_{3}=c_{5}$.

Let $d \in D_{0}^{1}$, where

$$
\begin{aligned}
D_{0}^{1} & =\{d \in D \mid d \equiv 1(\bmod 8), b \equiv 0(\bmod 8)\} \\
& =\left\{d \in D \mid d=a^{2}+8 m, a \equiv 1(\bmod 2), 0<4 m<a\right\}
\end{aligned}
$$

In this case we have $b=8 m \ni m>0$. From Lemma 2, it can easily seen that $c_{1}=c_{-1}=4 m$ and $2 a=4 m l_{1}+r_{2}($ for $i=1)$.

Since $r_{2}=2 a-4 m l_{1}$ is even then there exists a positive integer r such that $r_{2}=2 r$. Therefore

$$
2 r=2 a-4 m l_{1} \Rightarrow r=a-2 m l_{1}
$$

and so r is an odd integer. From Lemma 2, we have $2 a=c_{2} l_{2}+r_{2}+r_{3}$ for $i=2$ and

$$
\begin{equation*}
2 a=\left(2+2 r l_{1}\right) \cdot l_{2}+r_{2}+r_{3} \tag{2}
\end{equation*}
$$

for $c_{2}=c_{0}=\left(r_{2}-r_{1}\right) l_{1}, c_{2}=2+2 r l_{1}$. If we put $4 m=2 r l_{2}+s$ in (1) then we obtain

$$
\begin{equation*}
4 m l_{1}=2 l_{2}\left(r l_{2}+r l_{1}+1\right)+r_{3} . \tag{3}
\end{equation*}
$$

Where $2 l_{2}+r_{3} \equiv 0\left(\bmod l_{1}\right)$ and so there exists positive integer s such that $2 l_{2}+r_{3}=s l_{1}$ then we can obtain

$$
\begin{equation*}
r_{3}=s l_{1}-2 l_{2} . \tag{4}
\end{equation*}
$$

Here if the value r_{3} is written in (3) then it is immediately seen that $4 m=2 r l_{2}+s$ and s is even. If we put $4 m=2 r l_{2}+s$ in (1) then

$$
\begin{aligned}
2 a= & \left(2 r l_{2}+s\right) l_{1}+2 r \Rightarrow 2 a=2 r l_{1} l_{2}+2 r+s l_{1} \\
& \Rightarrow 2 a=r\left(2 l_{1} l_{2}+2\right)+s l_{1} \\
& \Rightarrow 2 a=2 r\left(l_{1} l_{2}+1\right)+s l_{1}
\end{aligned}
$$

hold.
If we take $A=l_{1} \cdot l_{2}+1$ then we have $a=r A+s_{1} l_{1}$ because of $s=2 s_{1}$ is even, $s_{1}>0$, $s_{1} \in Z$. On the other hand, for $i=2$ we have

$$
\begin{aligned}
& c_{3}=c_{1}+\left(r_{3}-r_{2}\right) l_{2}=4 m+\left(r_{2}-r_{2}\right) l_{2} \\
& c_{4}=c_{2}+\left(r_{4}-r_{2}\right) l_{3}=\left(2+2 r l_{1}\right)+\left(r_{4}-r_{3}\right) l_{3} \\
& \left.c_{5}=c_{3}+\left(r_{5}-r_{4}\right) l_{4}=4 m+\left(r_{3}-r_{2}\right) l_{2}+\left(r_{5}-r_{4}\right) l_{4}\right)=c_{3}
\end{aligned}
$$

for $\left(c_{3}=c_{1}+\left(r_{3}-r_{2}\right) l_{2} \Rightarrow c_{3}=4 m+\left(r_{3}-r_{2}\right) l_{2}\right)$.
From Lemma 2: $(i=3)$,

$$
\begin{aligned}
2 a= & c_{3} l_{3}+r_{3}+r_{4}, \\
r_{3}= & 2 a-c_{3} l_{3}-r_{4} \Rightarrow r_{3}=2 a-\left(4 m+\left(r_{3}-r_{2}\right) l_{2}\right) l_{3}-r_{4} \\
& \left.\Rightarrow r_{4}=2 a-4 m l_{3}+\left(2 r-r_{3}\right) l_{2} l_{3}-r_{3}\right) \text { for } i=4 \\
2 a= & c_{4} l_{4}+r_{5}+r_{4}, \\
r_{4}= & r_{5} \Rightarrow 2 a=\left(2+2 r l_{1}\right) l_{4}+\left(r_{4}-r_{3}\right) l_{3} l_{4}+2 r_{4} \\
r_{4}= & 2 r A+2 s_{1} l_{1}-2 r l_{2} l_{3}-2 s_{1} l_{3}+2 r l_{2} l_{3}-\left(s l_{1}-2 l_{2}\right)\left(l_{2} l_{3}+1\right) \\
& \Rightarrow r_{4}=2 r A+2 s_{1} l_{1}-2 r l_{2} l_{3}-2 s_{1} l_{3}+2 r l_{2} l_{3}-s l_{1} l_{2} l_{3}-s l_{1}+2 l_{2}^{2} l_{3}+2 l_{2} \\
& \Rightarrow r_{4}=2 r A-2 r l_{2} l_{3}-2 s_{1} l_{3}+2 r l_{2} l_{3}-2 s_{1} l_{1} l_{2} l_{3}+2 l_{2}^{2} l_{3}+2 l_{2} \\
r_{4}= & 2 r l_{1} l_{2}+2 r-2 r l_{2} l_{3}-2 s_{1} l_{3}+2 r l_{2} l_{3}+2 s_{1} l_{1} l_{2} l_{3}+2 l_{2}^{2} l_{3}+2 l_{2}
\end{aligned}
$$

hold. Therefore we obtain the value r_{4}, as

$$
\begin{equation*}
r_{4}=2\left[\left(r-s_{1} l_{3}\right) A+l_{2} B\right]=\left(r-s_{1} l_{3}\right) A+l_{2} B \text { for } B=l_{2} l_{3}+1, A=l_{1} l_{2}+1 . \tag{5}
\end{equation*}
$$

