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Abstract. In this paper, we discuss the structure of pseudo-BCI algebras and get that any pseudo-
BCI algebra is a union of it’s branches. We introduce the notion of local bounded pseudo-BCI
algebras and study some related properties. Moreover we define two operations Aj, Ag in a local
bounded pseudo-BCI algebra A and two local operations V1 and Vs in V' (a) for a € M(A). We show
that in a A1 (A2)-commutative local bounded pseudo-BCT algebra A, (V(a), A1, V1)((V(a), A2, Va))
forms a lattice for all a € M(A). We define a Bosbach state on a local bounded pseudo-BCI
algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is
local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach
states. Moreover we discuss some basic properties about Bosbach states. If s is a Bosbach state of a
local bounded pseudo-BCI algebra A, we prove that A/ker(s) is equivalent to an MV-algebra. We
also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss
the relations between Bosbach states and state-morphisms. Finally we give some characterization
of Bosbach states.
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1. Introduction

BCK/BCI algebras were introduced originally by Iséki in [17] and [18] with a binary
operation * modeling the set-theoretical difference. Another motivation is from classical
and non-classical propositional calculi modeling logical implications. Such algebras contain
as a special subfamily of a family of MV-algebras where some important fuzzy structures
can be studied. For more about BCK algebras, see [22].

Pseudo-BCK algebras were originally introduced by Georgescu and Iorgulescu in [13]
as algebras with ”two differences”, a left- and right-difference, instead of one % and with
a constant element 0 as the least element. In [12], a special subclass of pseudo-BCK
algebras, called Lukasiewicz pseudo-BCK algebras, was introduced and it was shown that
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it is always a subalgebra of the positive cone of some ¢-group (not necessarily abelian).
The class of Lukasiewicz pseudo-BCKalgebras is a variety whereas the class of pseudo-
BCKalgebras is not; it is only a quasivariety because it is not closed under homomorphic
images. For a guide through the pseudo-BCK algebras realm, see the monograph [16].
In [8], W. A. Dudek and Y. B. Jun introduced the notion of pseudo-BCI algebras as an
extension of BCI-algebras, and investigated some properties.

MV-algebras entered into mathematics just 50 years ago due to Chang [3], but the
notion of a state for MV-algebras was introduced by Mundici [23] in 1995 as averaging of
the truth-value in Lukasiewicz logic. BL-algebras were introduced in the 1990s by Hajek
[14] as the equivalent algebraic semantics for its basic fuzzy logic. In [5], authors defined
a state-operator and a strong state-operator for a BL-algebra and prove some of their
basic properties. L. Z. Liu studied the existence of Bosbach states and Riecan states
on finite monoidal t-norm based algebras in [21]. Some examples show that there exist
MTL-algebras having no Bosbach states and Riecan states.

In [10], Dvurecenskij introduced measures and states on BCK-algebras, and showed
that the set of elements of measure 0 is an ideal, and the corresponding quotient BCK-
algebra is commutative with a lifted original measure. Ciungu and Dvurecenskij [4] ex-
tended the notions of measures and states presented in Dvurecen-skij and Pulmannova
[9] to the case of pseudo-BCK algebras, studied similar properties, and prove that, under
some conditions, the notion of a state in the sense of Dvurecenskij and Pulmannovd [9]
coincides with the Bosbach state.

The aim of this paper is to introduce and study the state theory on local bounded
pseudo-BCI algebras. This paper is organized as follows: in Section 2, we recall notions
of BCl-algebras and the notion and some properties of pseudo-BCI algebras. In the same
time, we discuss the structure of pseudo-BCI algebras and get that any pseudo-BCI algebra
is a union of it’s branches. In Section 3, we introduce the notion of local bounded pseudo-
BCI algebras and study some related properties. In Section 4, we define a Bosbach state
on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded
pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having
a Bosbach state but there is some one having no Bosbach states. Moreover we discuss
some of their basic properties. We discuss the relation between local bounded pseudo-
BCI algebras and MV-algebras. We also introduce the notion of state-morphisms on
local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and
state-morphisms. Finally we give some characterization on Bosbach states.

2. Pseudo-BCI algebras

Recall that a BCI-algebra is an algebra (X, *,0) of type (2,0) satisfying the following
axioms: for every z,y,2 € X, (1) ((x*xy)* (zx2))*x(z*xy) =0, (2) (zx(x*xy))xy =0,
B)zxx=0,(4) zxy=0and y*xz =0 imply z = y.

