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1. Introduction

Flocking is a coordinate and cooperative behavior easily conspicuous in a large

number of beings, ranging from simple bacteria to mammals [8]. Prominent exam-

ples from nature include: schools of fishes, flocks of birds, and herds of animals, to

name a few. This salient behavior is predominantly based on the principle that there

is safety and strength in numbers [4, 5]. For example, a flock of birds invariably

demonstrates a larger entity and dissuades potential attackers. On the other hand,

if a flock is attacked the flockmates can scatter to confuse the predators, thus avoid

being captured, then regroup at a safer distance. Flocking behavior also contributes

to cooperative foraging, better opportunities for mating and safer long distance mi-

grations [6]. Flocks travelling in large dense groups are capable of smooth collision

and obstacle avoidance maneuvers even in the presence of external obstacles which

may be fixed or even moving.

In literature, the flocking models are built within a framework of three basic rules

of steering namely, separation, alignment, and cohesion, which describe how an indi-

vidual maneuvers based on the positions and velocities of its nearby flockmates [12].

Although the rules governing each member of a flock are seemingly basic, the collec-

tive motion is strikingly spectacular. The superposition of these rules results in the

flockmates moving in a particular formation, with a common heading whilst ensuring

all possible collision and obstacle avoidances [16].

Biologically inspired algorithms that mimic the flocking behavior are essential in

accomplishing the control objective of a group while also ensuring a collision-free

flightpath. Common objectives nowadays include formation flight control, satellite

clustering, exploration, surveillance, foraging and cooperative manipulation [1,3,8].

The applications of foraging could involve search-and-rescue teams at disaster sites.

Team(s) of robots can be deployed to collect hazardous materials after a spill or other
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accidents in minimal time, hence, saving further loss. All in all, team(s) of homoge-

nous (even heterogenous) robots working towards a common objective can satisfy

stringent time, manpower and monetary demands, enhance performances and ro-

bustness, and harness desired multi-behaviors, each of which is extremely difficult if

not entirely impossible to obtain from single agents [5,7,9,11].

A wide spectrum of approaches have appeared in literature in relation to "forma-

tion stiffness", a rule necessitating strict observance of the prescribed formation dur-

ing the motion of the flock [13, 15]. On one end we have the split/rejoin maneuvers.

The applicability of the split/rejoin maneuvers can be immediately obvious in the field

of robotics, for example, reconnaissance, sampling, and surveillance. Populating the

other end of the spectrum are the tight-formations which can be required in applica-

tions that require cooperative payload transportation [3,9,13,15]. The main strength

of this paper lies on the emphasis placed upon the split/rejoin maneuvers, where a

group of robots in a specific formation splits and moves around the encountering ob-

stacle(s) and then returns to take its original position in the prescribed formation. A

new strategy is introduced in this paper to induce the split/rejoin maneuvers.

In recent times robotic applications with split/rejoin maneuvers have become in-

creasingly popular [3, 17, 18]. We will mention a few important ones here. Chang et

al. [3] used gyroscopic forces and scalar potential techniques to create swarming

behaviors for multiple agent systems. The governing decentralized control law guar-

anteed a group of robots accomplish specified control objectives while avoiding inter-

robot collisions and with unforeseen obstacles. [17, 18] provided design and anal-

ysis of distributed algorithms for large number of dynamic agents that enabled the

group to perform coordinated tasks. Free-flocking and flocking with obstacle avoid-

ance were considered with split/rejoin and squeezing maneuvers. Recently Sharma

et al. [14, 15] and Vanualailai et al. [19] developed algorithms that considered mo-

tion planning and control of mobile robots within a constrained and obstacle-ridden
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workspace. Continuous acceleration-based control laws derived from the Lyapunov-

based control scheme were utilized in their studies. In brief, the Lyapunov-based

control scheme is a new artificial potential field method which basically involves at-

taching attractive fields to the target and repulsive fields to each of the obstacles [10].