Furthermore

$$
c_{4}=\left(2+r_{2} l_{1}\right)+\left(r_{4}-r_{3}\right) l_{3}=\left(2+2 r l_{1}\right)+\left[\left(2 r-s l_{3}\right) A+2 l_{2} B-s l_{1}+2 l_{2}\right] l_{3}
$$

$$
\begin{aligned}
& =\left(2+2 r l_{1}\right)+2 r A l_{3}-s l_{3}^{2} A+2 l_{2} l_{3} B-s l_{1} l_{3}+2 l_{3} \\
& =2 r C-s l_{3} C+2\left(1+l_{2} l_{3}\right)+2 l_{2} l_{3} B \\
& =C\left(2 r-s l_{3}\right)+2 B+2 B l_{2} l_{3} \\
& =C\left(2 r-s l_{3}\right)+2 B\left(1+l_{2} l_{3}\right)
\end{aligned}
$$

and so we have

$$
\begin{equation*}
c_{4}=C\left(2 r-s l_{3}\right)+2 B^{2} \quad\left(\text { for the values } A, B \text { and } C=l_{1}+A l_{3}\right) \tag{6}
\end{equation*}
$$

If the equalities $a=r A+s l_{1}, r_{4}=\left(r-s_{1} l_{3}\right) A+l_{2} B$ and $c_{4}=C\left(2 r-s l_{3}\right)+2 B^{2}$ are written in l_{4} then

$$
l_{4}=\frac{2 a-2 r_{4}}{c_{4}}=\frac{2 r A+s l_{1}-2\left(2 r-s l_{3}\right) A-4 l_{2} B}{C\left(2 r-s l_{3}\right)+2 B^{2}}
$$

holds. By taking $s=2 s_{1}$ we obtain

$$
\begin{equation*}
l_{4}=\frac{s_{1}\left(C+l_{3} A\right)-2 l_{2} B-r A}{C\left(r-s_{1} l_{3}\right)+B^{2}} \tag{7}
\end{equation*}
$$

From this equation

$$
\begin{aligned}
C\left(r-s_{1} l_{3}\right) l_{4}+B^{2} l_{4}= & s_{1}\left(C+l_{3} A\right)-2 l_{2} B-r A \\
& \Rightarrow B^{2} l_{4}+2 l_{2} B=s_{1} C+s_{1} l_{3} A-r A-r C l_{4}+s_{1} C l_{3} l_{4} \\
& \Rightarrow B^{2} l_{4}+2 l_{2} B=s_{1}\left(C+l_{3} A+C l_{3} l_{4}\right)-r A+C l_{4} \\
& \Rightarrow B^{2} l_{4}+2 l_{2} B=s_{1}\left[C\left(1+l_{3} l_{4}\right)+A l_{3}\right]-r\left(A+C l_{4}\right)
\end{aligned}
$$

hold and this proves that r and s_{1} are uniquely determined by $a=r A+s_{1} l_{1}$.
Now, let's determine the coefficients T_{d} and U_{d} of the fundamental unit $\left.\varepsilon_{d}=\left(\frac{T_{d}+U_{d} \sqrt{d}}{2}\right)>1\right)$ for $d \equiv 1(\bmod 4)$ and the period $k_{d}=8$. Since

$$
\begin{aligned}
Q_{-} 1 & =0 \\
Q_{0} & =1 \\
Q_{i+1} & =q_{i+1} Q_{i}+Q_{i-1}, \quad(i \geq 0) \\
Q_{1} & =q_{1} Q_{0}+Q_{-1} \Rightarrow Q_{1}=l_{1} 1+0 \Rightarrow Q_{1}=l_{1} \\
Q_{2} & =q_{2} Q_{1}+Q_{0} \Rightarrow Q_{2}=l_{2} l_{1}+1 \Rightarrow Q_{2}=A \\
Q_{3}= & q_{3} Q_{2}+Q_{1} \Rightarrow Q_{3}=l_{3} A+l_{1} \Rightarrow Q_{3}=C \\
Q_{4}= & q_{4} Q_{3} \Rightarrow Q_{4}=l_{4} C+A \\
Q_{5}= & q_{5} Q_{4}+Q_{3} \Rightarrow Q_{5}=l_{3}\left(l_{4} C+A\right)+C \Rightarrow Q_{5}=l_{3} l_{4} C+C+l_{3} A \\
& \Rightarrow Q_{5}=C\left(l_{3} l_{4}+1\right)+l_{3} A . \\
Q_{6}= & \ell_{2} Q_{5}+Q_{4} \Longrightarrow Q_{6}=\ell_{2}\left[C\left(\ell_{3} \ell_{4}+1\right)+\ell_{3} A\right]+\ell_{4} C+A=C \ell_{4}\left(\ell_{2} \ell_{3}+1\right)+C \ell_{2}+A\left(1+\ell_{2} \ell_{3}\right)
\end{aligned}
$$

holds, where if we take $B=\left(\ell_{2} \ell_{3}+1\right)$

$$
Q_{6}=C \ell_{4} B+C \ell_{2}+A B=C\left(\ell_{4} B+\ell_{2}\right)+A B
$$

$$
\begin{aligned}
Q_{7}= & \ell_{1} Q_{6}+Q_{5} \Longrightarrow Q_{7}=\ell_{1}\left[C\left(B \ell_{4}+\ell_{2}\right)+A B\right]+C\left(\ell_{3} \ell_{4}+1\right)+A \ell_{3} \\
& \Longrightarrow Q_{7}=C B \ell_{4} \ell_{1}+C \ell_{1} \ell_{2}+A B \ell_{1}+C \ell_{3} \ell_{4}+C+\ell_{3} A \\
& =\left(C \ell_{4}+A\right)\left(\ell_{1} \ell_{2} \ell_{3}+\ell_{1}+\ell_{3}\right)+C A \\
& =\left(C \ell_{4}+A\right)\left(A \ell_{3}+\ell_{1}\right)+C A
\end{aligned}
$$

