EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 4, 2016, 464-478 ISSN 1307-5543 – www.ejpam.com

On g-Statistical Convergence in Paranormed Spaces

Kuldip Raj*, Renu Anand and Seema Jamwal

School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

Abstract. In this paper we construct some spaces of lacunary almost convergent sequences and lacunary strongly almost convergent sequences via sequence of Orlicz functions over *n*-normed spaces and established some inclusion relations between these spaces. We also make an effort to define a new concept called *g*-statistical convergence in paranormed spaces where the base space is a *n*-normed spaces.

2010 Mathematics Subject Classifications: 40F05, 46A45,40A05, 40A30

Key Words and Phrases: Strongly almost convergence, almost convergence, *n*-norm, *g*-statistical convergence, strongly *p*-Cesaro summability, Orlicz function

1. Introduction and Preliminaries

In [13] Gähler introduced an attractive theory of 2-normed spaces. The notion was further generalized by Misiak [21] by introducing n-normed spaces. Since then these spaces were studied by Gunawan [14, 15]. In [16] Gunawan and Mashadi gave a simple way to derive an (n-1)-norm from the n-norm and realized that n-normed space is an (n-1)-normed space.

Definition 1. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{R} of real of dimension d, where $d \ge n \ge 2$. A real valued function $||\cdot, \dots, \cdot||$ on X^n satisfying the following conditions:

- (i) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent in X;
- (ii) $||x_1, x_2, ..., x_n||$ is invariant under permutation;
- (iii) $||\alpha x_1, x_2, ..., x_n|| = |\alpha|||x_1, x_2, ..., x_n||$ for any $\alpha \in \mathbb{R}$, and
- (iv) $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called a *n*-norm on *X* and the pair (X, || ... ||) a *n*-normed space over the field \mathbb{R} .

Email address: kuldipraj68@gmail.com (Kuldip Raj)

^{*}Corresponding author.

Example 1. Let $X = \mathbb{R}^n$ being equipped with the Euclidean n-norm $||x_1, x_2, ..., x_n||_E =$ the volume of the n-dimensional parallelopiped spanned by the vectors $x_1, x_2, ..., x_n$ which may be given explicitly by the formula

$$||x_1, x_2, \dots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n.

Let (X, || ... ||) be a n-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, ..., a_n\}$ be linearly independent set in X. Then the following function $|| ... ||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \dots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \dots, x_{n-1}, a_i|| : i = 1, 2, \dots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \ldots, a_n\}$.

A sequence (x_k) in a *n*-normed space (X, || ... ||) is said to **converge** to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space (X, || ... ||) is said to be **Cauchy** if

$$\lim_{k,p\to\infty} ||x_k - x_p, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be **complete** with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Definition 2. Let K be a subset of the set of natural number \mathbb{N} . Then the **asymptotic density** of K denoted by $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{j \le n : j \in K\}|$, where vertical bars denote the cardinality of the enclosed set.

Definition 3. A sequence $x = (x_j)$ is said to be **statistically convergent** to a number λ if for every $\varepsilon > 0$, the set $K(\varepsilon) = \{j \le n : |x_j - \lambda| \ge \varepsilon\}$ has asymptotic density zero, i.e,

$$\lim_{n\to\infty} \frac{1}{n} |\{j \le n : |x_j - \lambda| \ge \varepsilon\}| = 0,$$

in case we write $S - \lim x = \lambda$.

Definition 4. Let X be a linear metric space. A function $g: X \to \mathbb{R}$ is called **paranorm**, if

- (i) $g(x) \ge 0$ for all $x \in X$,
- (ii) g(-x) = g(x) for all $x \in X$,
- (iii) $g(x+y) \le g(x) + g(y)$ for all $x, y \in X$,
- (iv) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $g(x_n x) \to 0$ as $n \to \infty$, then $g(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm g for which g(x) = 0 implies x = 0 is called **total paranorm** and the pair (X, g) is called a total paranormed space.

Note that each seminorm (norm) g on X is a paranorm (total) but converse need not be true. It is well known that the metric of any linear metric space is given by some total paranorm (see [28, Theorem 10.4.2, pp. 183]). For more details about sequence spaces see [2, 6, 7, 22, 24–26] and references therein.

Definition 5. A sequence $x = (x_j)$ in (X, g) paranormed space is said to be **convergent (or** g—**convergent)** to a number λ in (X, g) if for every $\varepsilon > 0$ there exists a positive integer j_0 such that $g(x_j - \lambda) < \varepsilon$ whenever $j \ge j_0$. In case we write $g - \lim x = \lambda$ and λ is called the g—limit of x (see [1]).

Definition 6. An *Orlicz function* M is a function, which is continuous, non-decreasing and convex on $[0, +\infty)$ with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to define the following sequence space:

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [17] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p\geq 1)$. In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [23], Mursaleen [22] and many others.

