EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 3, 2016, 244-249 ISSN 1307-5543 – www.ejpam.com

Comultiplication Modules

Jafar Azami, M. Khajepour*

Faculty of mathematical sciences, Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract. Let *R* be a commutative ring. An *R*-module *M* is comutiplication if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$. This paper is devoted to study some properties of comultiplication rings and modules.

2010 Mathematics Subject Classifications: 13C13 **Key Words and Phrases**: Multiplication modules, Comultiplication modules

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. We recall that R-module M is comutiplication if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$. It was shown that M is comultiplication if and only if for each submodule N of M, $N = (0 :_M Ann_R(N))$ [4]. Also a Noetherian local ring R is a gorenstein ring if $injdim R < \infty$ [6]. In this article, among other results, we will show that if R is a local Artinian ring, then R is comultiplication if and only if R is gorenstein. An R-module M is called generalized hopfian, if every surjective endomorphism of M has a small kernel. It is proved that every comultiplication module is generalized hopfian. At last but not at least, we consider the direct sum of comultiplication modules, it is shown that $M = \bigoplus_{i \in I} M_i$, is comultiplication if and only if for each $i \in I, M_i$ is a comultiplication module and for each submodule N of $M, N = \bigoplus_{i \in I} (N \bigcap M_i)$.

2. Auxiliary Results

In this section we will provide the definitions and results which are necessary in the next section.

Definition 1.

http://www.ejpam.com

(c) 2016 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: jafar.azami@gmail.com, azami@uma.ac.ir (J. A'zami), maryamkhajepour@uma.ac.ir (M. Khajepour)

- J. A'zami, M. Khajepour / Eur. J. Pure Appl. Math, 9 (2016), 244-249
 - (1) Let M be an R-module. A submodule N of M is said to be large (resp. small) if for every non-zero submodule K of M, we have $N \cap K \neq 0$ (resp. $N + K \neq M$).
 - (2) An R-module M is called generalized hopfian, if every subjective endomorphism of M has a small kernel.
 - (3) An R-module M is called weakly co-hopfian, if every injective endomorphism of M has a large image.
 - (4) Let I be an ideal of R. We say that I is a second ideal of R, if for each $r \in R$, rI = 0 or rI = I.
 - (5) An R-module M is called uniform, if every submodule of M is large.
 - (6) An ideal I of R is a pure ideal if for each ideal J of R, $IJ = I \cap J$.
 - (7) A submodule N of M is a copure submodule if for each ideal I of R, $(N:_M I) = N + (0:_M I)$.
 - (8) An R-module M is called weak comultiplication if for every prime submodule N of M, there exists an ideal I of R such that $N = (0:_M I)$

Theorem 1. Let *R* be a discrete valuation ring with the unique maximal ideal *m*. If *R*-module *M* is comultiplication, then $M \cong E(R/m)$ or $M \cong R/m^n$, for some $n \in N$.

Proof. See [1] and [2].

Theorem 2 ([4]). Let R be a Noetherian ring, and M be a comultiplication R-module so M is Artinian.

Theorem 3 ([3]). Let R be a Noetherian ring, and M be an injective multiplication R-module, so M is comultiplication.

Lemma 1 ([5]). If *M* is a comultiplication *R* -module, then for each endomorphism *f* of *M*, $Imf = Ann_R(kerf)M$.

3. Main Results

Lemma 2. Let R be a Noetherian ring. Then the following statements are equivalent:

- (1) R is a comultiplication ring;
- (2) For all $P \in Spec(R)$, R_P is a comultiplication ring;
- (3) For all $P \in Max(R)$, R_P is a comultiplication ring.

Proof. $(1\rightarrow 2)$ Let J be an ideal of R_p , then there exists an ideal I of R such that $J = I_p$. Now I = AnnAnnI and so $J = I_p = AnnAnnI_p = AnnAnnJ$.

 $(2\rightarrow 3)$ It is clear.