For any BCI-algebra X, the relation < defined by z < y if and only if z xy = 0 is a
partial order on X. A nonempty subset I of a BCI-algebra X is called a BCI- ideal of X
if it satisfies (1) 0 € I, (2) Forall z,y € X,z xye l,ye [ =z € I.
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We recall the notion and some properties of pseudo-BCI algebras.

Definition 1. [19] A pseudo-BCI algebras is a structure A = (A, <,%,0,0), where < is
a binary relation on A, x and o are binary operations on A and ”0” is an element of A,
satisfying, for all x,y,z € A,

() (xxy)o(z*2)<zxy, (roy)x(xoz)<zoy.

() o (zoy) <y, wolz+y) <y.
(Iy) x <y andy < x imply . = y.
() z<yiffexy=0iffroy=0.

Definition 2. [13] A pseudo-BCK algebra is a structure A = (A, <, —,~,1) where < is

a binary relation on A, and — and ~» are binary operations on A and 1 is an element of

A satisfying, for all x,y,z € A, the axzioms:
(K))z—=y=3(y—=2)~(x—2),z~y=(y~z2) — (x~2).

(Ko)z 2 (z = y)w~y o2 (z~y) —y.
(Kg).%’<[1?

(K4)x<1

(K5) if e <y and y < x, then x = y.

(Kg) x Xy iff et >y=1iffx ~y=1.

Remark 1. (1) A pseudo-BCK algebra A = (A, X, —~>,1) can be seen a pseudo-BCI
algebra A = (A, <,%,0,0) ifx > y=yxz,x~y=yox, 1=0andzx <y iff y <z for
all z,y € A.

(2) A pseudo-BCI algebra is a BCI algebra if x = o.

(3) The relation < is a partial order on a pseudo-BCI algebra A.

Now we give two pseudo-BCI algebras which are not pseudo-BCK algebras.

Example 1. Let A = {0,u,v,w,t,1,a,b}. The order of the elements in A is as the
following Hasse diagram:

i g
as
g

o

0 a

Now the operations * and o are defined by Tables 2.1 and 2.2, respectively. Simple calcu-
lations show that (A, <, *,0,0) is a pseudo-BCI algebra.

Example 2. Let A = {0,z,y,z2,1,a,b} in which the order of elements in A is as the
following Hasse diagram:
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* [0 |lu|lv | wl|t|1l]|a]|b o |0 |ulv | w|t|1l|a]|b
O[]0 |O0O|]O0O|O]|O0O]|O0O|ala 0|0 |O0O|O0O]O|0O|0]ala
u|{ul/0|]0]0|0|0]ala u|lu|0]|]0]0]|]0]|0]ala
viv | iv|0O|lv|[0|O0O]la]a viv iv| 0]|v | |0]0]ala
wlw|lw| w|0|[0[|0O]a]|a wlw| w| w|0|0]|0]|]al]|a
t |t |t |w|t |[0|]0]a]a t |t |t |t |v][0O|]O0O|a]|a
111111 ]1|0]|ala 1 (1|1 (1|1 ]1|0|a]a
ala|a|a|a|a|la|0]|O0 ala|al|lal|lalalal|0]|O0
b|b|b|b|b|bjal|l]0 b|b|b|b|b|blal|l|0
Tables 2.1 Tables 2.2
1 b
Q, (@]
I T
O
0 a
Let the operations *,0 be given by the following Tables 2.3 and 2.4.
x |0|x|y|z|1l]a]|b o|0|x|ylz]|1l]a]|b
0[0|0]0|0|0]|ala 0[{0|0O]|0|0|0]a]|a
x|x|[0|]0]0]0]ala x|[x|[0[0|0|0]al|a
y| vy |y|O0]ly|O|la]a y | y|y|O0|y|[O]la]a
z|lz|z|z|0]0|al|a z |z |z |z|0]|0|a]|a
11111}y |0O]ala 111]1|z[1]|0|ala
alalalalal|la|0]O0 alalalalala|0]O0
b|blalala|a|y]|O0 b|b|bla|bla|x]|0
Tables 2.3 Tables 2.4

Then (A, <,%,0,0) is a pseudo-BCI algebra.

Proposition 1. [19] In a pseudo-BCI algebras A the following hold:
(p1) z<0=2=0.

(p)z<y=zsxy<zsxandzoy<zou.