The total potential of the workspace is the sum of the attractive and repulsive fields

generated within the framework of the control scheme. The reader is referred to [13]

for a detailed account of the control scheme. Inspired, we adopt the control scheme to

control the flocking motion of a group of nonholonomic car-like vehicles. This paper

will demonstrate how the group can avoid collision with fixed obstacles by scattering,

and then regrouping after executing a successful avoidance maneuver. This avoid-

ance maneuver will be the split/rejoin maneuver, the coin of realm of the research.

In parallel, the control scheme utilizes Lyapunov’s Direct Method to analyze stability

of the vehicular system.

This paper is organized as follows: in Section 2 the robot model is defined; in Sec-

tion 3 motion planning is carried out, defining the targets, obstacles, and appropriate

attractive and avoidance functions; in Section 4 the Lyapunov-based control scheme

is executed to yield the controllers and to analyze the stability of the robot system; in

Section 5 we illustrate the effectiveness of the proposed controllers via simulations in-

volving the required split/rejoin maneuvers; and in Section 6 we conclude the paper

and outline future work in the area.
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2. Boid Model
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Figure 1: Kinemati
 model of ith boid.

Following the nomenclature of

Reynolds [12], we denote each

member of the flock as a boid. In

addition, each boid is assumed to

be a front-wheel steered car-like

vehicle, whereby engine power is

applied to the rear wheels.

With reference to Fig. 1, (x i, yi)

denotes the CoM of the ith boid,

θi gives its angle with respect to

the x -axis of the main frame, φi

gives the steering wheel’s angle with

respect to the ith boid’s longitudinal

axis. For simplicity, the dimensions

of the n boids are kept the same.

Therefore, l1 is the distance between

the center of the rear and front

axles, while l2 is the length of each

axle.

The configuration of the ith boid is given by (x i, yi,θi,φi) ∈ R
4, and its position

is given as the point (x i, yi) ∈ R
2. The kinodynamic model of the ith boid, adopted

from [14], with respect to its CoM is
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ẋ i = υi cosθi −
l1

2
ωi sinθi ,

ẏi = υi sinθi +
l1

2
ωi cosθi ,

θ̇i =ωi , υ̇i = σi ,

ω̇i = ηi , for i = 1, . . . , n,























(2.1)

where υi and ωi are, respectively, the instantaneous translational and rotational

velocities, while σi and ηi are the instantaneous translational and rotational acceler-

ations of the ith boid. Without any loss of generality, we assume φi = θi. The state of

ith boid is captured by the vector notation x i := (x i, yi,θi,υi,ωi) ∈ R
5, i = 1, 2, ..., n.

For n boids, we define the vector x = (x 1, ..., x n) ∈ R
5×n. Given the clearance param-

eters ε1 and ε2, we can enclose each boid by a protective circular region (smallest

possible) centered at (x i, yi), with radius rv =
p

(l1 + 2ε1)
2 + (l2 + 2ε2)

2/2. The rep-

resentation not only maximizes the free space available to the robots in the workspace

but it also ensures an easier construction of the potential field functions ( [13], [14]).

3. Devising the problem

In this section we formulate the split/rejoin maneuver for a flock of n nonholo-

nomic boids, guided by a leader-follower strategy. In a split/rejoin maneuver a flock

maintained in a prescribed formation splits and moves around encountering obsta-

cle(s) and then returns to take its original position in the original formation.

The Lyapunov-based control scheme requires the design of target attractive func-

tions and obstacle avoidance functions. On one hand, a attractive potential field func-

tion will be constructed from each target attractive function. This will enable a boid

to move towards its designated targets whilst maintaining the overall formation. On

the other hand, a repulsive potential field function would be designed from each ob-

stacle avoidance function constructed. This will ensure a collision-free avoidance in

the workspace. Next, these artificial potential field functions would be integrated ap-
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propriately to form a Lyapunov function (total potentials) from which the controllers

would be generated.

3.1. Attractive Potential Field Functions

To formulate functions that instigate attraction of the boids towards their desig-

nated targets we, first and foremost, need to introduce a new leader-follower strategy.

