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D-Sets Generated by a Subset of a Group
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Abstract. A subset D of a group G is a D -set if every element of G, not in D, has its inverse in D. Let

A be a non-empty subset of G. A smallest D -set of G that contains A is called a D -set generated by A,

denoted by 〈A〉. Note that 〈A〉 may not be unique. This paper characterized sets A with unique 〈A〉 and

sets whose number of generated D -sets is equal to the index minimum.
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1. Introduction

Let G be a group. A subset D of G is called a D -set if for every x ∈ G\D, x−1 ∈ D. A

smallest D -set in G is called a minimum D -set. The number of minimum D -sets of G is called

the index minimum of G. Please refer to [3] for the concepts that are not defined in this paper.

In [1], we proved that if x2 = e, then x is an element of any D -set. Thus, if

S =
�

s ∈ G : s2 = e
	

, then S ⊆ D for all D -set D.

It is mention in [2] that the relation ∼ defined on G\S given by x ∼ y if and only if x = y

or x−1 = y is an equivalence relation, and the equivalence class containing x is {x , x−1}. Thus,

G\S = {a1, a−1
1
}∪{a2, a−1

2
}∪· · ·∪{ac , a−1

c }. If ai 6= a j for i 6= j, then we call the given partition

a canonical partition of G\S, and c is called the C -number of G. Clearly, c = |G\S|/2.

Remark 1. Let G be a finite group and D be a D -set of G. Then D = S ∪ {x1, x2, . . . , xc}, where

x i ∈ {ai , a−1
i
} for i = 1,2, . . . , c and G\S = {a1, a−1

1
} ∪ {a2, a−1

2
} ∪ · · · ∪ {ac , a−1

c } is a canonical

partition, if and only if D is a minimum D -set.

To see this, assume that D = S∪{x1, x2, . . . , xc}, where x i ∈ {ai , a−1
i
} for i = 1,2, . . . , c and

G\S = {a1, a−1
1
} ∪ {a2, a−1

2
} ∪ · · · ∪ {ac , a−1

c } is a canonical partition, and D is not a minimum

D -set. Let D′ be a minimum D -set. Then
�

�D′
�

� < |D|. Let x ∈ D\D′. Since the elements of
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S must be in D′, x = x i for some i ∈ {1,2, . . . , c}. Since D′ is a D -set, x−1
i
∈ D′. Hence,

x i , x−1
i
∈ D. This is a contradiction.

Conversely, assume that D is a minimum D -set and D 6= S ∪ {x1, x2, . . . , xc}, where

x i ∈ {ai , a−1
i
} for i = 1,2, . . . , c and G\S = {a1, a−1

1
} ∪ {a2, a−1

2
} ∪ · · · ∪ {ac , a−1

c } is a canonical

partition. Since the elements of S must be in D and D 6= S ∪ {x1, x2, . . . , xc}, where

x i ∈ {ai , a−1
i
} for i = 1,2, . . . , c and G\S = {a1, a−1

1
} ∪ {a2, a−1

2
} ∪ · · · ∪ {ac , a−1

c } is a canonical

partition, there exist x ∈ G\S such that {x , x−1} ∈ D (since one of x and x−1 must be in D).

If {x , x−1} ∈ D, then D\{x} is a D -set smaller than D. This is a contradiction.

The following results are found in [2]. They will be used in the succeeding sections.

Theorem 1. Let G be a finite group. If c is the C -number of G, then i (G) = 2c .

Theorem 2. Let G be a finite group and T be the family of all of its D -sets. If c is the C -number

of G, then |T |= 3c .

Theorem 2 says that if A⊆ G, then i (A)≤ 3c .

2. D -Sets Generated by a Subset

All groups considered here are finite groups. Let G be a group and A be a non-empty subset

of G. A smallest D -set of G that contains A is called a D -set generated by A, denoted by 〈A〉.
For example, consider the additive group Z6 = {0,1,2,3,4,5}. Note that SZ6

= {0,3},
and {{1,5}, {2,4}} is a canonical partition of Z6. Thus, the C -number of Z6 is 2. Hence by

Theorem 2, |T |= 32 = 9. The elements of T would be

D1 = {0,3,1,5,2,4}

D2 = {0,3,1,2,5}

D3 = {0,3,1,4,5}

D4 = {0,3,1,2,4}

D5 = {0,3,2,4,5}

D6 = {0,3,1,2}

D7 = {0,3,1,4}

D8 = {0,3,2,5}

D9 = {0,3,4,5} .

Observe that A= {1,4} is a subset of D1, D3, D4, and D7 and the smallest set among these

is D7. Thus, 〈1,4〉= D7 = {0,3,1,4}.
Note that 〈A〉 may not be unique. To see this, let B = {0,3}. Then D6 and D9 are the

smallest D -sets of G containing {0,3}. Hence, 〈0,3〉 = D6 or D9. We denote by i (A) the

number of distinct D -sets of G generated by A.

Remark 2. For any nonempty subset A of a finite group G, 〈A〉 always exist since G is itself a

D -set. Hence, i (A)> 0.
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Remark 3. Let G be a group and D be a minimum D -set of G. If x ∈ D\S, then x−1 /∈ D.

To see this, suppose that x ∈ D\S and x−1 ∈ D. Then D\{x} is a D -set smaller than D.

This is a contradiction.

Theorem 3. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

and A⊆ G. Then A⊆ S if and only if

A⊆ D for all minimum D -set D of G.

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

and A⊆ G. In [2], S ⊆ D for all D -set D

of G. So, if A⊆ S, then A⊆ D for all D -set D of G. In particular, A⊆ D for all minimum D -set

D of G.