(p3) r<y,y<z=z<z

(pa) (x*xy)oz=(vo2)*y.

(ps) zxy<zexzoz<y.

(ps) (xxy)*x(zxy) <z*xz, (xoy)o(zoy)<xzocz.
(pr)e<y=zxz<yxz,xoz<yoz.
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(ps) 0 =x=uz00.
(o) wx (zo(z*y)) =a*y zo(rx(roy)) =zoy.

Proposition 2. [19] In a pseudo-BCI algebra A the following holds for all x,y,z € A:
(1) Ox (zoy) <you.

(i) Oo (zxy) < y*w.

(731) 0% (zxy) = (0ox) o (0% y).

(iv) Oo(xoy)=(0%z)* (0oy).

Definition 3. [19] An element a of a pseudo-BCI algebra A is called a pseudo-atom if
for every x € A, x < a implies x = a.

The set of all pseudo-atoms of a pseudo-BCI algebra A is denoted by M (A). Obviously,
0€ M(A).

Proposition 3. Let A be a pseudo-BCI algebra and a € A. The following conditions are
equivalent:

(1) a is a pseudo-atom of A;

(2)yx(yoa)=a (oryo(yxa)=a) for ally € A;

(3)yx(yo(axz))=axz (oryo(y*(aox))=aox) forall z,y € A.

Proof. (1) = (2). By Iz, y * (yoa) < a. Since a is a pseudo-atom of A, we have
y+(yoa)—a,

(2) = (3) Obviously.

(3) = (1) It follows from Proposition 3.6 of [19].

By Proposition 3, we have x x (roa) =x o (xxa) =a for all a € M(A) and z € A.

Corollary 1. Let A be a pseudo-BCI algebra. Then for alla € M(A) and x € A, we have
axx € M(A) and aox € M(A).

Proof. Let a € M(A) and € A. By Proposition 3.8(3), we have yx (yo(a*x)) = a*xx
for all y € A. Using Proposition 3.8(2), we get that a * x is a pseudo-atom of A, that is
axx € M(A). Similarly we can prove aox € M(A).

Let A be a pseudo-BCI algebra. For a € M(A), define V(a) = {z € A|a < z}. V(a)
is called a branch of A. Obviously a € V(a).

Proposition 4. Let A be a pseudo-BCI algebra, a,b € M(A) and a #b. Then V(a) N
V(b) =0.

Proof. Assume V(a) NV (b) # 0, then there is x € V(a) N V(b). Hence a < z and
b < z. It follows that (bx (boa))o(b*x(box)) < (box)x(boa) <aox = 0. So
(bx(boa))o(bx(box)) =0. Hence b* (boa) < (bx(box)) =b. Since b € M(A), we have
b* (boa)=>. Note that b = (b* (boa)) < a. Similarly a < b. By Definition 3.1, we have
a = b. Tt is a contradiction, hence V(a) NV (b) = 0.
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Proposition 5. Let A be a pseudo-BCI algebra and x,y € A. If x <y, then x,y are in
the same branch of A.

Proof. Assume that © € V(a) and y € V(b) for some a,b € M(A) and a # b. Then
a <z <y. Hence y € V(a) and so y € V(a) NV (b), a contradiction with Proposition 4.

Proposition 6. Let A be a pseudo-BCI algebra and x € V (a) for some a € M(A). Then
O0x(0ox)=aand 0o (0*xx) = a.

Proof. Since 0% (0o z) < x, we have 0% (0 o z) € V(a) by Proposition 5. Hence
a < 0% (0ox). On the other hand, we have (0% (0o x))oa = (0oa)* (0ox) =
((axx)oa)*(0ox) = ((aca)*z)*(0ox) = (0%x)*(0xx) = 0. Therefore 0% (0oz) < a.
This shows that 0 % (0 o z) = a. Similarly we can prove 0o (0 % z) = a.

Proposition 7. Let A be a pseudo-BCI algebra. Then for any x € A, 0x (0ox) € M(A)
and 0o (0xx) € M(A).

Proof. Let x € A. In order to prove 0o (0 z) € M(A), we assume y < 0o (0 * x).
Then yo (0o (0% x)) =0. By (p4) and (pg) of Proposition 3.3, we have

(0o (0xx))*xy=(0%xy)o(0xx)

=((yo (00 (0xx)))*y)o(0xx)

=((y*xy)o((00(0*x))))o(0*z)

=(00((00(0xx)))) o (0xx).