This new strategy helps in establishing and maintaining prescribed formations.

bi

ai

(x i , yi)

(x1, y1)

(x1 − ai , y1 − bi)

Leader

ith Boid
the ith Boid
Ghost Target of

Figure 2: Positioning of a mobile ghost targetrelative to the position of the leader-boid.

The new leader-follower strategy

summons the boids of the flock to

follow one particular boid which is

adopted as the leader-boid. This

strategy is advocated for the very first

time via mobile ghost targets. These

ghost targets are positioned relative

to the position of the leader-boid

with a user defined Euclidean mea-

sure (Figure 2).

We note here that each follower-robot

will have a different mobile ghost tar-

get designated to it.

While the mobile ghost targets move relative to the position of the leader-boid, the

follower-boids move towards the ghost targets designated to them, at every iteration

t > 0.
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3.1.1. Attraction to Target/Ghost Target

For the ith boid, we designate a target

Ti = {(x , y) ∈ R2 : (x − t i1)
2 + (y − t i2)

2 ≤ r t2
i
}

with center (t i1, t i2) and radius r t i. The leader-boid (i=1) will move towards its target

with center (t11, t12). Now, with respect to the follower-boids, the mobile ghost targets

allocated to each will be positioned relative to the position of the leader (ai horizontal

units and bi vertical units, see Fig. 2) and whose center is given by (t i1, t i2) = (x1 −

ai, y1 − bi), for i = 2 to n.

For attraction to the target/ghost target, we shall use an attractive function of the

form

HNi
(x) =

1

2
ln(Hi + 1) ,

where

Hi(x ) = (x i − t i1)
2+ (yi − t i2)

2+υ2
i
+ω2

i
, for i = 1, . . . , n. (3.1)

While the function is the measure of the distance between the ith boid and its

target Ti, it can also be treated as a measure of its convergence. In this case, the

particular form of HNi
(x) is sufficient to be treated as a suitable attractive potential

function required to generate attractive fields around the targets. Figure 3(a) shows

the valleys created by the attractive forces in a continuous potential field. These mo-

bile valleys, associated to the mobile ghost targets of the follower-boids 1 and 2, are

positioned according to user-defined measurements in the leader-follower scheme.

Similarly, there would be a valley each for the remaining flockmates and the ultimate

goal is for each follower-boid to move to its designated valley. Figure 3(b) shows the

accompanying contour plot.
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3.1.2. Auxiliary Function

To ensure that the Lyapunov function candidate vanishes when all the boids converge

to their final target configuration we design a new attractive function whose role is

purely mathematical, and hence, auxiliary. We define this auxiliary function as

Gi(x ) =
1

2

�

(x i − t i1)
2+ (yi − t i2)

2+ (θi − t i3)
2
�

≥ 0 , for i = 1, . . . , n, (3.2)

where t i3 is the desired orientation of the ith boid. We will multiply the function to

each of the repulsive potential field function to be designed in the following section.

3.2. Repulsive Potential Field Functions

We desire the boids to avoid all fixed and moving obstacles intersecting their paths.

Therefore, we construct obstacle avoidance functions that basically measure the dis-

tances between the ith boid and obstacles in the workspace. To obtain the desired
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avoidance, each of these functions will appear in the denominator of the repulsive

potential field function to generate the repulsive fields around the obstacles. The

numerators will be populated by tuning parameters which may be refined for safer,

shorter and smoother trajectories. The reader is referred to [13, 14, 19] for further

explanations. Now, we describe each obstacle appearing in the constrained workspace

and design the associated avoidance function.

3.2.1. Stationary Obstacles

Let Oq, q ∈ {1, . . . , m}, represent a solid object fixed within the workspace. We provide

the following definition of the stationary obstacles

Definition 3.1. The kth stationary obstacle is a disk with center (ok1, ok2) and radius

rok. Precisely, the kth stationary obstacle fixed in the workspace is the set

Ok = {(z1, z2) ∈ R
2 : (z1− ok1)

2 + (z2− ok2)
2 ≤ rok} .