Definition 7. By a lacunary sequence $\theta = (k_r)$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$. We write $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . The space of **lacunary strongly convergent sequence** was defined by Freedman et al. [11] as follows:

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L \right\}.$$

Lorentz [18] and Duran [9] studied the spaces of almost convergent sequences. The concept of strongly almost convergent sequences was introduced by Maddox [19]. In [20], Maddox defined a generalization of strong almost convergence. Related articles with the topic almost convergence and strong almost convergence can be seen in [3, 18–20]. In order to extend convergence of sequences, the notion of statistical convergence has been introduced by Fast [10] in 1951 and Schoenberg [27] independently for real sequences. Later on developed by Fridy [12]. Recently, Alotaibi and Alroqi [1] extended this notion in paranormed space. We may refer to [4, 5] which are related with this topic.

Lorentz [18] proved that x is almost convergent to a number λ if and only if

$$\lim_{n\to\infty}\left|\frac{1}{n}\sum_{i=0}^{n-1}(x_{i+q}-\lambda)\right|=0, \text{uniformly in } q\geq 1.$$

In other words, he showed that x is almost convergent to a number λ if and only if $t_{nq}(x) \to \lambda$ as $n \to \infty$, uniformly in $q \ge 1$, where

$$t_{nq}(x) = \frac{x_q + x_{q+1} + \ldots + x_{q+n-1}}{n} (n \in \mathbb{N} = \{1, 2, 3, \ldots, \}).$$

Let f be a set of all almost convergent sequences. We write $f - \lim x = \lambda$ if x is almost convergent to λ . Maddox [20] has defined that x is strongly almost convergent to a number λ if and only if

$$t_{nq}(|x-\lambda|) = \frac{1}{n} \sum_{i=0}^{n-1} \left| x_{i+q} - \lambda \right| \to 0 \text{ as } n \to \infty, \text{ uniformly in } q \ge 1.$$

By [f] we denote the set of all strongly almost convergent sequences. If x is strongly almost convergent to λ we write $[f] - \lim x = \lambda$. Let l_{∞} be the set of all bounded sequences, it is easy to see that $[f] \subset f \subset l_{\infty}$ and each inclusion is proper.

In [8] Konca and Başarir defined the almost convergent sequences F and strongly almost convergent sequences [F], in 2-normed spaces for every $z \in X$. They have also introduced the space of lacunary almost convergent sequences F_{θ} and lacunary strongly almost convergent sequences $[F_{\theta}]$, respectively in 2-normed spaces.

Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions, $(X, ||\cdot, ..., \cdot||)$ is a n-normed space and $p = (p_k)$ be a bounded sequence of positive real numbers. By S(n-X) we denote the space of all sequences defined over $(X, ||\cdot, ..., \cdot||)$. In this paper we define the following sequence spaces:

$$\left[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|\right] = \left\{x \in S(n-X) : \lim_{n \to \infty} \sum_{k=1}^{\infty} \left[M_k\left(\left\|\frac{t_{nq}(x-\lambda)}{\rho}, z_1, \dots, z_{n-1}\right\|\right)\right]^{p_k} = 0,$$

uniformly in $q \ge 1$, for some $\rho > 0$ and for every nonzero $z_1, \ldots, z_{n-1} \in X$ and

$$\left[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|\right] = \left\{x \in S(n-X) : \lim_{n \to \infty} \sum_{k=1}^{\infty} \left[M_k\left(t_{nq}\left(\left\|\frac{x-\lambda}{\rho}, z_1, \dots, z_{n-1}\right\|\right)\right)\right]^{p_k} = 0,$$

uniformly in $q \ge 1$, for some $\rho > 0$ and for every nonzero $z_1, \dots, z_{n-1} \in X$.

We write $[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|] - \lim x = \lambda$ if x is almost convergent to λ and

$$[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|] - \lim x = \lambda$$

if x is strongly almost convergent to λ . Taking advantage to (iii) and (iv) conditions of n—norm and definitions of $[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|]$ and $[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$, we have the inclusion

$$\left[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|\right] \subset \left[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|\right] \subset \left[M, l^{\infty}, p, \|\cdot, \dots, \cdot\|\right]$$

holds from the following inequality:

$$\left\| \frac{t_{nq}(x-\lambda)}{\rho}, z_1, \dots, z_{n-1} \right\| = \left\| \frac{\frac{1}{n} \sum_{i=0}^{n-1} (x_{i+q} - \lambda)}{\rho}, z_1, \dots, z_{n-1} \right\|$$

$$\leq \frac{1}{n} \sum_{i=0}^{n-1} \left\| \frac{x_{i+q} - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| = t_{nq} \left(\left\| \frac{x - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right).$$

Now we define the spaces of lacunary almost convergent sequences $[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|]$ and lacunary strongly almost convergent sequences $[\mathcal{M}, [F_{\theta}], p, \|\cdot, \dots, \cdot\|]$ in *n*-normed spaces as follows:

$$\left[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|\right] = \left\{x \in S(n-X) : \lim_{r \to \infty} \sum_{k=1}^{\infty} \left[M_k \left\|\frac{1}{h_r} \sum_{i \in I_r} \left(\frac{x_{i+q} - \lambda}{\rho}, z_1, \dots, z_{n-1}\right)\right\|\right]^{p_k} = 0,$$

uniformly in $q \ge 1$, for some $\rho > 0$ and for every nonzero $z_1, \ldots, z_{n-1} \in X$ and

$$\left[\mathcal{M}, [F_{\theta}], p, \|\cdot, \dots, \cdot\|\right] = \left\{x \in S(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I} \sum_{k=1}^{\infty} \left[M_k \left(\left\|\frac{x_{i+q} - \lambda}{\rho}, z_1, \dots, z_{n-1}\right\|\right)\right]^{p_k} = 0,$$

uniformly in $q \ge 1$, for some $\rho > 0$ and for every nonzero $z_1, \ldots, z_{n-1} \in X$.