and so we can obtain $Q_{7}=C^{2} \ell_{4}+2 A C$ for $C=\left(A \ell_{3}+\ell_{1}\right)$. Therefore we can determine that

$$
\left(T_{d}, U_{d}\right)=\left(\left[\left(A_{r}+s_{1} \ell_{1}\right)\left(C^{2} \ell_{4}+2 A C\right)+2\left(C\left(B \ell_{4}+\ell_{2}\right)+A B\right)\right], C\left(C \ell_{4}+2 A\right)\right)
$$

and $d=\left(A_{r}+s_{1} \ell_{1}\right)^{2}+4 r \ell_{2}+4 s_{1}$.
Now let $d \in D_{4}^{5}$ where,

$$
\begin{aligned}
D_{4}^{5} & =\{d \in D \mid d \equiv 5(\bmod 8), b \equiv 4(\bmod 8)\} \\
& =\left\{d \in D \mid d=a^{2}+8 m+4, a \equiv 1(\bmod 2), 0 \leq 4 m<a-2\right\}
\end{aligned}
$$

therefore $b=8 m+4$ and $m>0$ hold. Besides we have the following equations from Lemma 2:

$$
\begin{aligned}
c_{-1} & =\frac{b}{2}=4 m+2 \\
c_{1} & =c_{-1}+\left(r_{1}-r_{0}\right) \ell_{0} \Longrightarrow c_{1}=c_{-1} \Longrightarrow c_{1}=4 m+2
\end{aligned}
$$

and

$$
\begin{aligned}
2 a-r_{i} & =c_{i} \ell_{i}+r_{i+1} \Longrightarrow(i=1) \\
2 a-r_{1} & =c_{1} \ell_{1}+r_{2} \Longrightarrow 2 a=(4 m+2) \ell_{1}+r_{2} \\
r_{2} & =2 a-2(m+1) \ell_{1} \Longrightarrow r_{1}=r_{8} \\
c_{1} & =c_{7}, r_{2}=r_{7}, c_{2}=c_{6}, r_{3}=r_{6}, c_{3}=c_{5}, r_{4}=r_{5}
\end{aligned}
$$

Since r_{2} is even number then $\exists r \ni r_{2}=2 r$. And so r is defined as

$$
r= \begin{cases}\text { odd } & \ell_{1} \text { even number } \\ \text { even } & \ell_{1} \text { odd number }\end{cases}
$$

If we take $i=2$, then from Lemma 2

$$
\begin{align*}
2 a & =C 2 \ell_{2}+r_{2}+r_{3} \Longrightarrow 2 a=\left(2+2 r \ell_{1}\right) \ell_{2}+r_{2}+r_{3} \\
c_{2} & =c_{0}+\left(r_{2}-r_{1}\right) \ell_{1} \Longrightarrow c_{2}=2+2 r \ell_{1} . \tag{8}
\end{align*}
$$

By using the value $2 a=(4 m+2) \ell_{1}+r_{2}$ and (8) we can write;

$$
\begin{aligned}
(4 m+2) \ell_{1}+r_{2}= & \left(2+2 r \ell_{1}\right) \ell_{2}+r_{2}+r_{3} \\
& \Longrightarrow(4 m+2) \ell_{1}=\left(2+2 r \ell_{1}\right) \ell_{2}+r_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow(4 m+2) \ell_{1}=2 \ell_{2}+2 r \ell_{1} \ell_{2}+r_{3} \\
& \Longrightarrow 2 \ell_{2}+r_{3} \equiv 0\left(\bmod \ell_{1}\right) \\
& \Longrightarrow \exists s \in Z \ni 2 \ell_{2}+r_{3}=s \ell_{1} \\
& \Longrightarrow r_{3}=s \ell_{1}-2 \ell_{2} .
\end{aligned}
$$

For the value $r_{3}=s \ell_{1}-2 \ell_{2}$ we obtain $4 m+2=2 r \ell_{2}+s$ where $s=4 m+2-2 r \ell_{2}$ is even number and so there exists $s_{1} \in Z^{+}$such that $s=2 s_{1}$. If we write $4 m+2=2 r \ell_{2}+s$ instead of $2 a=(4 m+2) \ell_{1}+r_{2}$ then we obtain $2 a=2 r\left(\ell_{1} \ell_{2}+1\right) s \ell_{1}$ and we can write $a=r A+s_{1} \ell_{1}$ by taking $A=\ell_{1} \ell_{2}+1$. In the same way, we have

$$
\begin{aligned}
r_{4}= & 2 a-(4 m+2) \ell_{3}+\left(2 r-r_{3}\right) \ell_{2} \ell_{3}-r_{3} \\
& \Longrightarrow r_{4}=2 r A-2 r \ell_{2} \ell_{3}-2 s_{1} \ell_{3}+2 r \ell_{2} \ell_{3}-2 s_{1} \ell_{1} \ell_{2} \ell_{3}+2 \ell_{2}^{2} \ell_{3}+2 \ell_{2} \\
= & 2\left(r-s_{1} \ell_{3}\right) A+\ell_{2} B
\end{aligned}
$$

for $A=\ell_{1} \ell_{2}+1$ and $B=\ell_{2} \ell_{3}+1$. Furthermore

$$
\begin{aligned}
c_{4}= & \left(2+2 r \ell_{1}\right)+\left[\left(2 r-s \ell_{3}\right) A+2 \ell_{2} B-s \ell_{1}+2 \ell_{2}\right] \ell_{3} \\
& \Longrightarrow c_{4}=C\left(2 r-2 s_{1} \ell_{3}\right)+2\left(1+\ell_{2} \ell_{3}\right)+2 \ell_{2} \ell_{3} B \\
= & 2 C\left(r-s_{1} \ell_{3}\right)+2 B^{2}
\end{aligned}
$$

