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Abstract. In this paper we construct some spaces of lacunary almost convergent sequences and la-
cunary strongly almost convergent sequences via sequence of Orlicz functions over n-normed spaces
and established some inclusion relations between these spaces. We also make an effort to define a
new concept called g-statistical convergence in paranormed spaces where the base space is a n-normed
spaces.
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1. Introduction and Preliminaries

In [13] Géhler introduced an attractive theory of 2-normed spaces. The notion was further
generalized by Misiak [21] by introducing n-normed spaces. Since then these spaces were
studied by Gunawan [14, 15]. In [16] Gunawan and Mashadi gave a simple way to derive an
(n—1)-norm from the n-norm and realized that n-normed space is an (n — 1)-normed space.

Definition 1. Let n € N and X be a linear space over the field R of real of dimension d, where
d > n > 2. A real valued function ||-,...,-|| on X" satisfying the following conditions:

() |x1,X5,...,x,|| =0 if and only if xq, X, ..., X, are linearly dependent in X;
(i) ||xq,xo,...,Xx,|| is invariant under permutation;
(i) |laxq,xq,...,x,ll = lalllxq, xq,...,x,|| for any a € R, and
(@) |lx+x",x0, ..., x|l < Nx, %0, .., x|+ 11X, x5, .., x,|
is called a n-norm on X and the pair (X, ||...||) a n-normed space over the field R.
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Example 1. Let X = R" being equipped with the Euclidean n-norm ||xq,Xs,...,X,||g = the
volume of the n-dimensional parallelopiped spanned by the vectors xq, X, ..., X, which may be
given explicitly by the formula

|11, X2, ..., xp|[p = | det(x;;),

where x; = (X1, Xj9,...,Xip) ER" foreachi=1,2,...,n.
Let (X,]]...]|) be a n-normed space of dimension d = n > 2 and {a;,a,,...,a,} be linearly
independent set in X. Then the following function ||...||eo on X" defined by

[131, X9y« + s Xpn—1lloo = max{||xy, X9, ..., Xp—1,q;l| :1=1,2,...,n}
defines an (n — 1)-norm on X with respect to {a,,as,...,a,}.
A sequence (x;) in a n-normed space (X, ||...||) is said to converge to some L € X if

lim ||x,—L,2q,...,2,—1]| =0 for every 2;,...,2,_; € X.
k— o0

A sequence (x) in a n-normed space (X, ||...||) is said to be Cauchy if

lim ||xg —xp,21,...,2,1|| = 0 for every zy,...,2,_; €X.
k,p— 00
If every Cauchy sequence in X converges to some I € X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Definition 2. Let K be a subset of the set of natural number N. Then the asymptotic density of
K denoted by 6(K) = lim,,_, %l{ j < n:j € K}|, where vertical bars denote the cardinality of
the enclosed set.

Definition 3. A sequence x = (x;) is said to be statistically convergent to a number A if for

every € > 0, the set K(¢) = {j < n: [x; — A| = &} has asymptotic density zero, i.e,

1
lim —|{j<n:lx;—A|>¢}|=0,
n

n—00
in case we write S —limx = A.
Definition 4. Let X be a linear metric space. A function g : X — R is called paranorm, if
(i) g(x)=0forallx €X,
(ii) g(—x)=g(x) forall x € X,
(@) gx+y)<glx)+g(y)forallx,y€X,

(iv) if (A,) is a sequence of scalars with A, — A as n — o0 and (x,) is a sequence of vectors
with g(x, —x) — 0 as n — oo, then g(A,x,—Ax) — 0 as n — oo.
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A paranorm g for which g(x) = 0 implies x = 0 is called total paranorm and the pair (X, g) is
called a total paranormed space.

Note that each seminorm (norm) g on X is a paranorm (total) but converse need not
be true. It is well known that the metric of any linear metric space is given by some total
paranorm (see [28, Theorem 10.4.2, pp. 183]). For more details about sequence spaces see
[2, 6,7, 22, 24-26] and references therein.

Definition 5. A sequence x = (x;) in (X, g) paranormed space is said to be convergent (or
g—convergent) to a number A in (X, g) if for every € > 0 there exists a positive integer j, such
that g(x; — A) < & whenever j > j,. In case we write g —limx = A and A is called the g—limit

of x (see [1]).