The main purpose of this paper is to study some generalized spaces of lacunary almost convergent sequences and lacunary strongly almost convergent sequences via sequence of Orlicz functions over n-normed spaces. We also established some topological properties and prove some inclusion relations between these spaces. Further we introduced a new concept of statistical convergence which will be called g-statistical convergence in a paranormed spaces where the base space is a n-normed spaces. We define and study the notion of statistical convergence and statistical Cauchy.

2. Main Results

Lemma 1. Let (x_j) be a strongly almost convergent sequence, for a given $\varepsilon > 0$ there exist n_0 and q_0 such that

$$\frac{1}{n}\sum_{j=q}^{q+n-1}\sum_{k=1}^{\infty}\left[M_k\left(\left\|\frac{x_j-\lambda}{\rho},z_1,\ldots,z_{n-1}\right\|\right)\right]^{p_k}<\varepsilon$$

for all $p_k \ge 1$, $n \ge n_0$, $q \ge q_0$, for every nonzero $z_1, \ldots, z_{n-1} \in X$ and for some $\rho > 0$. Then $x \in [\mathcal{M}, [F], p, \|\cdot, \ldots, \cdot\|]$.

Proof. Let $\varepsilon > 0$ be given. Choose n'_0 , q_0 such that

$$\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} < \frac{\varepsilon}{2}$$
 (1)

for all $n \ge n_0'$, $q \ge q_0$, It is enough to prove that there exists n_0'' such that for $n > n_0''$, $0 \le q \le q_0$

$$\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} < \varepsilon.$$
 (2)

By taking $n_0 = \max(n_0', n_0'')$, (2) will holds for $n \ge n_0$ and for all q, which gives the result. Once q_0 has been chosen fixed, so

$$\sum_{i=0}^{q_0-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} = K, \tag{3}$$

for some *K*. Now taking $0 \le q \le q_0$ and $n > q_0$, we have

$$\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} = \frac{1}{n} \left(\sum_{j=q}^{q_0-1} + \sum_{j=q_0}^{q+n-1} \right) \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \\
\leq \frac{K}{n} + \frac{1}{n} \sum_{j=q_0}^{q_0+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \\
\leq \frac{K}{n} + \frac{\varepsilon}{2}.$$

The penultimate inequality is from (3), with the last following (1). Taking n sufficiently large, we can make

$$\frac{K}{n} + \frac{\varepsilon}{2} < \varepsilon$$

which gives (2) and hence the result.

Theorem 1. Suppose $p_k \ge 1$ for all k and for every θ , we have

$$\left[\mathcal{M}, [F_{\theta}], p, \|\cdot, \dots, \cdot\|\right] = \left[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|\right].$$

Proof. Let $\{x_j\} \in [\mathcal{M}, [F_\theta], p, \|\cdot, \dots, \cdot\|]$, then for given $\varepsilon > 0$, there exist r_0 and λ such that

$$\frac{1}{h_r} \sum_{j=q}^{q+h_r-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} < \varepsilon$$
 (4)

for $r \ge r_0$ and $q = Q_{r-1} + 1 + i$, $i \ge 0$. Let $n \ge h_r$, write $n = mh_r + \theta$, where m is an integer. Since $h > h_r$, m > 1. Now

$$\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \leq \frac{1}{n} \sum_{j=q}^{q+(m+1)h_r - 1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \leq \frac{1}{n} \sum_{j=q}^{q+(m+1)h_r - 1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \leq \frac{1}{n} \sum_{j=q}^{q+(m+1)h_r - 1} \sum_{j=q}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k}$$

$$= \frac{1}{n} + \sum_{u=0}^{m} \sum_{j=q+uh_r}^{q+(u+1)h_r-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k}$$

$$\leq \frac{m+1}{n} h_r \varepsilon$$

$$\leq \frac{2mh_r \varepsilon}{n} (m \geq 1).$$

For $\frac{h_r}{n} \le 1$, since $\frac{mh_r}{n} \le 1$

$$\frac{1}{n}\sum_{j=q}^{q+n-1}\sum_{k=1}^{\infty}\left[M_k\left(\left\|\frac{x_j-\lambda}{\rho},z_1,\ldots,z_{n-1}\right\|\right)\right]^{p_k}\leq 2\varepsilon.$$

Then by Lemma 1, $[\mathcal{M}, [F_{\theta}], p, \|\cdot, \dots, \cdot\|] \subseteq [\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$. It is trivial to show that

$$\left[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\| \right] \subseteq \left[\mathcal{M}, [F_{\theta}], p, \|\cdot, \dots, \cdot\| \right]$$

for every θ . Hence we have the result.