and

$$
\ell_{4}=\frac{2 a-2 r_{4}}{c_{4}}=\frac{s_{1}\left(C+\ell_{3} A\right)-2 \ell_{2} B-r A}{C\left(r-s_{1} \ell_{3}\right)+B^{2}}
$$

for $C=\ell_{1}+A \ell_{3}$ and $\left(1+\ell_{2} \ell_{3}\right)=B$. This is completed the proof of the theorem.
Example 1. Let a is odd, $d \in D_{4}^{5}$ and $d=869 \equiv 5(\bmod 8)$. Since $a=29, b=28, b=3 \cdot 8+4$, $m=3$ then we can determine that $\ell_{1}=4, \ell_{2}=5, \ell_{3}=1, c_{1}=14$ and

$$
r_{2}=2 a-(4 m+2) \ell_{1} \Longrightarrow r_{2}=58-14 \cdot 4=58-56=2 \Longrightarrow r=1
$$

$c_{2}=10$ because of ℓ_{1} is even.

$$
(4 m+2) \ell_{1}=\left(2+2 r \ell_{1}\right) \cdot \ell_{2}+r_{3} \Longrightarrow 14 \cdot 4=10 \cdot 5+r_{3} \Longrightarrow r_{3}=6, s=2 s_{1}=4
$$

Therefore we obtain $A=21, B=6, C=25$ and $r_{4}=18, c_{4}=22, \ell_{4}=1$. If it is taken above values then the coefficients of the fundamental units of $Q(\sqrt{8} 69)$ is easily determined as $T_{d}=49377, U_{d}=1675$ and so $\varepsilon_{d}=\frac{49377+1675 \sqrt{869}}{2}>1$ holds .
Theorem 2. Let $d=a^{2}+b \equiv 1 \bmod (4)$ is a square free integer for positive integers a and b satisfying $0<b \leq 2 a$. Let the period k_{d} of the integral basis element of $\omega_{d}=\left(\frac{1+\sqrt{d}}{2}\right)$ in $Q(\sqrt{d})$ be 8. If a is even then,

$$
w_{d}=\left[\frac{a}{2} ; \overline{\left.\ell, \ell_{2}, \ell_{3}, \frac{B C+A D-2 \ell_{3}}{\ell_{3}^{2}-C D}, \ell_{3}, \ell_{2}, \ell_{1}, a-1\right]}, \quad 1 \leq \ell_{i},(i=2,3)\right.
$$

and then the coefficients T_{d} and U_{d} of ε_{d}

$$
\begin{aligned}
T_{d} & =\left[(A(r+1)+B-2) \cdot C+2\left(C-\ell_{3}\right)\right]\left(C \ell_{4}+2 A\right)+2 C \ell_{2} \\
U_{d} & =C\left(C \ell_{4}+2 A\right)
\end{aligned}
$$

and

$$
d=[A(r+1)+B-1]^{2}+2[A(r+1)+B-2 s-2]-1
$$

hold. Where $A=\ell_{2}+1, B=2 s-r, C=1+A \ell_{3}=1+\ell_{3}+\ell_{2} \ell_{3}, D=B \ell_{3}-r-1, E=\ell_{3}+1$ and r and s are uniquely determined with the equations $a=A(r+1)+B-1$ and $\ell_{3}\left(\ell_{3} \ell_{4}+2\right)=B C+A D+2 C D \ell_{4}$.

Proof. Let a be even and $k_{d}=8$. If $d \equiv 1(\bmod 8)$ then $b \equiv 1(\bmod 8)$ or $b \equiv 5(\bmod 8)$ hold. Furthermore in the case when a is even, d can belong to $D_{1}^{5} \cup D_{5}^{5} \cup D_{5}^{1} \cup D_{1}^{1} . q_{0}=\left[w_{d}\right]=\frac{a}{2}$ and from Lemma 3 we can write $r_{0}=r_{1}=a-2 q_{0}+1 \Rightarrow r_{0}=r_{1}=1, c_{0}=2, \ell_{0}=a-1$ and because of $k_{d}=8$ and from Lemma 2 we have $\ell_{1}=\ell_{7}, \ell_{2}=\ell_{6}, \ell_{3}=\ell_{5}$ and $r_{1}=r_{8}, r_{2}=r_{7}$, $r_{3}=r_{6}, r_{4}=r_{5}$ and $c_{1}=c_{7}, c_{2}=c_{6}, c_{3}=c_{5}$.

We first assume that d is in $D_{1}^{1} \cup D_{1}^{5}$. Then we get $b \equiv 1(\bmod 8)$ and so $\exists m \in \mathbb{Z}^{+} \ni b=8 m+1$ holds. From Lemma ??? $c_{-1}=\frac{(8 m+1+2 a-1)}{2} \Rightarrow c_{-1}=4 m+a$ and $c_{1}=c_{-1}+\left(r_{1}-r_{0}\right) \ell_{0} \Rightarrow c_{1}=4 m+a$ hold.