By Proposition 2(iv), 0o ((0o (0xx))) = (0%0)* (0o (0xx)) = 0% (00 (0*xx)) = 0.
Hence (0o (0*z))*y = (00((00(0*x))))o(0%x) = (0xx)o (0xz)=0. This shows that
0o (0xz) <y and hence y =00 (0% z). Similarly we can prove 0% (0ox) € M(A).

Corollary 2. Let A be a pseudo-BCI algebra. Then for any x € A, (Ooz) € M(A) and
(0xx) e M(A).

Proof. Since 0xxz =0x% (0o (0*z)) and 0oz =00 (0% (0o x)), we have 0xz € M(A)
and 0 oz € M(A) by Proposition 7.

By Propositions 6 and 7, we have 0% (Ooxz) =00 (0xz) € M(A) for all z € A. Denote
a; =0%(0ox)=00(0*x), for x € A. Then a, € M(A) and = € V(ay).
Using above arguments we can get the structure of a pseudo-BCI algebra.

Theorem 1. Let A be a pseudo-BCI algebra. Then {V(a) | a € M(A)} forms a partition
of A, that is, A = Ugepr(ayV(a) and V(a) NV (b) =0 for all a,b € M(A) and a # b.

3. Local bounded pseudo-BCI algebras

Let A be a pseudo-BCI algebra. For a € M(A), if there is an element 1, € V(a) \ {a}
such that for all x € V(a), z < 1,, then 1, is called the local unit of V(a). Note that 1,
is unique.
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Definition 4. Let A be a pseudo-BCI algebra. If for every a € M(A), V(a) has a local
unit, then A is called a local bounded pseudo-BCI algebra. For convenience we denote it
by lbp-BCI algebra.

Note that the pseudo-BCI algebras given in Examples 1 and 2 are local bounded
pseudo-BCI algebras. In Examples 1, M(A) = {0,a}, V(0) = {0,u,v,w,t,1}, 19 = 0,
V(a) = {a,b}, 1, = b. In Examples 2, M(A) = {0,a}, V(0) = {0,z,y,2,1}, 1o = 0,
V(a) = {a,b}, 1, =b.

In the following, A shall mean a lbp-BCI algebra unless otherwise specified.

We define two negations, ~ and ~, as follows: for a € M(A) and x € V (a),

T =1lgxx, 2~ =140x.

Proposition 8. For all z,y € A, we have
(1) =~ <z, 2~ < x.

2)r<y=y <z ,y~ <z".

(8)x” ==~ , a~ =2~ ".

Proof. (1) By (I2) of Definition 1, we have z=~ < z and z~~ < z.

(2) Let z <y, then z,y € V(a) for some a € M(A). Hence (150y)*(l,0z) < zoy =0,
and so (150y)* (14 0x) = 0. It follows that 1,0y < 150z, or y~ < z~. Similarly we can
prove y— < x".

(3) By (1), we have ™~ < x. Replace x by x~, we get 2~~~ < z~. On the other hand,
7~ <z implies = < 27"~ by (2). So 7 =z~ ~~. Similarly we can prove z~ =z

~—r

Let A be a pseudo-BCI algebra. For any z,y € A, define z A1y = yo (y * x),
TNy =yx*(youx).

Proposition 9. In A the following properties hold:

(1) az N1z =2 N ag = a; and az No x = x Ng ag = ay for all x € A.
(2) x <y impliesy \1 x =x and y Ny © = .

(8) x \ix =2 and x Ny x = x.

(4) If x1 < x9, then x1 A1y < z2 A1y and x1 Aoy < 29 N2 y.

Proof. (1) By Proposition 3, we have a; A1 * = x o (x % az) = ag since a; € M(A).
Note that for z € V(az), we get x A1 ay = a0 (ap * ) = ay 00 = a,. So we shows that
ay N1 X = x A1 az = ag. Similarly we can prove a, Ay £ = x NAg a, = a, for all x € A.

(2) Let z <y. Then yAjx =zo(zxy) =xo0=zand yAgx = zx(zoy) =xx0=x.

(3) Wehave x Az =zo(xxz)=zand z Ngzx =x % (xox)=x.

(4) Let 1 < z. Note that (x1 A1 y) * (x2 A1 y) = (yo (y*xz1)) % (yo (y*x2)) <
(yxxg)o (yxxy) < xp %90 = 0. We get 1 Ay y < x9 A1 y. Similarly we can prove
1 Ny < T2 N2 y.