Lemma 2. Suppose for a given $\varepsilon > 0$ there exist n_0 and q_0 such that

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \varepsilon$$

for all $n \ge n_0$, $q \ge q_0$, for every nonzero $z_1, \ldots, z_{n-1} \in X$ and for some $\rho > 0$. Then $x \in [\mathcal{M}, F, p, \|\cdot, \ldots, \cdot\|]$.

Proof. Let $\varepsilon > 0$ be given. Choose n'_0 , q_0 such that

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \frac{\varepsilon}{2}$$
 (5)

for all $n \ge n_0'$, $q \ge q_0$. As in Lemma 1, it is enough to prove that there exists n_0'' such that for $n \ge n_0''$, $0 \le q \le q_0$

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{i=0}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \varepsilon.$$
 (6)

Since q_0 is fixed, let

$$\sum_{i=0}^{q_0-1} \sum_{k=1}^{\infty} \left[M_k \left\| \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} = K', \tag{7}$$

for some K'. Now taking $0 \le q \le q_0$ and $n > q_0$, we have

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q_0-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k}$$

$$+ \sum_{k=1}^{\infty} \left[M_{k} \left\| \frac{1}{n} \sum_{j=q_{0}}^{q_{+}n-1} \left(\frac{x_{j} - \lambda}{\rho}, z_{1}, \dots, z_{n-1} \right) \right\| \right]^{p_{k}}$$

$$\leq \frac{K'}{n} + \sum_{k=1}^{\infty} \left[M_{k} \left\| \frac{1}{n} \sum_{j=q_{0}}^{q_{0}+n+q-q_{0}-1} \left(\frac{x_{j} - \lambda}{\rho}, z_{1}, \dots, z_{n-1} \right) \right\| \right]^{p_{k}}.$$

$$(8)$$

Let $n - q_0 > n_0'$. Then for $0 \le q < q_0$, we have $n + q - q_0 \ge n_0'$. From (5) we have

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n+q+q_0} \sum_{j=q_0}^{q_0+n+q-q_0} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \frac{\varepsilon}{2}.$$
 (9)

From equation (8) and (9) we have

$$\begin{split} \sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} &\leq \frac{K'}{n} + \frac{n+q-q_0}{n} \frac{\varepsilon}{2} \\ &\leq \frac{K'}{n} + \frac{\varepsilon}{2} \\ &< \varepsilon, \end{split}$$

for sufficiently large n. Hence the result.

Theorem 2.

(i) For every θ , we have

$$\left[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|\right] \cap \left[\mathcal{M}, l^{\infty}p, \|\cdot, \dots, \cdot\|\right] = \left[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|\right].$$

(ii) For every θ , we have $[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|] \not\subset [\mathcal{M}, l^{\infty}, p, \|\cdot, \dots, \cdot\|]$.

Proof. (i) Let $\{x_j\} \in [\mathcal{M}, F_\theta, p, \|\cdot, \dots, \cdot\|] \cap [\mathcal{M}, l^\infty, p, \|\cdot, \dots, \cdot\|]$ for every $\varepsilon > 0$, there exist r_0 and q_0 such that

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{h_r} \sum_{j=q}^{q+h_r-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \frac{\varepsilon}{2}$$
 (10)

for $r \ge r_0$, $q \ge q_0$, $q = Q_{r-1} + 1 + i$, $i \ge 0$. Now let $n \ge h_r$, m is an integer greater than equal to 1. Then

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} M_k \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{\mu=0}^{m-1} \sum_{j=q+\mu h_r}^{q+(\mu+1)h_r - 1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} + \frac{1}{n}$$

$$= \sum_{k=1}^{\infty} \left[M_k \sum_{j=q+mh_r}^{q+n-1} \left\| \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k}.$$
(11)

Since $\{x_j\} \in [\mathcal{M}, l^{\infty}, p, \|\cdot, \dots, \cdot\|]$ for all j, we have

$$\sum_{k=1}^{\infty} \left[M_k \left\| \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < K,$$

for some K. So from (10) and (11)

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} \le \frac{1}{n} m \cdot h_r \frac{\varepsilon}{2} + \frac{K h_r}{n},$$

for $\frac{h_r}{n} \le 1$, since $\frac{mh_r}{n} \le 1$ and $\frac{Kh_r}{n}$ can be made less than $\frac{\varepsilon}{2}$, taking n sufficiently large so

$$\sum_{k=1}^{\infty} \left[M_k \left\| \frac{1}{n} \sum_{j=q}^{q+n-1} \left(\frac{x_j - \lambda}{\rho}, z_1, \dots, z_{n-1} \right) \right\| \right]^{p_k} < \varepsilon \text{ for } r \ge r_0, q \ge q_0.$$

Hence, by Lemma 2, $[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|] \cap [\mathcal{M}, l_{\infty}, p, \|\cdot, \dots, \cdot\|] \subseteq [\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|]$. It is trivial to show that $[\mathcal{M}, F, p, \|\cdot, \dots, \cdot\|] \subseteq [\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|] \cap [\mathcal{M}, l_{\infty}, p, \|\cdot, \dots, \cdot\|]$.