For the ith boid to avoid the kth stationary obstacle, we adopt the avoidance function

Wik(x ) =
1

2

�

(x i − ok1)
2+ (yi − ok2)

2−
�

rok + rv

�2
�

, for i = 1, . . . , n ; k = 1, . . . , m.

(3.3)

This positive function is the Euclidean measure of the distance between the ith boid

and the kth stationary obstacle. Now let us consider, for some constant αik > 0 (clas-

sified as a tuning parameter), for i = 1 (leader-boid) and k = 1 (a stationary obstacle

fixed in the workspace), the effect of the ratio
α11

W11
. According to the Lyapunov-based

control scheme, this ratio is classified as a repulsive potential field function. If the

leader-boid approaches the stationary obstacle, then the value of the ratio will in-

crease. If it moves away from the stationary obstacle, the ratio will decrease.

Now, to provide the importance of the Lyapunov-based control scheme, we as-

sume that the ratio is an appropriate part of a Lyapunov function, L, which forms the
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artificial potential field function for system (2.1). Because, with respect to time t ≥ 0,

one gets d L/d t ≤ 0 along a trajectory of (2.1), and L is a positive definite function, L

cannot increase in t . Therefore any change in the value of the ratio could only corre-

spond to either an increase or decrease in |d L/d t |. Analogously, |d L/d t | is the rate of

dissipation of energy from the system in absolute value. If the stationary solid object

is being approached, then W11 gets smaller, and the ratio gets larger. Thus, the rate of

energy dissipation, in absolute value, gets larger. This, in turn, results in an increased

activity of the system. This increased activity could only be directed towards a stable

equilibrium point, away from the stationary solid object. In other words, a situation

where W11 = 0 can never eventuate. Hence, if the ratio is a part of a Lyapunov func-

tion for system (2.1), then intuitively the ratio will act as a repulsive potential field

function, this is the very essence of the Lyapunov-based control scheme. An example

of the effect of the repulsive potential function designed from Equation (3.3) can be

seen in Figure 3(a). The cylindrical potential spikes are immediately evident.

Henceforth, all the obstacle avoidance functions will be appropriately coupled

with tuning parameters to design the repulsive potential field functions to generate

the collision and obstacle avoidance maneuvers.

3.2.2. Moving Obstacles

From a practical viewpoint, the control algorithms must generate feasible trajectories

based upon real-time perceptual information. In this paper, we will only consider

moving obstacles of which the system has complete and a priori knowledge. Here,

each boid itself becomes a moving obstacle for all the other boids. Therefore, for the

ith boid to avoid the jth moving boid, we consider

Vi j(x) =
1

2

�

(x i − x j)
2 + (yi − y j)

2 −
�

2× rv

�2
�

, for i, j = 1 . . . , n, i 6= j. (3.4)
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This avoidance function is the measure of the Euclidean distance between the ith

and the jth boid.

3.2.3. Dynamics Constraints

Again, in practice, the translational speed and the steering angle of the robots are

limited. However, in order to treat the dynamic constraints within the Lyapunov-

based control scheme we will have design an artificial obstacle corresponding to each

dynamic constraint. Following on, we will design an appropriate obstacle avoidance

function for its avoidance.

If vmax > 0 is the maximum speed, and φmax is the maximum steering angle satis-

fying 0 < φmax <
π

2
then, as shown in [14], the constraints imposed on the transla-

tional and the rotational velocities are |υi| < υmax and υ2
i
≥ ρ2

min
ω2

i
. Where ρmin

known as the minimum turning radius is given as ρmin =
l1

tanφmax

. From above we get

|ωi| ≤
|υi |

|ρmin|
<
υmax

|ρmin|
.