By taking equation $2 a-r_{i}=c_{i} \ell_{i}+r_{i+1}$ in Lemma 2 for $i=1$, we obtain

$$
\begin{aligned}
2 a-r_{1}= & c_{1} \ell_{1}+r_{2} \Rightarrow\left(r_{1}=1 \text { and } c_{1}=4 m+a\right) \\
& \Rightarrow 2 a-1=(4 m+a) \ell_{1}+r_{2} \\
& \Rightarrow 2 a-1=4 m \ell_{1}+a \ell_{1}+r_{2} \\
& \Rightarrow\left(2-\ell_{1}\right) a=4 m \ell_{1}+r_{2}+1>0 \\
& \Rightarrow 2-\ell_{1}>0 \\
& \Rightarrow \ell_{1}<2 \text { and } \ell_{1} \geq 1 \\
& \Rightarrow \ell_{1}=1
\end{aligned}
$$

and so we have

$$
w_{d}=\left[\frac{a}{2} ; \overline{1, \ell_{2}, \ell_{3}, \ell_{4}, \ell_{3}, \ell_{2}, 1, a-1}\right] .
$$

Since $\ell_{1}=1$ then $a=4 m+1+r_{2}$ and if $r_{2}=a-4 m-1$ then $a, 4 m$ are even and $r_{2} \geq 1$ is odd and so there exists $r \geq 0$ such that $r_{2}=2 r+1$ and we can obtain $r_{2}<a$.

If we use $c_{i+1}=c_{i-1}+\left(r_{i+1}-r_{i}\right) \ell_{i}$ for $i \geq 0$ then we obtain

$$
c_{2}=c_{0}+\left(r_{2}-r_{1}\right) \ell_{1}=2+\left(r_{2}-1\right) 1=2 r+2 .
$$

Furthermore we have obtain the following equalities from Lemma $2 c_{2}=2 r+2$,

$$
2 a=c_{2} \ell_{2}+r_{2}+r_{3} \Rightarrow 2 a=(2 r+2) \ell_{2}+2 r+1+r_{3}
$$

and by taking $a=4 m+1+r_{2}$ and $a=4 m+2 r+2$ we have

$$
8 m+4 r+4=(2 r+2) \ell_{2}+2 r+1+r_{3}=(2 r+2) \ell_{2}+r_{3}-2 r-3 .
$$

Since a is even then

$$
\begin{aligned}
2 a= & (2 r+2) \ell_{2}+(2 r+1)+r_{3} \equiv 0(\bmod 4) \\
& \Rightarrow r_{3}+2 r+1 \equiv 0(\bmod 4) \text { and } \ell_{2} \equiv 0(\bmod 2) \\
& \Rightarrow \exists s \in \mathbb{Z}^{+} \quad \ni r_{3}+2 r+1=4 s, \quad r_{3} \geq 0 \\
& \Rightarrow 4 s-2 r-1 \geq 0 \\
& \Rightarrow 4 s>2 r+1
\end{aligned}
$$

hold, where $r_{3}=4 s-2 r-1$ is odd number because of $4 s$ is even and $2 r+1$ is odd.
From Lemma 2. we have

$$
\begin{aligned}
c_{3} & =c_{1}+\left(r_{3}-r_{2}\right) \ell_{2}=4 m+a+(4 s-2 r-1-2 r-1) \ell_{2} \\
& =a-2 r-2+a+(4 s-4 r-2) \ell_{2} \\
& =2 a-2 r-2+(4 s-4 r-2) \ell_{2}
\end{aligned}
$$

and if the value $2 a$ is written instead of c_{3} then c_{3} is obtained as

$$
\begin{align*}
c_{3} & =(2 r+2) \ell_{2}+4 s-2 r-2+4 s \ell_{2}-4 r \ell_{2}-2 \ell_{2} \\
& =(4 s-2 r)\left(\ell_{2}+1\right)-2 \tag{9}
\end{align*}
$$

By using the values $c_{3}, A=\ell_{2}+1$ and $B=2 s-r$ we have

$$
\begin{align*}
2 a & =(2 r+2) \ell_{2}+r_{3}+2 r+1=(2 r+2) \ell_{2}+4 s-2 r-1+2 r+1 \\
& =2\left[(r+1) \ell_{2}+2 s\right] \\
a & =(r+1) \ell_{2}+2 s \tag{10}
\end{align*}
$$

and $2 a=c_{3} \ell_{3}+r_{3}+r_{4}$ ise $r_{4}=2 a-c_{3} \ell_{3}-r_{3}$

$$
\begin{align*}
r_{4} & =2\left[(r+1) \ell_{2}+2 s\right]-\left[(4 s-2 r)\left(\ell_{2}+1\right)-2\right] \ell_{3}-(4 s-2 r-1) \\
& =2(r+1) \ell_{2}+4 s-\left[(4 s-2 r)\left(\ell_{2}+1\right)-2\right] \ell_{3}-4 s+2 r+1 \\
& =2(r+1) \ell_{2}+2 r+1+\left[(4 s-2 r)\left(\ell_{2}+1\right)-2\right] \ell_{3} \tag{11}
\end{align*}
$$

hold from Lemma 2. Moreover we have

$$
\begin{equation*}
a=(r+1) \ell_{2}+2 s=A(r+1)+B-1 \tag{12}
\end{equation*}
$$

for $A=\ell_{2}+1, B=2 s-r$ and

$$
\begin{aligned}
r_{3}= & 4 s-2 r-1 \Rightarrow r_{3}=2 B-1 \\
r_{4}= & 2 a-c_{3} \ell_{3}-r_{3} \Rightarrow r_{4}=2 a-2(B A-1) \ell_{3}-2 B+1 \\
& \Rightarrow r_{4}=2 r \ell_{2}+\ell_{2}-2 B C+2 \ell_{3}+4 s+A
\end{aligned}
$$