(ii) It is enough to show $\left[\mathcal{M}, F_{\theta}, p, \|\cdot, \dots, \cdot\|\right] \not\subset \left[\mathcal{M}, l_{\infty}, p, \|\cdot, \dots, \cdot\|\right]$. Let $\{x_j\} = (-1)^j j^{\mu}$ where μ is constant with $0 < \mu < 1$. Then

$$\sum_{j=q}^{q+h_r-1} x_j, q \ge 0$$

will contains an even number of terms. Let us take $X = \mathbb{R}^n$. It is a straightforward matter to verify that $\{x_i\} \in [\mathcal{M}, F_\theta, p, \|\cdot, \dots, \cdot\|]$ with $\lambda = 0$. But $\{x_i\}$ is not bounded.

Now, we define the paranorm g(x) on the sequence space $[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$ and shown that the sequence space $[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$ is total paranormed space. We also define a new concept of statistical convergence which will be called g-statistical convergence on the paranormed space $([\mathcal{M}, [F], p, |\cdot, \dots, \cdot\|], g)$.

Theorem 3. The sequence space $[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$ is a linear topological space total parnormed by

$$g(x) = \sup_{\substack{n \ge 1, \ q \ge 1 \\ 0 \ne z_1, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \right)$$
$$= \sup_{\substack{n \ge 1, \ q \ge 1 \\ 0 \ne z_1, \dots, z_{n-1} \in X}} \sum_{k=1}^{\infty} M_k \left[\left(t_{nq} \left(\left\| \frac{x_j}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right) \right]^{p_k} \right].$$

Proof. It is easy to see that $\left[\mathcal{M}, [F], p, \|\cdot, \ldots, \cdot\|\right]$ is a linear space with coordinate-wise addition and scalar multiplication. Clearly $g(x) = 0 \Leftrightarrow x = 0$, g(x) = g(-x) and g is subadditive. To prove the continuity of scalar multiplication, assume that $(x^{(k)})$ be any sequence of the points in $\left[\mathcal{M}, [F], p, \|\cdot, \ldots, \cdot\|\right]$ such that $g(x^{(k)} - x) \to 0$ as $k \to \infty$ and (μ_k) be any sequence of scalars such that $\mu_k \to \mu$ as $k \to \infty$. Since the inequality

$$g(x^{(k)}) \le g(x) + g(x^{(k)} - x)$$

holds by subadditivity of g, $g(x^{(k)})$ is bounded. Thus, we have

$$\begin{split} g(\mu_k x^{(k)} - \mu x) &= \sup_{\substack{n \geq 1, \, q \geq 1 \\ 0 \neq z_1, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{\mu_k x_j^{(k)} - \mu x_j}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \right) \\ &\leq |\mu_k - \mu| \sup_{\substack{n \geq 1, \, q \geq 1 \\ 0 \neq z_1, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j^{(k)}}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \right) \\ &+ |\mu| \sup_{\substack{n \geq 1, \, q \geq 1 \\ 0 \neq z_1, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_k \left(\left\| \frac{x_j^{(k)} - x_j}{\rho}, z_1, \dots, z_{n-1} \right\| \right) \right]^{p_k} \right) \\ &= |\mu_k - \mu| g(x^{(k)}) + |\mu| g(x^{(k)} - x), \end{split}$$

which tends to zero as $k \to \infty$. This proves the fact that g is a paranorm on $[\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|]$.

Definition 8. A sequence $x = (x_j)$ is said to be **strongly** p-**Cesaro summable** $(0 to a limit <math>\lambda$ in $([(\mathcal{M}, [F], p, \|\cdot, \ldots, \cdot\|], g)$ if $\lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^k (g(x_j - \lambda e))^p = 0$ and we write it as $x_j \to \lambda [C, g]_p$. In this case λ is called the $[C, g]_p$ -limit of x. We denote the set of all strongly p-Cesaro summable sequences in $([\mathcal{M}, [F], p, \|\cdot, \ldots, \cdot\|], g)$ as

$$[C,g]_p = \{x : \lim_{k \to \infty} \frac{1}{k} \sum_{j=1}^k (g(x_j - \lambda e))^p = 0\}.$$

Definition 9. A sequence $x = (x_j)$ is said to be **statistically convergent (or** g-**statistically convergent)** to a number λ in $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$ if for each $\varepsilon > 0$

$$\lim_{k\to\infty}\frac{1}{k}|\{j\le k:g(x_j-\lambda e)\ge\varepsilon\}|=0$$

where

$$g(x_{j} - \lambda e) = \sup_{\substack{n \geq 1, \ q \geq 1 \\ 0 \neq z_{1}, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \sum_{k=1}^{\infty} \left[M_{k} \left(\left\| \frac{x_{j} - \lambda e}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \right).$$

In this case we write $g(stat) - \lim x = \lambda$. We denote the set of all g-statistically convergent sequences in $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$ by $S_{([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)}$.

Definition 10. A sequence $x = (x_j)$ is said to be a **statistically Cauchy sequence** in $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$ (or g(stat) - Cauchy) if for every $\varepsilon > 0$ there exists a number $N = N(\varepsilon)$ such that

$$\lim_{n\to\infty}\frac{1}{n}|\{j\le n:g(x_j-x_N)\ge\varepsilon\}|=0.$$

Theorem 4. If a sequence $x = (x_j)$ is statistically convergent in $([\mathcal{M}, [F], p, || \cdot, ..., \cdot ||], g)$, then $g(stat) - \lim x$ is unique.