Definition 6. An Orlicz function M is a function, which is continuous, non-decreasing and
convex on [0,+00) with M(0) =0, M(x) > 0 for x > 0 and M(x) — 00 as x —> 0.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following se-
quence space:

£M={x€w:iM(l%l)< 00, for some p >0}
k=1

which is called an Orlicz sequence space. The space {,, is a Banach space with the norm

||X||=inf{p>0 iM(bCkl) }

k=1

It is shown in [17 ] that every Orlicz sequence space £,; contains a subspace isomorphic to
{,(p = 1). In the later stage different Orlicz sequence spaces were introduced and studied by
Parashar and Choudhary [23 ], Mursaleen [22 ] and many others.

Definition 7. By a lacunary sequence 8 = (k,) where ky = 0, we shall mean an increasing
sequence of non-negative integers with k, —k,_; — 00 as r — 00. The intervals determined by
0 will be denoted by I, = (k,_q,k,.]. We write h, = k. —k,_;. The ratio k
q,. The space of lacunary strongly convergent sequence was defined by Freedman et al. [11]
as follows:

N9={X—(Xk) hm —kz:lxk—Ll OforsomeL}
€l

Lorentz [18] and Duran [9] studied the spaces of almost convergent sequences. The con-
cept of strongly almost convergent sequences was introduced by Maddox [19]. In [20], Mad-
dox defined a generalization of strong almost convergence. Related articles with the topic
almost convergence and strong almost convergence can be seen in [3, 18-20]. In order to ex-
tend convergence of sequences, the notion of statistical convergence has been introduced by
Fast [10] in 1951 and Schoenberg [27] independently for real sequences. Later on developed
by Fridy [12]. Recently, Alotaibi and Alroqi [1] extended this notion in paranormed space. We
may refer to [4, 5] which are related with this topic.
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Lorentz [ 18] proved that x is almost convergent to a number A if and only if

1 n—1
= (xirg—A)
n i=0

In other words, he showed that x is almost convergent to a number A if and only if t,,(x) — A
as n — oo, uniformly in ¢ > 1, where

lim

n—>oo

= 0, uniformly in g > 1.

Xg+ Xgp1+ oot Xgin1

g (X) = (neN={1,2,3,...,}).

n
Let f be a set of all almost convergent sequences. We write f —limx = A if x is almost
convergent to A. Maddox [20] has defined that x is strongly almost convergent to a number
A if and only if

n—1

1
tnq(lx_ll) = ; E :
i=0

By [f ] we denote the set of all strongly almost convergent sequences. If x is strongly almost
convergent to A we write [f]—limx = A. Let [, be the set of all bounded sequences, it is
easy to see that [f] C f C I, and each inclusion is proper.

In [8] Konca and Basarir defined the almost convergent sequences F and strongly almost
convergent sequences [F], in 2-normed spaces for every z € X. They have also introduced the
space of lacunary almost convergent sequences Fy and lacunary strongly almost convergent
sequences [ Fy ], respectively in 2-normed spaces.

Let .# = (M;) be a sequence of Orlicz functions, (X,]|-,...,-||) is a n-normed space and
p = (px) be a bounded sequence of positive real numbers. By S(n —X) we denote the space
of all sequences defined over (X, ||-,...,-||). In this paper we define the following sequence
spaces:

Xitq —A’ — 0 as n — 00, uniformly in g > 1.

F _frest-x): tim S [ ([ &M " =0
['ﬂ) >p>||'5"'9'||:|_{x€ (n_ )'nl{go;l: k( T:zl>“'7zn—1H)] ]
uniformly in g > 1, for some p > 0 and for every nonzero 2y,...,2,_1 €X } and

oo

[ AFLp o] = {x € 50=203 i S [t 52 510 ))] =00
k=1

uniformly in g > 1, for some p > 0 and for every nonzero 2y, ...,2,_; €X }

We write [//t,F,p, ..., -||] —lim x = A if x is almost convergent to A and

[, [F1,p, ..., |]—limx = A
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if x is strongly almost convergent to A. Taking advantage to (iii) and (iv) conditions of n—norm
and definitions of [//t,F,p, I|-..., -||] and I://l, [F1,p -, -||], we have the inclusion

['%:[F]Jle;:”] - I:'%JFJpJ”JJ”] c [M’loozp:v”JJ”]

holds from the following inequality:

1 n—1
tnq(x —-A) n Zi:() (xi+q —A)
521, 3p1|| = 3Z75+3%n—1
P P
—1
1 || Xivqg — 2 X — A
S_Z 5 215+++53—1 :tnq( Zn—1
naill p P