 $(3 \rightarrow 1)$ Let *I* be an ideal of *R*. For all $P \in Max(R)$, we have $I_P = AnnAnnI_P = (AnnAnnI)_P$ and so I = AnnAnnI.

J. A'zami, M. Khajepour / Eur. J. Pure Appl. Math, 9 (2016), 244-249

Theorem 4. Let *M* be a comultiplication *R*-module then

- (1) If I is a second ideal of R, then $N = (0:_M I)$ is a prime submodule of M.
- (2) If N is a second submodule of M, then $Ann_{R}N$ is a prime ideal of R.
- (3) If M is faithful, and N a submodule of M such that Ann_RN is a large ideal of R, then N is a small submodule of M.
- (4) If N be a submodule of M such that AnnN is a pure ideal of R, then N is a copure submodule of M.

Proof.

- (1) Let $r \in R$ and $m \in M$ be elements such that $rm \in N$ and $r \notin (N :_R M)$. Therefore $rM \notin N$ and so $rMI \neq 0$. This shows that $rI \neq 0$, and by hypothesis rI = I. Since $rm \in N = (0 :_M I)$, it follows that rmI = 0 and so mI = 0, that implies $m \in (0 :_M I) = N$.
- (2) Let *N* be a second submodule of *M*. Set $I := Ann_R N$ and so $N = (0:_M I)$. Suppose that x, y be two elements of *R* such that $xy \in I$ but $x \notin I$ and $y \notin I$. Now $xy \in I$, implies that xyN = 0 and hence $(xy)^n N \neq N$ for each $n \in N$. Since $x, y \notin I$, it follows that there exists $n \in N$ such that $x^n N = N$ and $y^n N = N$. Consequently $(xy)^n N = x^n y^n N = N$, which is a contradiction.
- (3) Let there exists a submodule *K* of *M* such that M = N + K. So

$$M = N + K = (0:_{M} AnnN) + (0:_{M} AnnK) = (0:_{M} AnnN) (AnnK).$$

Therefore $AnnN \bigcap AnnK \subseteq AnnM = 0$, and consequently AnnK = 0 which implies that $K = (0:_M AnnK) = M$.

(4) We show that for each ideal *I* of *R*, $(N :_M I) = N + (0 :_M I)$. Note that for each ideal *I* of *R* there exists a submodule *K* of *M* such that $(0 :_M I) = (0 :_M AnnK)$, so

$$(N:_{M} I) = ((0:_{M} AnnN):_{M} I) = ((0:_{M} I):_{M} AnnN) = ((0:_{M} AnnK):_{M} AnnN)$$
$$= (0:_{M} AnnKAnnN) = (0:_{M} AnnK \bigcap AnnN)$$
$$= (0:_{M} AnnN) + (0:_{M} AnnK) = N + (0:_{M} I).$$

Theorem 5. Every comultiplication module is a generalized hopfian and weakly co-hopfian module.

Proof. Let *M* be a comultiplication module and *f* be a surjective endomorphism of *M*. Suppose that there exists a submodule *N* of *M* such that M = kerf + N. In this case f(M) = f(kerf + N) = f(N). Therefore $M = f(N) = (0 :_M (0 :_R f(N)))$.

J. A'zami, M. Khajepour / Eur. J. Pure Appl. Math, 9 (2016), 244-249

Since *M* is a comultiplication *R*-module, it follows that $f(N) \subseteq N$ and so we have:

$$M = (0:_M (0:_R f(N))) \subseteq (0:_M (0:_R N)) = N$$

and hence *kerf* is a small submodule of *M*. Now let *f* be an injective endomorphism of *M* and *N* be a submodule of *M* such that $Imf \bigcap N = 0$. By the previous lemma, $Imf = Ann_R(kerf)M$, and so $Ann_R(kerf)M \bigcap N = 0$. But kerf = 0 and hence $N = M \bigcap N = 0$.

Theorem 6. *let* (R, m) *be a local Artinian ring, then the following statements are equivalent:*

- (1) *R* is a comultiplication ring;
- (2) *R* is a gorenstein ring;
- (3) $soc(R) \approx R/m$;
- (4) E(R/m) is a multiplication R module.