Proof. Suppose that $g(stat) - \lim x = \lambda_1$ and $g(stat) - \lim x = \lambda_2$. Given $\varepsilon > 0$, define the following set as:

$$J_1(\varepsilon) = \left\{ j \in \mathbb{N} : g(x_j - \lambda_1) \ge \frac{\varepsilon}{2} \right\}$$

and

$$J_2(\varepsilon) = \Big\{ j \in \mathbb{N} : g(x_j - \lambda_2) \geq \frac{\varepsilon}{2} \Big\}.$$

Since $g(stat) - \lim x = \lambda_1$ we have $\delta(J_1(\varepsilon)) = 0$. Similarly $g(stat) - \lim x = \lambda_2$ we have $\delta(J_2(\varepsilon)) = 0$, now let $J(\varepsilon) = J_1(\varepsilon) \cup J_2(\varepsilon)$. Then $\delta(J(\varepsilon)) = 0$ and hence the compliment $J^c(\varepsilon)$ is a non-empty set and $\delta(J^c(\varepsilon)) = 1$. Now if $j \in \mathbb{N} - J(\varepsilon)$, then we have

$$g(\lambda_1 - \lambda_2) \le g(x_j - \lambda_1) + g(x_j - \lambda_2) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we get $g(\lambda_1 - \lambda_2) = 0$ and hence $\lambda_1 = \lambda_2$.

Theorem 5. Let $g(stat) - \lim x = \lambda_1$ and $g(stat) - \lim y = \lambda_2$. Then

- (i) $g(stat) \lim(x \pm y) = \lambda_1 \pm \lambda_2$
- (ii) $g(stat) \lim(\alpha x) = \alpha \lambda_1, \alpha \in \mathbb{R}$.

Proof. It is easy to prove.

Theorem 6. A sequence $x = (x_j)$ in $([\mathcal{M}, [F], p, \|\cdot, ..., \cdot \|], g)$ is statistically convergent to λ if and only if there exists a set $J = \{j_1 < j_2 < ... < j_n < ...\} \subseteq \mathbb{N}$ with $\delta(J) = 1$ such that $g(x_{j_n} - \lambda) \to 0$ as $n \to \infty$.

Proof. Suppose that $g(stat) - \lim x = \lambda$. Now write for r = 1, 2, ...

$$J_r(\varepsilon) = \left\{ n \in \mathbb{N} : g(x_{j_n} - \lambda_1) \le 1 + \frac{1}{r} \right\}$$

and

$$L_r(\varepsilon) = \left\{ n \in \mathbb{N} : g(x_{j_n} - \lambda_1) > \frac{1}{r} \right\}.$$

Then $\delta(J_r) = 0$

$$L_1 \supset L_2 \supset \ldots \supset L_i \supset L_{i+1} \supset \ldots$$
 (12)

and

$$\delta(L_r) = 1, \ r = 1, 2, \dots$$
 (13)

Now we have to show that for $n \in L_r$. Since $\{x_{j_n}\}$ is g-convergent to λ . On contrary suppose that $\{x_{j_n}\}$ is not g-convergent to λ . Therefore, there is $\varepsilon > 0$ such that $g(x_{j_n} - \lambda) \le \varepsilon$ for infinitely many terms. Let $L_\varepsilon = \left\{n \in \mathbb{N} : g(x_{j_n} - \lambda) > \varepsilon\right\}$ and $\varepsilon > \frac{1}{r}$, $r \in \mathbb{N}$. Then

$$\delta(L_{\varepsilon}) = 0 \tag{14}$$

and by (12) $L_r \subset L_{\varepsilon}$. Hence $\delta(L_r) = 0$ which contradicts (13) and we get that $\{x_{j_n}\}$ is g-convergent to λ .

Conversely, suppose that there exists a set $J = \{j_1 < j_2 < ... < j_n < ...\}$ with $\delta(J) = 1$ such that $g - \lim_{n \to \infty} x_{j_n} = \lambda$ then there exists a positive integer N such that

$$g(x_j - \lambda) < \varepsilon \text{ for } j > N.$$

Put

$$J_{\varepsilon}(t) = \left\{ n \in \mathbb{N} : g(x_j - \lambda) \ge \varepsilon \right\}$$

and $J' = \{J_{N+1}, J_{N+2}, \ldots\}$. Then $\delta(J') = 1$ and $J_{\varepsilon} \subseteq \mathbb{N} \setminus J'$ which implies that $\delta(L_{\varepsilon}) = 0$. Hence $g(stat) - \lim x = \lambda$.

Theorem 7. Let $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$ be a complete paranormed space. Then a sequence $x = (x_j)$ of points in $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$ is statistically convergent if and only if it is statistically Cauchy.