Proposition 10. In A the following properties hold for all a € M(A) and x,y € V(a):
(1) xMy ~=z "Ny ~andz Ny~ =a~ Noy™~
(2)x Ay~ =x "Ny~ andxz Aoy~ =2~ Ny .
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Proof. (1) Using Proposition 1, we have y~"xxz = (150 (1a%y))*z = (1g*x)o(1g*y) =
(Lo # (oo (1o 52))) 0 (o 5 4) = (Lo © (Lo )) * (Lo o (I £ 2)) =y 52~
Thus x My~ =y ~o(y ~“*xx)=y ~“o(y " *xz™ ")

(2) By Proposition 8 and (1), we get

My =M W) V="M EY) T =TT ALy

~ “

=z "My .

Proposition 11. In A the following properties hold for all x,y € A:

Proof. By Proposition 1, we have y* (z A1 y) = y* (yo (y*x) = y+xx and yo (x Aay) =
yo(yx(yox)) =you.

Proposition 12. Let a € M(A). If x,y € V(a), then x xy € V(0) and z oy € V(0).

Proof. Using Proposition 2 and 6, we get 0o (0% (z*y)) =00 ((0oxz)o (0xy)) =
(0% (00x))*(00(0xy)) = a*xa = 0. Since by (I3) 00 (0 (zxy)) < zxy, we have 0 < zxy,
and so z x y € V(0). Similarly we can prove z oy € V(0).

Proposition 13. In A the following properties hold for all a € M(A), z,y € V(a):
(1) x A1y (y A1) is a lower bound of {x,y}.
(2) x N2y (y N2 x) is a lower bound of {x,y}.

Proof. By Definition 3.1, we have 2 A1y = yo (y*x) < x. Moreover by Proposition 12,
yxx €V (0)andso Oo(y*x) =0, and (yo(y*z))*xy=(yxy)o(y*z)=00(y*z)=0.
It follows that © Ay y = y o (y xx) < y. Similarly we can get that (y A; ) is also a lower
bound of {z,y}.

(2) Similar to the proof of (1).

Definition 5. (1) If for alla € M(A) and z,y € V(a), x A1y =y A1z, we call A to be a
local A1-commutative pseudo-BCI algebra.

(2) If for all a € M(A) and z,y € V(a), x A2y = y N2 x, we call A to be a local Na-
commutative pseudo-BCI algebra.

(8) If A is local N\i-commutative and local No-commutative, we call A to be local commu-
tative.

Proposition 14. (1) If A is local N\i-commutative, then (V(a), A1) forms a lower simi-
lattice for all a € M(a).

(2) If A is local No-commutative, then (V(a),A2) forms a lower similattice for all a €
M(a).

Proof. (1) It needs only to prove that x Ay y is the greatest lower bound of {z,y} for
all a € M(A) and z,y € V(a). Assume that m is a lower bound of {z,y}. We have
mx(zAry) = (mo(mxy))*(yo(y*z)) = (yArm)*(yo(y+z)) = (mA1y)*(yo(y*x)) =
(olyxm))*(yo(yxx)) <(yxx)o(y*xm)<mx*x=0,
and so m < (x A1 y).
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(2) Similar to the proof of (1).

For a lbp-BCI algebra A, we can define the following operations in V' (a),
xViy=1lgo0 ((1a *37) A1 (111 *y))v
xVoy=1u%((1g02) Ny (14 0Y)),

for all a € M(A) and for all z,y € V(a).

Proposition 15. Let A be a lbp-BCI algebra.
(1) If A is local N\i-commutative, then (V(a),A1,V1) forms a lattice for all a € M(a).
(2) If A is local Na-commutative, then (V (a), A2, Va) forms a lattice for all a € M(a).

Proof. (1) Let a € M(A) and z,y € V(a). Since A is local Aj-commutative, then
x=xo(x*xly) =1s0(1lg*xx) <lgo((lgxz) A1 (lg*y)) =z V1y. Similarly we can prove
y<zViy.

If 2>z and z > y, then z € V(a), 1o *xx > 15 %z and 1, xy > 1, % z. By Proposition
14, we have 1, % z < (14 % x) A1 (14 * y). Therefore 2 Viy = 1,0 ((1g*x2) A1 (1g xy)) <
loo(lg*2) =zo0(z%1,) = 2. It follows that x V; y is the least upper bound of {z,y}.