If $C=1+A \ell_{3}=1+\ell_{3}+\ell_{2} \ell_{3}, B=2 s-r$,

$$
4 s=2 B+2 r \Rightarrow r_{4}=2 r \ell_{2}+\ell_{2}-2 B C+2 \ell_{3}+2 B+2 r+A
$$

$$
\Rightarrow r_{4}=2 r A+2 A-2 B C+2 B+2 \ell_{3}-1
$$

hold. For $\ell_{1}=1, c_{3}=2 B A-2=2(B A-1)$. If we take $c_{4}=(2 r+2)+\left(2 r A+2 A-2 B C+2 \ell_{3}\right) \ell_{3}$ then

$$
c_{4}=2 r+2+2 r A \ell_{3}+2 A \ell_{3}-2 B C \ell_{3}+2 \ell_{3}^{2} \Rightarrow c_{4}=2 C\left[r+1-B \ell_{3}\right]+2 \ell_{3}^{2}
$$

hold. Where if we take $r+1-B \ell_{3}=-D$ then we obtain $c_{4}=2 \ell_{3}^{2}-2 C D=2\left(\ell_{3}^{2}-C D\right)$ and $r_{4}=2 r A+2 A-2 B C+2 B+2 \ell_{3}-1$ for $A=\ell_{2}+1, B=2 s+r, C=A \ell_{3}+1$. Finally r_{4} is determined as $r_{4}=2 r A+2 A-2 B-2 A B \ell_{3}+2 B+2 \ell_{3}-1=2 \ell_{3}-2 A\left(B \ell_{3}-r-1\right)-1=2 E-2 A D-3$ for the values $D=B \ell_{3}-r-1$ and $E=\ell_{3}+1$. On the other hand we can write

$$
\begin{aligned}
a-r_{4} & =(r+1) \ell_{2}+2 s-2 E+2 A D+3 \\
& =(r+1) \ell_{2}+B+r-2 E+2 A D+3=r\left(\ell_{2}+1\right)+\ell_{2}+B-2 E+2 A D+3 \\
& =B-2 E+A B \ell_{3}+A\left(B \ell_{3}-r-1\right)+2
\end{aligned}
$$

where $D=B \ell_{3}-r-1$,

$$
\begin{aligned}
a-r_{4}= & B-2 E+A B \ell_{3}+A D+2=B+A B \ell_{3}+A D+2-2 \ell_{3}-2 \\
= & B+A B \ell_{3}+A D-2 \ell_{3} \\
= & B\left(1+A \ell_{3}\right)+A D-2 \ell_{3}=B C+A D-2 \ell_{3} \\
& \Rightarrow a-r_{4}=B C+A D-2 \ell_{3}
\end{aligned}
$$

holds and so we have l_{4} as $\ell_{4}=\frac{2\left(a-r_{4}\right)}{c_{4}}=\frac{2\left(B C+A D-2 \ell_{3}\right)}{2\left(\ell_{3}^{2}-C D\right)}=\frac{B C+A D-2 \ell_{3}}{\ell_{3}^{2}-C D} \Rightarrow \ell_{4}=\frac{B C+A D-2 \ell_{3}}{\ell_{3}^{2}-C D}$. Besides s and r are uniquely determined by $\ell_{3}^{2} \ell_{4}+2 \ell_{3}=B C+A D+2 C D \ell_{4}$ and (9).

Now, let's determine the coefficients T_{d} and U_{d} of the fundamental unit ε_{d}. Since $d \equiv 1(\bmod 4)$ then we know that $w_{d}=\left[q_{0} ; \overline{q_{1}, \ldots, q_{k-1}, 2 q_{0}-1}\right]$ and $\varepsilon_{d}=\left(\frac{T_{d}+U_{d} \sqrt{d}}{2}\right)>1$. Furthermore

$$
\begin{aligned}
Q_{-1} & =0 \\
Q_{0} & =1 \\
Q_{i+1} & =q_{i+1} Q_{i}+Q_{i-1} \quad(i \geq 0) \\
Q_{1} & =q_{1} Q_{0}+Q_{-1} \Rightarrow Q_{1}=\ell_{1}, \quad \ell_{1}=1 \Rightarrow Q_{1}=1 \\
Q_{2} & =q_{2} Q_{1}+Q_{0} \Rightarrow Q_{2}=\ell_{2} \cdot 1+1, \quad\left(A=\ell_{2}+1\right) \Rightarrow Q_{2}=A \\
Q_{3} & =q_{3} Q_{2}+Q_{1} \Rightarrow Q_{3}=\ell_{3} A+1, \quad\left(C=\ell_{3} A+1\right) \Rightarrow Q_{3}=C \\
Q_{4} & =q_{4} Q_{3}+Q_{2} \Rightarrow Q_{4}=\ell_{4} C+A \\
Q_{5} & =q_{5} Q_{4}+Q_{3} \Rightarrow Q_{5}=\ell_{3}\left(\ell_{4} C+A\right)+C \Rightarrow Q_{5}=C\left(\ell_{3} \ell_{4}+1\right)+\ell_{3} A \\
Q_{6} & =q_{6} Q_{5}+Q_{4}=\ell_{2}\left[C\left(\ell_{3} \ell_{4}+1\right)+\ell_{3} A\right]+\ell_{4} C+A=C\left[\ell_{4}\left(\ell_{2} \ell_{3}+1\right)+\ell_{2}\right]+A\left(1+\ell_{2} \ell_{3}\right) \\
& =C\left[((A-1)(E-1)+1) \ell_{4}+\ell_{2}\right]+A[(A-1)(E-1)+1] \text { for }\left(\left(1+\ell_{2} \ell_{3}\right)=(A-1)(E-1)+1\right. \text { or } \\
Q_{6} & =\left(C-\ell_{3}\right)\left(C \ell_{4}+A\right)+C \ell_{2} \\
Q_{7} & =\ell_{1} Q_{6}+Q_{5}=1 Q_{6}+Q_{5}=\left(C-\ell_{3}\right)\left(C \ell_{4}+A\right)+C \ell_{2}+\left(C \ell_{4}+A\right) \ell_{3}+C=C\left[C \ell_{4}+2 A\right]
\end{aligned}
$$

and so we obtain that

$$
\begin{aligned}
T_{d} & =(A(r+1)+B-2) C\left(C \ell_{4}+2 A\right)+2\left(C-\ell_{3}\right)\left(C \ell_{4}+A\right)+2 C \ell_{2}, \\
U_{d} & =C\left(C \ell_{4}+2 A\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d & =a^{2}+b=[A(r+1)+B-1]^{2}+2 A(r+1)+2 B-4 s-5 \\
& =[A(r+1)+B-1]^{2}+2[A(r+1)+B-2 s-2]-1 .
\end{aligned}
$$