Proof. Suppose that $g(stat) - \lim x = \lambda$, then we get $\delta(A(\varepsilon)) = 0$, where

$$A(\varepsilon) = \left\{ j \in \mathbb{N} : g(x_j - \lambda) \ge \frac{\varepsilon}{2} \right\}.$$

This implies

$$\delta(A^{c}(\varepsilon)) = \delta(\{j \in \mathbb{N} : g(x_{j} - \lambda)\} < \varepsilon\}) = 1.$$

Let $l \in A^c(\varepsilon)$, then $g(x_l - \lambda) < \frac{\varepsilon}{2}$. Now let

$$B(\varepsilon) = \left\{ j \in \mathbb{N} : g(x_l - x_j) \ge \varepsilon \right\}.$$

We need to show that $B(\varepsilon) \subset A(\varepsilon)$. Let $j \in B(\varepsilon)$ then $g(x_l - x_j) \ge \varepsilon$ and hence $g(x_j - \lambda) \ge \varepsilon$ that $j \in A(\varepsilon)$. Otherwise if $g(x_j - \lambda) < \varepsilon$ then

$$\varepsilon \leq g(x_j - x_l) \leq g(x_j - \lambda) + g(x_l - \lambda) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which is not possible. Hence $B(\varepsilon) \subset A(\varepsilon)$, implies that $x = (x_i)$ is g(stat)-convergent.

Conversely, suppose that $x=(x_j)$ is g(stat)-Cauchy but not g(stat)-convergent. Then there exists $t \in \mathbb{N}$ such that $\delta(G(\varepsilon)) = 0$. where

$$G(\varepsilon) = \left\{ j \in \mathbb{N} : g(x_j - x_t) \ge \varepsilon \right\}$$

and $\delta(D(\varepsilon)) = 0$, where

$$D(\varepsilon) = \left\{ j \in \mathbb{N} : g(x_j - \lambda) < \frac{\varepsilon}{2} \right\}$$

i.e, $\delta(D^c(\varepsilon)) = 1$, since $g(x_j - x_l) \le 2g(x_j - \lambda) < \varepsilon$. If $g(x_j - \lambda) < \frac{\varepsilon}{2}$ then $\delta(G^c(\varepsilon)) = 0$, i.e, $\delta(G(\varepsilon)) = 1$ which leads to a contradiction since $x = (x_j)$ was g(stat)-Cauchy. Hence $x = (x_j)$ must be g(stat)-convergent.

Theorem 8. If $0 and <math>x_j \to \lambda[C, g]_p$, then $x = (x_j)$ is g-statistically convergent to λ in $([\mathcal{M}, [F], p, \|\cdot, \dots, \cdot\|], g)$.

Proof. Let $x_i \to \lambda [C, g]_p$, then

$$\frac{1}{k} \sum_{j=1}^{k} (g(x_j - \lambda e))^p \ge \frac{1}{k} \sum_{\substack{j=1 \ g(x_j - \lambda e) \ge \varepsilon}}^k (g(x_j - \lambda e))^p$$

$$\ge \frac{\varepsilon^p}{k} |K_{\varepsilon}|.$$

Since $\lim_{k\to\infty}\frac{1}{k}|K_{\varepsilon}|=0$ and so $\delta(K_{\varepsilon})=0$, where $K_{\varepsilon}=\{j\leq k:g(x_{j}-\lambda e)\geq \varepsilon\}$. Hence $x=(x_{j})$ is statistically convergent to λ in $([\mathcal{M},[F],p,\|\cdot,\ldots,\cdot\|],g)$.

Theorem 9. If $x = (x_j)$ is g-statistically convergent to λ in $([\mathcal{M}, [F], p, || \cdot, ..., \cdot ||], g)$ then $x_j \to \lambda[C, g]_p$.

Proof. Suppose that $x=(x_j)$ is g-statistically convergent to λ in $([\mathcal{M},[F],p,\|\cdot,\ldots,\cdot\|],g)$. Then for $\varepsilon>0$, we have $\delta(K_\varepsilon)=0$, where $K_\varepsilon=\{j\leq k:g(x_j-\lambda e)\geq \varepsilon\}$. Since $x=(x_j)\in l^\infty(M,p,\|\cdot,\ldots,\cdot\|)$, then there exists K>0 such that

$$\left[M\left\|\left(\frac{x_j-\lambda e}{\rho},z_1,\ldots,z_{n-1}\right)\right\|\right]^{p_k}\leq K,$$

for all j. Thus,

$$g(x_{j} - \lambda e) = \sup_{\substack{n \geq 1, q \geq 1 \\ 0 \neq z_{1}, \dots, z_{n-1} \in X}} \left(\frac{1}{n} \sum_{j=q}^{q+n-1} \left[M \left\| \left(\frac{x_{j} - \lambda e}{\rho}, z_{1}, \dots, z_{n-1} \right) \right\| \right]^{p_{k}} \right) \leq K.$$

Hence we have result from the following inequality

$$\frac{1}{k} \sum_{j=1}^{k} (g(x_j - \lambda e))^p = \frac{1}{k} \sum_{\substack{j=1 \ j \notin K_{\varepsilon}}}^{k} (g(x_j - \lambda e))^p + \frac{1}{k} \sum_{\substack{j=1 \ j \in K_{\varepsilon}}}^{k} (g(x_j - \lambda e))^p \\
\leq \varepsilon^p + \frac{K^p}{k} |K_{\varepsilon}|.$$

Let A and B be two sequence spaces. We use the notation $A_{reg} \subset B_{reg}$ to mean if the sequence x converges to a limit λ in A then the sequence x converges to the same limit in B.