Proof. $(1 \rightarrow 2)$ It is enough to show that r(R) = 1. Suppose on the contrary that $r(R) \neq 1$, so r(R) = 0 or r(R) > 1. If r(R) = 0, then $r(R) = dim_k Hom_R(R/m, R) = 0$ and so $(0:_R m) \approx Hom_R(R/m, R) = 0$. Which is a contradiction, because the annihilator of any proper ideal of an Artinian local ring is non-zero. Now suppose that r(R) > 1, so there exist two ideals I and J of R such that $(0:_R m) = I \bigoplus J = (0:_R AnnI) \bigoplus (0:_R AnnJ) = (0:_R AnnI \bigcap AnnJ)$, this means that $(0:_R AnnI \bigcap AnnJ) \neq 0$. On the other hand

$$I \bigcap J = AnnAnnI \bigcap AnnAnnJ = Ann(AnnI + AnnJ) \neq 0,$$

Which is a contradiction.

 $(2\rightarrow 3)$ Since *R* is gorenstein, it follows from [6], for all non-zero ideals *I* and *J* of *R*, $I \bigcap J \neq 0$. Now let S_1 and S_2 be two simple submodules of *R*, then $S_1 \bigcap S_2 \neq 0$ and consequently $S_1 = S_2$.

 $(3\rightarrow 4)$ Since $soc(R) = (0:_R m) \approx R/m$, it follows that r(R) = 1 and so R is a gorenstein ring. On the other hand dimR = injdimR = 0. Thus R is an injective R module and so $R \approx E(R/m)$, by [6].

 $(4 \rightarrow 1) E(R/m)$ is multiplication and Artinian, it follows that E(R/m) is cyclic and so $E(R/m) \approx R$. Now *R* is an injective and multiplication *R* module, then by [3] *R* is comultiplication.

Theorem 7. Let (R, m) be a local Artinian ring, and M be a faithful comultiplication R-module. Then M is uniform.

Proof. Let (R, m) be a local Artinian ring, and M be a faithful comultiplication R-module and N be a submodule of M such that $N \cap K = 0$, for some submodule K of M. Then we have

$$N \cap K = (0:_M Ann_R(N)) \cap (0:_M Ann_R(K)) = (0:_M Ann_R(N) + Ann_R(K)).$$

J. A'zami, M. Khajepour / Eur. J. Pure Appl. Math, 9 (2016), 244-249

Now if $Ann_R(N) + Ann_R(K) = 0$, then

$$N \cap K = (0:_M 0) = M \neq 0$$

So suppose that $Ann_R(N) + Ann_R(K) \neq 0$, then $Ann_R(N) + Ann_R(K) \subseteq m$. Therefore

$$0 = N \cap K = (0:_M Ann_R(N) + Ann_R(K)).$$
(1)

Hence

$$Ann(Ann_R(N) + Ann_R(K)) \subseteq Ann(M) = 0$$
⁽²⁾

which is a contradiction, because R is Artinian.

Lemma 3. Let (R, m) be an Artinian local ring. Then R is comultiplication if and only if

$$(0:_R m^{n+1})/(0:_R m^n) \simeq m^n/m^{n+1}$$
 for all $n \ge 0$.

Proof. Let *R* be a comultiplication ring, then by Theorem 6, $soc(R) \approx R/m$ and so we have $(0:_R m) \approx R/m$. Now let $n \ge 1$, consider the following exact sequence:

$$0 \to m^n/m^{n+1} \to R/m^{n+1} \to R/m^n \to 0$$

Since *R* is gorenstein, it follows that $0 = dimR \le injdimR = depthR \le dimR = 0$, and so *R* is injective *R*-module. Therefore we have the following exact sequence.

$$0 \rightarrow (0:_R m^n) \rightarrow (0:_R m^{n+1}) \rightarrow Hom(m^n/m^{n+1}, R) \rightarrow 0$$

On the other hand r(R) = 1 and we have

$$Hom(m^{n}/m^{n+1},R) \approx Hom(\bigoplus_{i=1}^{t} R/m,R) \approx \bigoplus_{i=1}^{t} Hom(R/m,R) \approx \bigoplus_{i=1}^{t} R/m = m^{n}/m^{n+1}.$$

Therefore by the last exact sequence $(0:_R m^n)/(0:_R m^{n+1}) \approx m^n/m^{n+1}$.