Now let $d \in D_{5}^{1} \cup D_{5}^{5}$ then $b \equiv 5(\bmod 8)$ and $\exists m \in \mathbb{Z}^{+} \ni b=8 m+5$. From Lemma 2 we can obtain the following equalities:

$$
\begin{aligned}
c_{-1}= & \frac{(8 m+5+2 a-1)}{2} \Rightarrow c_{-1}=4 m+4+a \\
c_{1}= & c_{-1}+\left(r_{1}-r_{0}\right) \ell_{0} \quad\left(r_{1}-r_{0}=0\right) \Rightarrow c_{1}=4 m+4+a \\
2 a-r_{1}= & c_{1} \ell_{1}+r_{2} \Rightarrow\left(r_{1}=1, \quad c_{1}=4 m+4+a\right) \\
& \Rightarrow 2 a-1=(4 m+4+a) \cdot \ell_{1}+r_{2} \\
& \Rightarrow\left(2-\ell_{1}\right) a=4 m \ell_{1}+4 \ell_{1}+r_{2}+1>0 \\
& \Rightarrow 2-\ell_{1}>0, \quad \ell_{1} \geq 1 \\
& \Rightarrow \ell_{1}=1
\end{aligned}
$$

and then we get $a=4(m+1)+r_{2}+1$

$$
r_{2}=a-4(m+1)-1 \Rightarrow r_{2} \text { is an odd integer }
$$

so $r_{2}<a$ holds and $\exists r \geq 0, r \in \mathbb{Z} \ni r_{2}=2 r+1$. For $i \geq 0$ we have

$$
c_{2}=c_{0}+\left(r_{2}-r_{1}\right) \ell_{1}=2+\left(r_{2}-1\right) 1=2 r+2
$$

from relation $c_{i+1}=c_{i-1}+\left(r_{i+1}-r_{i}\right) \ell_{i}$ and $2 a=c_{2} \ell_{2}+r_{2}+r_{3} .2 a=(2 r+2) \ell_{2}+2 r+1+r_{3}$ and

$$
\begin{aligned}
a= & 4(m+1)+1+r_{2} \Rightarrow a=4 m+2 r+6 \\
& \Rightarrow 2(4 m+2 r+6)=(2 r+2) \ell_{2}+2 r+1+r_{3} \\
& \Rightarrow 2 a=(2 r+2) \ell_{2}+r_{3}+2 r+1 \equiv 0(\bmod 4) \\
& \Rightarrow r_{3}+2 r+1 \equiv 0(\bmod 4) \text { and } \ell_{2} \equiv 0(\bmod 2) \\
& \Rightarrow \exists s \in \mathbb{Z}^{+} \ni r_{3}+2 r+1=4 s, \quad r_{3} \geq 0 \\
& \Rightarrow 4 s-2 r-1 \geq 0,
\end{aligned}
$$

therefore

$$
\begin{equation*}
r_{3}=4 s-2 r-1 \text { is odd. } \tag{13}
\end{equation*}
$$

From lemma 2 we know that $c_{3}=c_{1}+\left(r_{3}-r_{2}\right) \ell_{2}=4 m+4+a+(4 s-2 r-1-2 r-1) \ell_{2}$ then we obtain

$$
\begin{aligned}
c_{3} & =a-2 r-2+a+(4 s-4 r-2) \ell_{2} \Rightarrow c_{3}=2 a-2 r-2+(4 s-4 r-2) \ell_{2} \\
& =(2 r+2) \ell_{2}+4 s-2 r-2+\left(4 s \ell_{2}-4 r-2\right) \ell_{2} \\
& =(4 s-2 r)\left(\ell_{2}+1\right)-2
\end{aligned}
$$

hold for $a=4 m+r_{2}+5 \Rightarrow 4 m+4=a-r_{2}-1=a-2 r-2$.
If we take the values $A=\ell_{2}+1$ and $B=2 s-r$ then

$$
2 a=(2 r+2) \ell_{2}+r_{3}+2 r+1=(2 r+2) \ell_{2}+4 s-2 r-1+2 r+1=2\left[(r+1) \ell_{2}+2 s\right]
$$

and $a=(r+1) \ell_{2}+2 s$. If $2 a=c_{3} \ell_{3}+r_{3}+r_{4}$ then

$$
\begin{align*}
r_{4}= & 2 a-c_{3} \ell_{3}-r_{3} \\
& \Rightarrow r_{4}=2\left[(r+1) \ell_{2}+2 s\right]-\left[(4 s-2 r)\left(\ell_{2}+1\right)-2\right] \ell_{3}-(4 s-2 r-1) \\
r_{4}= & 2(r+1) \ell_{2}+2 r+1+\left[(4 s-2 r)\left(\ell_{2}+1\right)-2\right] \ell_{3} \tag{14}
\end{align*}
$$