Now we define the spaces of lacunary almost convergent sequences [//t 7% | ~||] and

lacunary strongly almost convergent sequences [//l ,LFelips s v -||] in n-normed spaces as
follows:

oo
_ o 1 Xiyg— A Pe
[, Fo,p, Iy ] = {x €S(—X): rlggoZ[Mk) h—Z(T,zp...,zn_l)‘ " =o,
k=1 ' iel,
uniformly in q > 1, for some p > 0 and for every nonzero z;,...,%,_1 €X } and
i+q -1 Dk
[ [Fdp. )] = {x € S(n—X) - lim —ZZ[ (H aema)] =0,
r i€l k=1
uniformly in g > 1, for some p > 0 and for every nonzero 2;,...,2,_; €X }

The main purpose of this paper is to study some generalized spaces of lacunary almost con-
vergent sequences and lacunary strongly almost convergent sequences via sequence of Orlicz
functions over n-normed spaces. We also established some topological properties and prove
some inclusion relations between these spaces. Further we introduced a new concept of statis-
tical convergence which will be called g-statistical convergence in a paranormed spaces where
the base space is a n-normed spaces. We define and study the notion of statistical convergence
and statistical Cauchy.

2. Main Results

Lemma 1. Let (x;) be a strongly almost convergent sequence, for a given & > 0 there exist ny and

qo such that
Jj=q k=1

forall p, =1, n = ny, q = qq, for every nonzero z,...,2,_1 € X and for some p > 0. Then
x e[, [FLp,lI.-Nl]:




K. Raj, R. Anand, S. Jamwal / Eur. J. Pure Appl. Math, 9 (2016), 464-478 469

Proof. Let € > 0 be given. Choose ny, qq such that

g+n—1 oo _
LS S e 1<

.
Q

for all n > ny, ¢ > qo, It is enough to prove that there exists n; such that for n > ng, 0 < q < q,

DIPNRA(E T < g

By taking n, = max(ng, ng), (2) will holds for n > nq and for all g, which gives the result.
Once g has been chosen ﬁxed o)

8

> Zn—1

qo—1 oo

S Sl

j=0 k=1

oz =K, 3

for some K. Now taking 0 < g < gy and n > q,, we have

1 g+n—1 oo xj_ n— ) Dk
E S S e DT (S 2 E I ]
j=q k=1 J=q¢  j=q k=1
qo+n 1 oo x] i
w2 2] szea])]
35+5 _
n 2

The penultimate inequality is from (3), with the last following (1). Taking n sufficiently large,

we can make

K ¢

—+-<e¢

n 2

which gives (2) and hence the result. O

Theorem 1. Suppose p; = 1 for all k and for every 8, we have
[, [Fod,p, Ml ll] = [ [F LD ool

Proof. Let {x;} € I://l, [Fol,p, ||-,...,'||:|, then for given ¢ > 0, there exist ry and A such

> (|2

j
forr>rpandq=Q,_1+1+1,i>0. Let n > h,, write n = mh, + 8, where m is an integer.
Since h > h,, m>1. Now

1q+hr 1
i

r =q

)] < @

g+n—1 oo o q+(m+1)h,—1 oo _
DI SPREAN )| S Y > [ (P2 mn T
j=q k= j=q k=
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1 & q+(utDh—1 oo xi—A Pk

eSS S
u=0 j=q+uh, k=1 p

m+1

n
2mh,e

<

h.e

<

(m=>1).

mh,
n =1

h .
For -+ <1, since
+n—1
5

n “4

Jj=

i[Mk(HXj _A,zl,...,zn_ln)]pk < 2e.

k=1 P

Q

Then by Lemma 1, [//t, [Fol,p, ||-,...,-||] c [//l,[F],p, II-..., '||:|. It is trivial to show that

[ IF LIl ] S [, [FoLps sl

for every 6. Hence we have the result. O

Lemma 2. Suppose for a given € > 0 there exist ny and qq such that
1 oxi—2

o] 1q+n . »
Z[Mk ; Z ( ! ,zl,...,zn_l) ]k<e

k=1 j=q P

for all n = ngy, q = qq, for every nongero zq,...,2,_1 € X and for some p > 0. Then
x e[, Ep,l-....-II]