REFERENCES 477

Theorem 10. $(S_{([\mathcal{M},[F],p,\|\cdot,...,\cdot\|],g)})_{reg} = ([C,g]_p)_{reg}.$

Proof. The proof can be done by combining Theorem 8 with Theorem 9 so we omit it. \Box

ACKNOWLEDGEMENTS The authors thank the referee for their valuable suggestions which improve the presentation of the paper.

References

- [1] A Alotaibi and A M Alroqi. Statistical convergence in a paranormed space. *Journal of Inequalities and Applications*, 39, 2012.
- [2] S Altundağ. On generalized difference lacunary statistical convergence in a paranormed space. *Journal of Inequalities and Applications*, 256, 2013.
- [3] M Başarir. On some new sequence spaces. Rivista Di Matematica Della Università Di Parma, 51(1):339–347, 1992.
- [4] M Başarir, Ş Konca, and E E Kara. Some generalized difference statistically convergent sequence spaces in 2—normed space. *Journal of Inequalities and Applications*, 177:1–12, 2013.
- [5] J S Connor. The statistical and strong p—cesàro convergence of sequences. *Analysis*, 8(1-2):47–63, 1988.
- [6] Ş Konca and M Başarır. Almost convergent sequences in 2- normed space and *g* statistical convergence. *Journal of Mathematical Analysis*, 4(2):32–39, 2013.
- [7] Ş Konca and M Başarır. On some spaces of almost lacunary convergent sequences derived by riesz mean and weighted almost lacunary statistical convergence in a real *n*—normed space. *Journal of Inequalities and Applications*, 81, 2014.
- [8] Ş Konca and M Başarır. On some spaces of almost lacunary convergent sequences derived by riesz mean and weighted almost lacunary statistical convergence in a real *n*–normed space. *Journal of Inequalities and Applications*, 81, 2014.
- [9] J P Duran. Infinite matrices and almost convergence. *Mathematische Zeitschrift*, 128(1):75–83, 1972.
- [10] H Fast. Sur la convergence statistique. Colloquium Mathematicum, 2(1):241–244, 1951.
- [11] A R Freedman, J J Sember, and M Raphael. Some cesàro-type summability spaces. *Proceedings of the London Mathematical Society*, 37(3):508–520, 1978.
- [12] J A Fridy. On statistical convergence. Analysis, 5(4):301–313, 1985.
- [13] S Gähler. Linear 2-normietre rume. Mathmatische Nachrichten, 28(1-2):1–43, 1965.

REFERENCES 478

[14] H Gunawan. On *n*-inner product, *n*-norms, and the cauchy-schwartz inequality. *Scientiae Mathematicae Japonicae*, 5(1):47–54, 2001.

- [15] H Gunawan. The space of *p*-summable sequence and its natural *n*-norm. *Bulletin of the Australian Mathematical Society*, 64(1):137–147, 2001.
- [16] H Gunawan and M Mashadi. On n-normed spaces. *International Journal of Mathematics and Mathematical Sciences*, 27(10):631–639, 2001.
- [17] J Lindenstrauss and L Tzafriri. On orlicz sequence spaces. *Israel Journal of Mathematics*, 10(5):379–390, 1971.
- [18] G G Lorentz. A contribution to the theory of divergent sequences. *Acta Mathematica*, 80(2):167–190, 1948.
- [19] I J Maddox. A new type of convergence. *Mathematical Proceedings of Cambridge Philosiphical Society*, 83(2):61–64, 1978.
- [20] I J Maddox. On strong almost convergence. *Mathematical Proceedings of Cambridge Philosiphical Society*, 85(1):345–350, 1979.
- [21] A Misiak. n-inner product spaces. Mathmatische Nachrichten, 140(1):299–319, 1989.
- [22] M Mursaleen. Generalized spaces of difference sequences. *Journal of Mathematical Analysis and Applications*, 203(2):738–745, 1996.
- [23] S D Parasher and B Choudhary. Sequence spaces defined by orlicz function. *Indian Journal of Pure and Applied Mathematics*, 25(4):419–428, 1994.
- [24] K Raj and A Kilicman. On certain generalized paranormed spaces. *Journal of Inequalities and Applications*, 37, 2015.
- [25] K Raj and S K Sharma. Applications of double lacunary sequences to n-norm. *Acta Universitatis Sapientiae Mathematica*, 7(1):67–88, 2015.
- [26] K Raj, S K Sharma, and A K Sharma. Some difference sequence spaces in *n*-normed spaces defined by musielak-orlicz function. *Armenian Journal of Mathematics*, 3(3):127–141, 2010.
- [27] I J Schoenburg. The integrability of certain fuctions and related summability methods. *The American Mathematical Monthly*, 66(5):361–375, 1959.
- [28] A Wilansky. *Summability through Functional Analysis*. North- Holland Mathematics Studies, Amsterdam, Netherlands, 1984.