If $a=(r+1) \ell_{2}+2 s, A=\ell_{2}+1, B=2 s-r$ then

$$
a=r \ell_{2}+\ell_{2}+2 s=r \ell_{2}+\ell_{2}+2 s+r-r=r\left(\ell_{2}+1\right)+\ell_{2}+(2 s-r)=A r+A-1+B
$$

and so

$$
\begin{equation*}
a=A(r+1)+B-1 \tag{15}
\end{equation*}
$$

holds. Since $A=\ell_{2}+1$, and $B=2 s-r$ then

$$
\begin{aligned}
c_{3}= & 2 B A-2=2(B A-1) \\
r_{3}= & 4 s-2 r-1 \Rightarrow r_{3}=2 B-1 \\
r_{4}= & 2 a-c_{3} \ell_{3}-r_{3} \Rightarrow r_{4}=2 a-2(B A-1) \ell_{3}-2 B+1 \\
& \Rightarrow r_{4}=2 r \ell_{2}+\ell_{2}-2 B\left(1+A \ell_{3}\right)+2 \ell_{3}+4 s+A
\end{aligned}
$$

and if we take $C=1+A \ell_{3}=1+\ell_{3}+\ell_{2} \ell_{3}, D=B \ell_{3}-r-1$ and $E=\ell_{3}+1$ then we obtain

$$
\begin{aligned}
& r_{4}=2 r \ell_{2}+\ell_{2}-2 B C+2 \ell_{3}+2 B+2 r+A=2 \ell_{3}-2 A\left(B \ell_{3}-r-1\right)-1 \\
& =2\left(\ell_{3}+1\right)-2 A D-3 \\
& \quad \Rightarrow r_{4}=2\left(\ell_{3}+1\right)-2 A D-3 \\
& \quad \Rightarrow r_{4}=2 E-2 A D-3
\end{aligned}
$$

At the same way we can determine c_{4} as

$$
\begin{aligned}
c_{4} & =(2 r+2)+\left(2 r A+2 A-2 B C+2 \ell_{3}\right) \ell_{3}=2 r\left(1+A \ell_{3}\right)+2\left(1+A \ell_{3}\right)-2 B C \ell_{3}+2 \ell_{3}^{2} \\
& =-2 C\left(B \ell_{3}-r-1\right)+2 \ell_{3}^{2}=2\left(\ell_{3}^{2}-C D\right)
\end{aligned}
$$

We know that $\ell_{4}=\frac{2\left(a-r_{4}\right)}{c_{4}}$ from Lemma ??? then we can determine the value of $a-r_{4}$ in the following:

$$
\begin{aligned}
a-r_{4}= & (r+1) \ell_{2}+B+r-2 E+2 A D+3 \\
& \Rightarrow a-r_{4}=B-2 E+A B \ell_{3}+A\left(B \ell_{3}-r-1\right)+2 \\
& \Rightarrow a-r_{4}=B\left(1+A \ell_{3}\right)+A D-2 \ell_{3} \\
& \Rightarrow a-r_{4}=B C+A D-2 \ell_{3} .
\end{aligned}
$$

Moreover we can easily seen that $\ell_{4}=\frac{2\left(a-r_{4}\right)}{c_{4}}=\frac{2\left(B C+A D-2 \ell_{3}\right)}{2\left(\ell_{3}^{2}-C D\right)}=\frac{B C+A D-2 \ell_{3}}{\ell_{3}^{2}-C D}=\frac{B C+A D-2 \ell_{3}}{\ell_{3}^{2}-C D}$ and s and r are uniquely determined from the relations $a=A(r+1)+B-1$ and $\ell_{3}^{2} \ell_{4}+2 \ell_{3}=B C+A D+2 C D \ell_{4}$.

Example 2. Let a is even, $d \equiv 1(\bmod 4)$. If we choose $D=501 \equiv 5(\bmod 8)$ then we can practically determine that $a=22, b=17 \equiv 1(\bmod 8), 17=8 m+1 \Rightarrow m=2$, $c_{1}=4 m+a \Rightarrow c_{1}=8+22 \Rightarrow c_{1}=30, \ell_{1}=1, \ell_{2}=2, \ell_{3}=4$, $a=4 m+1+r_{2} \Rightarrow 22=9+r_{2} \Rightarrow r_{2}=13, r_{2}=2 r+1=13 \Rightarrow r=6, c_{2}=2 r+2 \Rightarrow c_{2}=14$, $2 a=c_{2} \ell_{2}+r_{2}+r_{3} \Rightarrow r_{3}=44-28-13=3, r_{3}+2 r+1=4 s \Rightarrow 3+13=4 s \Rightarrow s=4$, $c_{3}=(4 s-2 r)\left(\ell_{2}+1\right)=2 \Rightarrow c_{3}=4 \cdot 3-2=10, r_{4}=2 a-c_{3} \ell_{3}-r_{3} \Rightarrow r_{4}=44-40-3=1$, $A=\ell_{2}+1 \Rightarrow A=3, B=2 s-r \Rightarrow B=2, C=1+A \ell_{3}=1+\ell_{2}+\ell_{2} \ell_{3} \Rightarrow C=13$, $D=-r+B \ell_{3}-1 \Rightarrow D=1, E=\ell_{3}+1 \Rightarrow E=5, r_{4}=1, a=22, c_{4}=6 \Rightarrow \ell_{4}=7$. Therefore the fundamental unit of $Q(\sqrt{5} 01)$ is obtained as $\varepsilon_{d}=\frac{28225+1261 \sqrt{501}}{2}$ for $T_{d}=28225, U_{d}=1261$.

ACKNOWLEDGEMENTS This work was supported by the research scientific project of Kırklareli University with the number KLUBAP-044.

References

[1] T. Azuhata. On the fundamental Unit and the class numbers of real quadratic fields, Nagoya Math. J., 95: 125-135, 1984.
[2] R.A Mollin. Quadratics, CRC Press Boka Raton FL., 1995.
[3] A. Pekin and H. İscan. Continued Fractions of Period Six and Explicit Representations of Fundamental Units of Some Real Quadratic Fields, Journal of the Indian Mathematical Society 72: 184-194, 2005.
[4] K. Tomita. Explicit representation of fundamental units of some quadratic fields, I. Proc. Japan Acad. Ser. A Math. Sci., 71: 41-43, 1995.
[5] Y. Yamamoto. Real quadratic number fields with large fundamental units . Osaka J. Math., 8: 261-270, 1971.

[^0]: *Corresponding author.
 Email addresses: ozenozer@klu.edu.tr (Ö. Özer), aypekin@istanbul.edu.tr (A. Pekin)