Proof. Let & > 0 be given. Choose ny, g, such that
qg+n—1 X:— A

St S ()| < -
J=q

=1 p

for all n > ny, ¢ > qo. As in Lemma 1, it is enough to prove that there exists n;, such that for
nz= Tlg, 0<qg=<qg

s} q+n—1
1 Xj -2 P
Z[MkH— Z ( ,zl,...,zn_l)H <e. (6)
k=1 ni= P
Since q is fixed, let
Qo1 oo xXi—A
j Dk
P (Fm )| =K @
Jj=0 k=1 P
for some K’. Now taking 0 < q < g, and n > q,, we have

St ST (2
n

k=1 j=q P

Hpk

,zl,...,zn_l) 5

(%] qo—1 o
I <3 Dafs 5 (5 e am)
= j=q
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(o) +n— x]—l .
+Zl:[MkH Z ( - ,zl,...,zn_l)H
do

oo q +n+q qo—1
0 o xj_A Pk
,Zl,...,zn_l) ]

<o+ 2l

Jol
(8)
Let n—qq > ng. Then for 0 < q < qo, we have n+q —qy = ng,. From (5) we have
) qotn+q—qo X:— A e
: 38150445 %n—1 <z (9)
n+q+qo q+q o) 2
=1 0 j=qo
From equation (8) and (9) we have
[ele) q+n 1
X;i—A ! —
ZMkH SR 1” e K ntg %%
k=1 Jj=q P n n
K' €
<—+4=
n 2
<e,
for sufficiently large n. Hence the result. O

Theorem 2.

(i) For every 0, we have
[//[,FG’P:”,;”]ﬂ[/ﬂyloopaua;”] = ['//Z:Fapa||>;||:|

(ii) For every 0, we have I://l,Fg,p, ||-,...,-||] A I://l,loo,p, ..., ||]

Proof. (i) Let {x;} € [//l,Fg,p,II-,...,~||:| N [//t,loo,p,||~,...,-||:| for every ¢ > 0, there
exist ry and g such that

00 q+h,—1

;[Mk‘h_r 2. (Xj;A,zl,...,zn_l)H]pk<g (10)

forr>ry,9>q9,q=Q,_1+1+1i,i>0. Now let n > h,, m is an integer greater than equal
to 1. Then

m—1 q+(“+1)hr_1

() g+n—1 oo _ oo L
St ST > a,zl,...,zn_l)H]Pksz[ (X ’“,zl,...,zn_l)H]Pk
=1 imq k=1 P = MI20 j=qtuh, P

+

1
n
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[ 3

(11)

Since {x;} € I://l,loo,p, ..., -||] for all j, we have

i[MkH(Xj _A,Zl,...,zn_l)

=1 p

Hpk <K,

for some K. So from (10) and (11)
1 q+n—1 Xi— A,

SIS (s )|]  n §

k=1 n Jj=q p

Kh,
n

for }% <1, since m: Lt <1and can be made less than £, taking n sufficiently large so

[ee] 1 q+n—1 X _A
k=

2[5 20 (=

n “
1 Jj=q p

123
,zl,...,zn_l)H] <eforr>ryq=qo.

Hence, by Lemma 2, ['/ﬂ,FQ,P, ||) )”:l N I:‘%: loo:p: ||: .- :”] < I:‘%:F:p: ”: L) ||:| It
is trivial to show that [, F,p, ||..., [I] S [, Fo,p, Il -, 1] O [ M, 1oo, D, |l Il].

(ii) It is enough to show [//l,Fg,p, ||-,...,-||] s [//l,loo,p, II-..., -||]. Let {x;} = (—1)j"
where u is constant with 0 < u < 1. Then

q+h,—1
.X'j,q >0
j=q

will contains an even number of terms. Let us take X = R". It is a straightforward matter to
verify that {x;} € [.//[,F@,p, ..., -||] with 4 = 0. But {x;} is not bounded. O

Now, we define the paranorm g(x) on the sequence space [//t, [(Fl,p .-, ~||] and shown
that the sequence space [//l LLFL s e ey -||:| is total paranormed space. We also define a
new concept of statistical convergence which will be called g-statistical convergence on the
paranormed space ([//l, [(Fl,p, -, -||], g).

Theorem 3. The sequence space [//t JLEL I -e e -||:| is a linear topological space total parnormed
by

glx)= sup (%qilg[Mk(H%,zl,...,zn_lH)]pk)

n>1,q>1 =
0#21,-2n—1€X
oo
X P
= sup ZMk[(tnq( —,%1,.-,%n_1 ))] .