Conversely, assume that A⊆ D for all minimum D -set D of G and A 6⊆ S. Let x ∈ A\S and

D be a minimum D -set containing A. Since A⊆ D and x ∈ A\S, x ∈ D\S. Hence by Remark 3,

x−1 /∈ D. Note that D1 = D\{x} ∪ {x−1} is a minimum D -set that do not contain A. This is a

contradiction.

Corollary 1. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

. If A⊆ S, then i (A) = 2c .

Proof. This follows from Theorem 3 and Theorem 1.

The next result characterizes sets A with unique generated D -set.

Theorem 4. Let G be a finite group and A⊆ G. Then, i (A) = 1 if and only if A⊆ D and A⊇ (D\S)
for some D -set D of G.

Proof. Let G be a finite group and A ⊆ G. Suppose that i (A) = 1, and, A 6⊆ D or A (D\S)
for all D -set D of G. If A 6⊆ D for all D -set D of G, then i (A) = 0. This is a contradiction (by

Remark 2). So we assume that A ⊆ D. Let D1 be a smallest D -set containing A. If A (D\S)
for all D -set D of G, then A∪ S is not a D -set, that A∪ S is properly contained in D1. Let

x ∈ D1\(A ∪ S). Then D1\{x} ∪ {x
−1} is a D -set containing A with

�

�D1

�

� ≤ |D|. This is a

contradiction.

Conversely, assume that A ⊆ D, A ⊇ (D\S) for some D -set D of G, and i (A) > 1. If A ⊆ D

and A ⊇ (D\S) for some D -set D of G, then D = A ∪ S is a smallest D -set containing A.

Since i (A) > 1, let D1 be another smallest D -set containing A. Since A ⊇ (D\S), D1 ⊇ (D\S).
If D 6= D1 and D1 ⊇ (D\S), D is a proper subset of D1 (since D1 must contain S). Hence

|D| 6=
�

�D1

�

�. This is a contradiction.

Theorem 5. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and A ⊆ G. If x i 6= x−1
j

for all

x i , x j ∈ A\S, then A is a subset of a minimum D -set. Hence, i (A)≤ 2c .

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and A ⊆ G. From Remark 1, if D is a

minimum D -set, then D = S ∪
�

a1, a2, . . . , ac

	

where ai ∈
�

x i , x−1
i

	

for i = 1,2, . . . , c where
�

{x i , x−1
i
} : i = 1,2, . . . , c

	

is a partition of G\S in the sense of Remark 1. Thus, if x i 6= x−1
j

for

all x i , x j ∈ A\S, Then A is a subset of a minimum D -set.

We recall the disjoint union of sets. Let X and Y be sets. The disjoint union of X and Y ,

denoted by X ∪̇ Y , is found by combining the elements of X and Y , treating all elements to be

distinct. Thus,
�

�X ∪̇ Y
�

�= |X |+ |Y |.
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Theorem 6. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, Q =
�

x ∈ A\S : x−1 ∈ A
	

, and A⊆ G.

Then i (A) = 2c−n, where n= |A| − |A∩ S| − |Q|2 .

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, Q = {x ∈ A\S : x−1 ∈ A} and A ⊆ G.

Consider P = A\ (S ∪Q). Note that if x ∈ P, then x−1 ∈ G\A. Thus,

A=(A∩ S) ∪̇Q ∪̇ P

=(A∩ S) ∪̇
�

x1, x−1
1 , x2, x−1

2 , . . . , xk, x−1
k

	

∪̇
�

xk+1, xk+2, . . . , xn

	

.
(1)

It can be shown that if D is a smallest D -set containing A, then D is of the form

D =S ∪̇Q ∪̇ P ∪̇
�

xn+1, xn+2, . . . , xc

	

=S ∪̇
�

x1, x−1
1 , x2, x−1

2 , . . . , xk, x−1
k

, xk+1, xk+2, . . . , xn

	

∪̇
�

xn+1, xn+2, . . . , xc

	

.
(2)

By this, the number of ways to choose a smallest D -set containing A is 2 · 2 · · · · · · 2 = 2c−n,

where n=
|Q|
2 + (n− k). Since |A|= |A∩ S|+ |Q|+ (n− k), n= |A| − |A∩ S| − |Q|2 .

3. D -Sets Generated by a Subgroup

The following are consequences of Theorem 6.

Corollary 2. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. Then i (A) = 2c−n, where

n= |H\S|/2.

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. If H ≤ G, then x , x−1 ∈ H

for all x ∈ H. Let Q = {x ∈ A\S : x−1 ∈ A}. Then Q = H\S, that is, |Q| = |H\S|. Thus, by

Theorem 6, i (H) = 2
c−
�

|H|−|H∩S|− |H\S|2

�

= 2
c−
�

|H\S|− |H\S|2

�

= 2
c−
�

|H\S|
2

�

.

Corollary 3. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. If S ⊆ H, then

i (H) = 2
c−
�

|H|−|S|
2

�

.

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. If S ⊆ H, then

|H\S|= |H| − |S|. Thus, by Corollary 2, i (H) = 2
c−
�

|H|−|S|
2

�

.

Corollary 4. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. If H ∼= Zp where p is an

odd number, then i (H) = 2
c−
�

|H|−1
2

�

.

Proof. Let G be a finite group, S =
�

s ∈ G : s2 = e
	

, and H ≤ G. If H ∼= Zp where p is an

odd number, then S = {e}. Thus, by Corollary 3, i (H) = 2
c−
�

|H|−1
2

�

.
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