Based on these constraints, the following artificial obstacles can be constructed:

AOi1 = {υi ∈ R : υi ≤ −υmax or υi ≥ υmax},

AOi2 = {ωi ∈ R :ωi ≤−υmax/|ρmin| or ωi ≥ υmax/|ρmin|},

For avoidance, the following obstacle avoidance functions will be included:

Ui1(x ) =
1

2
(υmax −υi)(υmax +υi) , (3.5)

Ui2(x ) =
1

2

�

υmax

|ρmin|
−ωi

��

υmax

|ρmin|
+ωi

�

, for i = 1, . . . , n. (3.6)

The repulsive potential functions generated from these obstacle avoidance functions

would guarantee the adherence to the limitations placed upon translational velocity

υi and the steering angle φi, respectively.
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4. Lyapunov-based Control Scheme

Utilizing the Lyapunov-based control scheme we now design the nonlinear con-

trol laws and provide a mathematical proof that system (2.1) is indeed stable. The

control laws have been extracted from a Lyapunov function which appropriately sums

the attractive and repulsive potential field functions designed in the aforementioned

sections.

We begin with the following theorem:

Theorem 4.1. Consider a flock of nonholonomic boids, the motion of which is gov-

erned by ODEs described by system (2.1). The objective is to, amongst considering other

integrated subtasks, establish and control a prescribed formation, facilitate split/rejoin

maneuvers of the boids within a constrained environment and reach the target config-

uration with the original formation. The subtasks include; restrictions placed on the

workspace, convergence to predefined targets, and consideration of kinematic and dy-

namic constraints. Utilizing the attractive and repulsive potential field functions the

following continuous time-invariant control laws can be generated for the ith boid that

per se stabilizes system (2.1) as well:

σi = −
�

δi1υi + f1i cosθi + f2i sinθi

�

/ f4i , (4.1)

ηi = −
�

δi2ωi +
ll

2

�

− f1i sinθi + f2i cosθi

�

+ f3i

�

/ f5i , (4.2)

for i = 1 to n where δi1,δi2 > 0 are constants commonly known as convergence

parameters.

Proof:

Introducing positive constants, denoted as tuning parameters, αik > 0, βi j > 0 and

γis > 0, for i, j, k, s ∈ N , we propose a Lyapunov function candidate for system (2.1):

L(x ) =

n
∑

i=1







HNi
(x ) + Gi(x )





m
∑

k=1

αik

Wik(x)
+

2
∑

s=1

γis

Uis(x )
+

n
∑

j=1,i 6= j

βi j

Vi j(x )











. (4.3)
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Assumption 4.1. x
∗ = (t i1, t i2, t i3, 0, 0, . . . , tn1, tn2, tn3, 0, 0) ∈ R5n ∈ D(L) is an equi-

librium point of system (2.1).

Remark 4.1. This is a reasonable assumption since L̇(x ∗) = 0 making x
∗ a feasible

equilibrium point, at least, in a small neighborhood of the target configuration.

Then one can easily verify the following:

1. L is continuous and positive on the domain D given as

D(L) = { x ∈ R5×n : Wik(x )> 0 for i = 1 to n , k = 1 to m , Uis(x )> 0 for

i = 1 to n , s = 1 to 2 and Vi j(x) > 0 for i, j = 1 to n , i 6= j } .

2. L(x ∗) = 0, x
∗ ∈ D .

3. L(x )> 0 ∀ x ∈ D, x 6= x
∗ .

Now let us consider the time derivative of our Lyapunov function candidate L(x ).

Along a particular trajectory of system (2.1), we have, upon collecting terms with vi

and ωi separately

L̇(2.1)(x) =

n
∑

j=1

��

f1i cosθi + f2i sinθi + f4iσi

�

υi

−
�

l1

2
f1i sinθi −

l1

2
f2i cosθi − f3i − f5iηi

�

ωi

�

,

where functions f1i to f5i are defined as (on suppressing x ):

f11 =

 

1

H1 + 1
+

m
∑

k=1

α1k

W1k

+

2
∑

s=1

γ1s

U1s

+

n
∑

j=2

β1 j

V1 j

!