0#21,.02p1€X
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Proof. It is easy to see that [//t, [(FLp .-, '||:| is a linear space with coordinate-wise
addition and scalar multiplication. Clearly g(x) =0 < x =0, g(x) = g(—x) and g is sub-
additive. To prove the continuity of scalar multiplication, assume that (x®)) be any sequence
of the points in [//t, [(F1,p, |- -II] such that g(x) —x) — 0 as k — oo and (u) be any
sequence of scalars such that u;, — u as k — 0o. Since the inequality

g(x®) < g(x) +g(x® —x)
holds by subadditivity of g, g(x*)) is bounded. Thus, we have

1 (k) .
g(ukx(k)_“x): sup ( (’Hi: i[ (HM:ZD”"Z“—lH)]pk)
n>1,q>1 = =
0#21,e-2n—1€X
1 q+n—1 oo X(.k) -
SIS T 70 [I1( N )y
n>1,q>1 n =g k=1 P
0721 ,+e2n_1€X
qg+n—1 oo (k) -
ST I Ee
0#21,..2n—1€X =g k=1

=l — ulg(x®) + |ulg(x® —x),

which tends to zero as k — oo. This proves the fact that g is a paranorm on [//t, LFLp, -l ]
O]

Definition 8. A sequence x = (x;) is said to be strongly p—Cesaro summable (0 < p < c0)

to a limit A in ([(/ﬂ, [(Fl,p -, -||],g) if limy_, o0 %Z?Zl(g(xj — Ae))P = 0 and we write it
as x; = A[C, g],. In this case A is called the [C, g ],-limit of x. We denote the set of all strongly
p-Cesaro summable sequences in ([//t, [(Fl,p .., -||], g)as

k
[C.g], = x lim %;(g(xj —Ae)) =0}.

Definition 9. A sequence x = (x;) is said to be statistically convergent (or g-statistically
convergent) to a number A in ([//l, [(F1,p, -, -||],g) if for each € > 0

1
i i< J— > =
khm k|{]_kg(XJ Ae)_e}l 0

where

g+n—1 oo L —
glx;—Ae) = sup (% Z Z[Mk(HXJ Ae,zl,...,zn_lH)]pk).

n>1,q>1
0721, 2n_1€X

In this case we write g(stat) —limx = A. We denote the set of all g-statistically convergent
sequences in ([//Z, [(F1,p, |-, -||], g) by S([/ﬂ Flpon .”] g).
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Definition 10. A sequence x = (x;) is said to be a statistically Cauchy sequence in

([//l, (Flp, -, -||], g) (or g(stat)— Cauchy) if for every € > O there exists a number
N = N(¢) such that

1
lim (] <n: glx;—xn) > e} =0.
Theorem 4. If a sequence x = (x;) is statistically convergent in ([//l, [F1,p, -, -II], g), then

g(stat)—1lim x is unique.

Proof. Suppose that g(stat) —limx = A; and g(stat) —limx = A,. Given &€ > 0, define
the following set as:

() ={jeN:glx;— 1) = 2}

and .
Jo(e) = {j EN:glx;—2Ay) = 5}

Since g(stat) —limx = A; we have 6(J;(¢)) = 0. Similarly g(stat) —limx = A, we have
6(J5(€)) =0, now let J(&) = J;(e) UJy(g). Then 6(J(e)) = 0 and hence the compliment J¢(¢)
is a non-empty set and 6(J¢(¢)) = 1. Now if j € N—J(¢), then we have

e €
g1 —Ay) < glx;— A1)+ 8(xj—A3) < §+§ =e.

Since ¢ > 0 was arbitrary, we get g(A; —A,) =0 and hence A; = A,. O]

Theorem 5. Let g(stat)—limx = A; and g(stat) —limy = A,. Then
@) g(stat)—lim(x+y)=2A;+A,
(i) g(stat)—lim(ax) =aA;,a € R

Proof. It is easy to prove. O

Theorem 6. A sequence x = (x;) in ([//l, [(F1,p, |-, -II],g) is statistically convergent to A
if and only if there exists a set J = {j; < jo < ... < j, < ...} €S Nwith §(J) = 1 such that
g(x; —A) > 0asn— oo.