Lemma 4. Let M_1, M_2 be two submodules of a comultiplication *R*-module *M* such that $M = M_1 \bigoplus M_2$. Then $Hom_R(M_1, M_2) = Hom_R(M_2, M_1) = 0$.

Proof. Let $f : M_1 \to M_2$ be a homomorphism. Since M is comultiplication, $f(M_1) \subseteq M_1$, by [2]. On the other hand $f(M_1) \subseteq M_2$ and so $f(M_1) \subseteq M_1 \bigcap M_2 = 0$. This shows that f = 0. \Box

Theorem 8. Let *R* be a Dedekind domain, and *M* be a comultiplication module, then there exist distinct maximal ideals $P_{i i \in I}$ of *R* and submodules M_i , $i \in I$ of *M*, such that $M = \bigoplus_{i \in I} M_i$ and for each $i \in I$, $M_i \cong E(R/P_i)$ or $M_i \cong R/P_i^{n_i}$, for some $n_i \in N$.

248

REFERENCES

Proof. Let *R* be a Dedekind domain and *M* be comultiplication, so *R* is Noetherian and *M* is Artinian by [4]. Set $M(P) := \{m \in M \mid \exists n \in N, P^n m = 0\}$ for $P \in Spec(R)$. There exist distinct maximal ideal $\{P_i\}_{i \in I}$ such that $M = \bigoplus_{i \in I} M(P_i)$. Let $M_i = M(P_i)$, since *M* is comultiplication, it follows that each M_i is also comultiplication. On the other hand each M_i is an R_{P_i} -module. So by Theorem 8 for each $i \in I$, $M_i \cong E(R_{P_i}/P_iR_{P_i})$ or $M_i \cong R_{P_i}/P_iR_{P_i}^{n_i}$, since $P_i \bigcap (R \setminus P_i) = \emptyset$, it follows that $E(R_{P_i}/P_iR_{P_i}) \cong E(R/P_i)$, also $R_{P_i}/P_iR_{P_i}^{n_i} \cong R/P_i^{n_i}$.

Theorem 9. Let $R \subseteq \overline{R}$ be an integral extension and \overline{R} be weak comultiplication, then R is weak comultiplication.

Proof. Let $P \in Spec(R)$ so there exists a prime ideal q of \overline{R} such that $p = q^c$ so

$$p = q^{c} = (0:_{R} Ann_{R}(q))^{c} \supseteq (0:_{R} Ann_{R}(q^{c})) = (0:_{R} Ann_{R}(p)).$$
(3)

References

- [1] Y AL-Shaniafi and P F Smith. Comultiplication modules over commutative rings. *Journal of commutative algebra*, 3:1–29, 2011.
- [2] H Ansari-Toroghy and F Farshadifar. The dual notion of multiplication modules. *Taiwanese journal of mathematics*, 11:1189–1201, 2007.
- [3] H Ansari-Toroghy and F Farshadifar. Comultiplication modules and related results. *Honam mathematical Journal*, 30:91–99, 2008.
- [4] H Ansari-Toroghy and F Farshadifar. On comultiplication modules. *Korean Ann Math*, 25:57–66, 2008.
- [5] H Ansari-Toroghy and F Farshadifar. Multiplication and comultiplication modules. *Novi sad Journal Math*, 41:117–122, 2011.
- [6] M P Brodmann and R Y Sharp. *Local cohomology; an algebraic introduction with geometric applications*. Cambridge University Press, Cambridge, 1998.