(x1− t11)

−
n
∑

i=2





1

Hi + 1
+

m
∑

k=1

αik

Wik

+

2
∑

s=1

γis

Uis

+

n
∑

j=1,i 6= j

βi j

Vi j



 (x i − t i1)

−G1

n
∑

j=2

β1 j

V 2
1 j

(x1− x j) +

n
∑

j=2

G j

β j1

V 2
j1

(x j − x1)− G1

m
∑

k=1

α1k

W 2
1k

(x1− ok1) ,
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f1i =





1

Hi + 1
+

m
∑

k=1

αik

Wik

+

2
∑

s=1

γis

Uis

+

n
∑

j=1,i 6= j

βi j

Vi j



 (x i − t i1)

−Gi

n
∑

j=1,i 6= j

βi j

V 2
i j

(x i − x j) +

n
∑

j=1,i 6= j

G j

β ji

V 2
ji

(x j − x i)− Gi

m
∑

k=1

αik

W 2
ik

(x i − ok1) ,

for i = 2 to n ,

f21 =

 

1

H1 + 1
+

m
∑

k=1

α1k

W1k

+

2
∑

s=1

γ1s

U1s

+

n
∑

j=2

β1 j

V1 j

!

(y1 − t12)

−
n
∑

i=2





1

Hi + 1
+

m
∑

k=1

αik

Wik

+

2
∑

s=1

γis

Uis

+

n
∑

j=1,i 6= j

βi j

Vi j



 (yi − t i2)

−G1

n
∑

j=2

β1 j

V 2
1 j

(y1 − y j) +

n
∑

j=2

G j

β j1

V 2
j1

(y j − y1)− G1

m
∑

k=1

α1k

W 2
1k

(y1 − ok2) ,

f2i =





1

Hi + 1
+

m
∑

k=1

αik

Wik

+

2
∑

s=1

γis

Uis

+

n
∑

j=1,i 6= j

βi j

Vi j



 (yi − t i2)

−Gi

n
∑

j=1,i 6= j

βi j

V 2
i j

(yi − y j) +

n
∑

j=1,i 6= j

G j

β ji

V 2
ji

(y j − yi)− Gi

m
∑

k=1

αik

W 2
ik

(yi − ok2) ,

for i = 2 to n , and

f3i =





m
∑

k=1

αik

Wik

+

2
∑

s=1

γis

Uis

+

n
∑

j=1,i 6= j

βi j

Vi j



 (θi − t i3) ,

f4i =
1

Hi + 1
+ Gi

γi1

U2
i1

, f5i =
1

Hi + 1
+ Gi

γi2

U2
i2

,

for i = 1 to n.

Substituting the controllers given in (4.1) - (4.2) and the governing ODEs for

system (2.1) we obtain a semi-negative definite function :

L̇(2.1)(x ) = −
n
∑

i=1

�

δi1υ
2
i
+δi2ω

2
i

�

≤ 0 .



B. Sharma, J. Vanualailai, and U. Chand / Eur. J. Pure Appl. Math, 2 (2009), (401-425) 416

We have thus provided a working proof of the fact that d

d t
[L(x )] ≤ 0 ∀ x ∈ D.

Finally, it can easily be verified that the first partials of L(2.1)(x) is C1 which makes

up the fifth and final prerequisite of a Lyapunov function.

Once L(x ) successfully meets the five prerequisites discussed above, it is declared

a feasible Lyapunov function for system (2.1) and x
∗ is at least a stable equilibrium

point in the sense of Lyapunov. In our case, this practical limitation is well within the

Lyapunov framework and there is no contradiction with Brockett’s result [2] because

we have proven only stability, and not asymptotic stability. Stability means that any

solution of system (2.1) starting close to x
∗ remains near it at all times.