Proof. Suppose that g(stat)—limx = A. Now write for r =1,2,....
1
J.(g)= {neN:g(xj —2A) < 1+—}
" r

and 1
L.(e)= {n EN: glx; —2A1)> —}.
r

Then 6(J,) =0
LyD2L,D...0L;D>LiyyD... (12)
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and
5(L)=1,r=1,2,... (13)

Now we have to show that for n € L,.. Since {x; } is g-convergent to A. On contrary suppose
that {x; } is not g—convergent to A. Therefore, there is ¢ > 0 such that g(x; —A) < ¢ for

infinitely many terms. Let L, = {n EN:g(x; —4)> 8} and € > %, r € N. Then
6(L,)=0 (14)

and by (12) L, C L,. Hence 6(L,) = 0 which contradicts (13) and we get that {x; } is g-
convergent to A.

Conversely, suppose that there exists a set J = {j; < j, < ... < j, <...} with 6(J) =1
such that g —lim,,_, o, x; = A then there exists a positive integer N such that

g(xj—A)<eforj>N.

Put
J(t)= {n EN:g(x;—2A) = e}

and J' = {Jy41,JIN+2,---}- Then 6(J') = 1 and J, € N\J’ which implies that §(L,) = 0. Hence

g(stat)—limx = A. O
Theorem 7. Let ([J/l, [Fl,p,l---, -||:|,g) be a complete paranormed space. Then a sequence
x = (x;) of points in ([//t,[F],p, II-..., -||],g) is statistically convergent if and only if it is

statistically Cauchy.

Proof. Suppose that g(stat)—limx = A, then we get §(A(¢)) = 0, where
. €
Ale) = {] EN:g(x;—A)= 5}

This implies
6(A°(e))=06({jeN:gx;—A) <eP=1.

Let [ € A°(¢), then g(x; —A) < £. Now let

B(e) = {j EN:glx;—x;) =€}
We need to show that B(g) C A(e). Let j € B(¢) then g(x; —x;) = ¢ and hence g(x; —A)) > ¢
that j € A(¢). Otherwise if g(x; —A)) < ¢ then

£ &
e<glxj—x)<glxj—A)+glx—A)< §+E:g,

which is not possible. Hence B(¢) C A(¢), implies that x = (x;) is g(stat)-convergent.
Conversely, suppose that x = (x;) is g(stat)-Cauchy but not g(stat)-convergent. Then
there exists t € N such that §(G(¢)) = 0. where

G(e)z{jEN:g(xj—xt)Ze}
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and 6(D(¢)) =0, where
. €
D(e)= {] EN:g(x;—A)< 5}
i.e, 6(D(¢)) = 1, since g(x; —x7) < 2g(x; —A) <e. If gx;—A) < % then 6(G°(¢)) = 0,

i.e, 6(G(¢)) = 1 which leads to a contradiction since x = (x;) was g(stat)-Cauchy. Hence
x = (x;) must be g(stat)-convergent. O

Theorem 8. If 0 < p < o0 and x; — A[C, g],, then x = (x;) is g-statistically convergent to A
in ([4,[F1,p,II-...-ll]. 8)-
Proof. Let x; — A[C, g],, then

k k
%;}(g(xj A0y 27 >, (et
g(xj—Ae)=e
&P
2?|Ke|~
Since lim;_, oo %lKel = 0 and so 6(K,) = 0, where K, = {j < k : g(x; —Ae) = €}. Hence
x = (x;) is statistically convergent to A in ([//l, [(F1,p, -, -||], g). O

Theorem 9. If x = (x;) is g-statistically convergent to A in ([//l, (Flp, -, -||], g) then
x; = AlC,g],.

Proof. Suppose that x = (x;) is g-statistically convergent to A in ([//l, [(FLp .-, -||], g).
Then for £ > 0, we have §(K,) =0, where K, = {j < k : g(x; — Ae) > ¢}. Since
x =(x;) €1%°(M,p,|l,...,-|]), then there exists K > 0 such that

[MH(Xj;Ae,zl,...,zn_l)H]p" <K,

for all j. Thus,

-1
glx;—Ae) = sup (%‘”Z”: [MH(xj;Ae,zl,...,zn_l)H]pk)SK.

n=1,q=1 i=q
0721, 2n_1€X

Hence we have result from the following inequality

k k k
1 1 1
E}_:Zl(g(xj —Ae)P = jzzl(g(xj — )P + ¢ ;(g(xj —2e)
J¢KE JEKE
KP
<eP + 7|K8|

Let A and B be two sequence spaces. We use the notation A,,, C B, to mean if the
sequence x converges to a limit A in A then the sequence x converges to the same limit in
B. O
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Theorem 10. (S([ _”]’g))reg =([C, g]p)req-

AFLp|l-se.s

Proof. The proof can be done by combining Theorem 8 with Theorem 9 so we omit it. []
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