Applying Proposition 14, we get (V(a), A1, V1) forms a lattice.

(2) Similar to the proof of (1).

Definition 6. Let A be a pseudo-BCI algebra. (1) If for all z,y € A, x \1y =y A1z, we
call A to be Ai-commutative.

(2) If for all x,y € A, x Nay = y Ao x, we call A to be Na-commutative.

(3) If A is N\i-commutative and N2-commutative, we call A to be sup-commutative.

The following result shows that Aj-commutative (Ag-commutative) pseudo-BCI alge-
bras must be pseudo-BCK algebras.

Proposition 16. Let A be a pseudo-BCI algebra. Then the following are equivalent:
(1) A is N\1-commutative (Aa-commutative).
(2) A is a N\i-commutative (Na-commutative) pseudo-BCK algebra.

Proof. (1) = (2). Let A be Aj-commutative. Then for any a € M(A), we have
aN10 = 0A1a. Note that aA10 = 0o(0*a) = a by Proposition 6 and 0A1a = ao(ax0) = 0.
This shows that a = 0, that is A = V(0). Thus A is a Aj-commutative pseudo-BCK
algebra. Similarly we can prove the result for case of Ay-commutative.

(2) = (1). It is straightforward.

Proposition 17. [15] If A is a sup-commutative pseudo-BCK algebra, then N1 = Aa.

By Proposition 16 and 17, we can get a characterization of sup-commutative pseudo-
BCI algebras.

Proposition 18. Let A be a pseudo-BCI algebra. Then the following are equivalent:
(1) A is a sup-commutative pseudo-BCI algebra.
(2) A is a sup-commutative pseudo-BCK algebra.
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4. States on local bounded pseudo-BCI algebras

Definition 7. Let A be a lbp-BCI algebra. A Bosbach state on A is a function s : A —
[0,1] such that the following conditions hold:

(1) s(x) +s(y*x) = s(y) + s(x xy), for all z,y € A,

(2) s(x) +s(yox)=s(y)+s(xoy), forall z,y € A,

(8) s(a) =1 and s(15) = 0 where a € M(A) and 14 is the local unit of V(a).

Example 3. Consider the local bounded pseudo-BCI algebra A given in Example 1. Define
the function s : A — [0,1] by s(0) = 1,s(u) = 1,s(v) = 1,s(w) = 1,s(t) = 1,5(1) =
0,s(a) =1,s(b) =0. Then s is a unique Bosbach state on A.

Example 4. Consider the local bounded pseudo-BCI algebra A given in Example 2. Define
a function s : A — [0, 1] as follows: s(0) = 1,s(x) = a, s(y) = 5,s(2) =,s(1) =0,s(a) =
1,s(b) = 0. Using s(u) + s(v*u) = s(v) + s(u*v), takingu =x,v =1, u=y,v =1 and
u = z,v = 1, respectively, we get o« = 1,8 = 1,7 = 0. On the other hand, taking v = z,
v=11in s(u)+ s(vou) = s(v) + s(uov), we get y+0=0+1, so 0 =1 which is a
contradiction. Hence A does not admit a Bosbach state.

Proposition 19. Let A be a lbp-BCI algebra and s a Bosbach state on A. Then the
following properties hold for all x,y € A:

(1) If x <y, then s(y*z) =1+ s(y) — s(z) = s(yox) and s(y) < s(z).

(2) If x,y are in same branch, then s(x A1 y) = s(y A1 z), s(z A2 y) = s(y N2 x).

(3) If z,y are in same branch, then s(x \1y™™) = s(x™~ Ay™"™), s(xAay~") = s(z™~ A2
Y.

(4) If z,y are in same branch, then s(x™~A1y) = s(x A1y~ "), s(z™ A2y) = s(x A2y~ 7).
(5) s(x=™) = s(x) = s(z™7).

(6) s(z7) =1—s(x) = s(z™).

Proof. (1) Let © < y. It follows from Definition 5.1 that s(y xz) = 1+ s(y) — s(z) =
s(y ox). Moreover s(x) — s(y) =1 — s(y xx) > 0 and hence s(y) < s(x).

(2) By Proposition 1, we have y*z = y x (x A1 y). Since z,y are in same branch, then
x A1y < x,y by proposition 13. By property (1), we have s(y x x) = s(y x (x A1 y)) =
1+s(y)—s(zAry) and s(z*xy) = s(x*(yA1z)) = 1+ s(z) —s(y A1 z). Using condition (1)
from Definition 7 we get s(zA1y) = s(y/A1z). Similarly we can prove s(x A2y) = s(yA2x).