5. Results

In this section we illustrate the effectiveness of the Lyapunov-based control scheme

and the resulting nonlinear control laws, by simulating two interesting scenarios. We

present two different split/rejoin maneuvers for a flock of ten boids clustered at the

starting line. The boids in each scenario coalesce into a distinct prescribed formation

and move in the direction of their targets. When the formation encounters fixed ob-

stacles intersecting its path, the affected boids split and move around the obstacles

for a collision-free avoidance. Subsequently, the boids rejoin their coherent group and

the original formation gets re-enacted before the final target position is attained.

We consider two different formations in this paper: (i) arrowhead formation, and

(ii) circular formation. In the two formations, Boid 1, situated initially at (x1, y1) =

(8, 24) (see Fig. 4(b)and Fig. 6(b)), acts as the leader-boid. As the leader moves

towards its target, the follower-boids will move towards the moving ghost target des-

ignated to each. These ghost targets of the follower-boids are positioned relative to

the position of the leader in a specific pattern (the scheme is illustrated in Fig.2) that

will help to maintain the prescribed formation enroute.
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5.1. Scenario 1: Arrowhead Formation

For this scenario, the prescribed formation is an arrowhead with the leader boid

positioned at the tip of the arrowhead. Assuming the units have been appropriately

taken care of, initial conditions pertaining the kinodynamic system and other essen-

tials of the simulation are provided in Table 1.

As the leader moves towards its target, the follower-boids move towards their

ghost targets positioned relative to the leader’s position, according to the coordinates

(ai, bi) given in Table 1. From the initial configuration the boids quickly coalesce into

a distinct arrowhead formation (Fig. 4(b)). The boids then split from their forma-

tion to avoid two obstacles in their path (as shown in Figures 4(c) and 4(d)). After

the avoidance, the boids rejoin the flock showing the same prescribed arrowhead for-

mation (Fig. 4(e)). The reformation takes place before the flock reaches the final

configuration (Fig. 4(f))

Figure 5(a) shows the evolution of the orientations of the first and the fourth

boids. The different headings can be noticed during the split of the flock, how-

ever, the pre-defined final orientations are achieved at the target configuration as

warranted in this research. Figure 5(b) shows the acceleration components for the

leader-boid. One can clearly notice the convergence of the variables at the final state

implying the effectiveness of the controllers. Similar trends were observed in the case

of the follower-boids. The profiles of the Lyapunov function along the system trajec-

tory show that the conditions of Theorem 1 have been satisfied and that the initial

conditions adopted are within the defined domain of the state-space.
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al values of initial states, 
onstraints and parameters of S
enario 1.
Initial Conditions

Rectangular positions (x1, y1) = (8, 24), (x2, y2) = (8, 27), (x3, y3) = (8, 21);

(x4, y4) = (8, 30), (x5, y5) = (2, 24), (x6, y6) = (8, 18);

(x7, y7) = (2, 30), (x8, y8) = (2, 27), (x9, y9) = (2, 21);

(x10, y10) = (2, 18)

Angular positions & velo. θi = 0, υi = 0.5, ωi = 0.8, for i = 1 to 10

Constraints and Parameters

Dimension of Boids l1 = 1.6, l2 = 1.4

Target for leader (t11, t12) = (50, 24), r t1 = 0.5

Final orientations t i3 = 0, for i = 1 to 10

Position of ghost (a2, b2) = (3,−3), (a3, b3) = (3, 3), (a4, b4) = (6,−6);

targets relative to (a5, b5) = (6, 0), (a6, b6) = (6, 6), (a7, b7) = (9,−9);

leader boid (a8, b8) = (9,−3), (a9, b9) = (9, 3), (a10, b10) = (9, 9);

Fixed obstacles (ok1, ok2) (o11, o12) = (25, 28), (o21, o22) = (25, 20), ro1 = ro2 = 1.5

Max. translational speed υmax = 3

Min. turning radius ρmin = 0.14

Clearance parameter ε1 = 0.1, ε2 = 0.05

Control and Convergence Parameters

Obstacle avoidance αik = 0.6, for i = 1 to 10 and k = 1 to 2

Boid avoidance βi j = 0.01, for i = 1 to 10, j = 1 to 10, i 6= j

Dynamics constraints γis = 0.0001, for i = 1 to 10, s = 1 to 2

Convergence δ11 = 3, δ12 = 3, δiq = 2, for i = 2 to 10 and q = 1 to 2
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(f) Snapshot at t = 200 unitsFigure 4: Showing the split/rejoin maneuvers for a �o
k of 10 nonholonomi
 boids lo
ked in anarrowhead formation.
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(b) Accelerations: σ (dashed line) and η.Figure 5: Evolution of the angular positions and a

eleration 
omponents for S
enario 1.
5.2. Scenario 2: Circular Formation

For this scenario, the prescribed formation is a circular arrangement with the

leader-boid positioned in the center of the formation. We retain the leader-follower

scheme although the virtual structures/centers could have been utilized for this par-

ticular formation. Table 5.2 provides the essentials for the simulation; however, only

those that are different from scenario 1.

Figure 6 illustrate a similar split/rejoin maneuver as in scenario 1; however, with

a different constellation. The flock establishes the specified formation, carries out the

split/rejoin maneuver to avoid the obstacles, re-establishes the formation and finally

converges to the final configuration. Figure 7 shows the velocity and acceleration

components of Boid 4. Again the figures illustrate the convergent nature of the non-

linear controllers. Similar trends were observed in the case of the other boids.
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Table 2: Numeri
al values of 
onstraints and parameters of S
enario 2.
Position of ghost (a2, b2) = κ(cos(π

9
), sin(π

9
)), (a3, b3) = κ(cos(17π

9
), sin(17π

9
))

targets relative to (a4, b4) = κ(cos(π
3
), sin(π

3
)), (a5, b5) = κ(cos(π), sin(π))

leader boid (a6, b6) = κ(cos(5π

3
), sin(5π

3
)), (a7, b7) = κ(cos(5π

9
), sin(5π

9
))

(a8, b8) = κ(cos(7π

9
), sin(7π

9
)), (a9, b9) = κ(cos(11π

9
), sin(11π

9
))

(a10, b10) = κ(cos(13π

9
), sin(13π

9
)) where κ= 7

Control and Convergence Parameters

Obstacle avoidance αik = 0.6, for i = 1 to 10 and k = 1 to 2

Boid avoidance βi j = 0.01, for i = 1 to 10, j = 1 to 10, i 6= j

Dynamics constraints γis = 0.001, for i = 1 to 10 and s = 1 to 2

Convergence δiq = 3, for i = 1 to 10 and q = 1 to 2
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(f) Snapshot at t = 200 unitsFigure 6: Showing the split/rejoin maneuvers for a group of 10 nonholonomi
 boids maintained ina 
ir
ular 
onstellation.
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ity and a

eleration 
omponents of Boid 4 for S
enario 2.
6. Conclusion

The Lyapunov-based control scheme was successfully utilized to create a new set

of continuous time-invariant control laws. We were able to generate a prescribed for-

mation, accomplish the required split/rejoin maneuvers and re-establish the original

formation of a flock of nonholonomic robots. By and large, the control scheme has

presented an excellent platform to yield split/rejoin maneuvers of a flock fixed in a ar-

bitrary formation. The new controllers (4.1) and (4.2) produced feasible trajectories

and ensured a nice convergence of the system to the equilibrium state, whilst satis-

fying all the constraints tagged on the system. Moreover, although computationally

intensive the control scheme will sufficiently encompass expansions to and scalability

of flocks.

The unique pattern of boids’ movement as a flock was possible by inclusion of

a new leader-follower strategy that involved moving ghost targets which were posi-
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tioned relative to the leader-boid. This specific positioning, however, restricted the

formation to a horizontal wayward motion only. Future research will address rotation

of formations and changing the leadership roles of the flockmates. The authors will

also utilize the concept of flocking via the Lyapunov-based control scheme on tunnel

passing and lane merging problems of intelligent vehicle systems.
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