(3) It follows from Proposition 10.

(4) It follows from (2) and (3).

(5) For x € A, there is a € M(A) such that € V(a). Note that 2=~ = z A1 1,. By
(2), we have s(z7™) = s(z A1 1) = s(1g A1 x) = s(z o (zx1,)) = s(z). In a similar way,
we can prove s(z) = s(x™7).

(6) By (1), we have s(z7) = s(1lg xx) =1+ s(15) — s(x) = 1 — s(z). In a similar way
we can get s(z~) =1 — s(z).
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Proposition 20. Let A be a Ibp-BCI algebra and s be a Bosbach state on A. Then the
following properties hold for all a € M(A) and x,y € V(a):

(1) s(yxa™™) = sy~ xx), s(yo :r”’) =s(y™ ox).

(2) s(y "~ xx)=s(xz” oy ) =s(y “xaT7)=s(y*xz"7),
s(y~Tox) =s(x~ xy~) = ( 7)) =s(yox™).
(3) s(y™™ xa™) = s(y*a~), s(y~ ) s(yox™).

Proof. (1) Note that s(y x 27~) + s(yo (y x x™™)) = s(y) + s((y * 27~) o y), or
s(yxa™™) + s(z™ A1 y) = s(y) + s((y x ™) oy). By Proposition 19(4), we have
s(yxz™7)+s(zAy™") = s(y)+s((yxz~")oy) = s(y) +s((yoy)*x™~) = s(y) +s(0xz~7).
Using Corollary 2, we get 0« 2=~ € M(A), and so s(0*xz~~) = 1. Thus s(yxz™") =
S(y)+1—s(z A1y ™) = 1—s(zAry™)+s(y~~) = s((y~~<z)oy™) —s(@Ary~)+s(y~) =
s(y=~ *x).

Similarly we can prove s(yox™~") = s(y~~ ox).

(2 ) By (ps4) we have s(y™™ *z) = s((14 0

y~). Moreover we have s(y™™ x27~) = s((

(14 (( o(lg*x)))o(ly*xy)) =s(z~~" oy~ ) = s(z~ oy~ ) by Proposition 8. Using
) we can get s(y" "~ xx) =s(xT oy”) =s(y " xax7") = s(y*x~"). Similarly we have
Yy~ ox) =s(@TxyT) = sy~ oa™) =s(yor

(3) By Proposition 5.4(4) we get

sy xa™) =s(y ™) +s((y7Tx2T)oy™™) — sy oy HaT)) = s(y) +1-s(27 M
y ) =sy) +1-s@T Ary) = s(y) + 1 —s(@™ Ary) = s(yoa”),
Similarly we can get s(y~" ox™) =s(yoz™).

z) = s((la x x) o (la ¥ y)) =

s(x a f (1o * y)) * (1 0 (14 * 2)))

(

(™
(
1
(

Proposition 21. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for all
a€ M(A) andz,y € V(a), s(yxz) =1—s(zAN1y)+s(y) and s(yoz) = 1—s(xA2y) +5(y).

Proof. Let a € M(A) and z,y € V(a). Note that x Ay y < z,y and x Aa y < z,y. By
19(1), we have s(y*xz) = s(yx(zA1y)) = 1—s(xA1y)+s(y) and s(yox) = s(yo(xN2y)) =
1 —s(zA2y) + s(y).

The following results are important for our study.

Proposition 22. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for
alla € M(A) and z,y € V(a), we have

(1) s(x A1 y) = s(x A2 y).

(2) s(xxy) =s(zoy).

Proof. (1) First we prove the equality for z < y.

By Propositions 19(2) and 9(2), we have s(z A1 y) = s(y A1 ) = s(x) and s(z Ay y) =
s(y A2 z) = s(x), that is s(z A1 y) = s(z N2 y).

Now assume that x and y are arbitrary elements of V(a), where a € M(A). Using
Propositions 19(2) again and first part of the proof, we have s(z A1 y) = s(x A1 (zA1y)) =
s((xMry)Mz)=s((xAy) Aaz) < s(yAa2z) =s(x A2 y).

Dually, we can prove s(z A2 y) < s(z A1y). Hence s(x A1 y) = s(xz A2 y).
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(2) It follows from Proposition 21 and the first equation.

Consider the real interval [0,1] of reals equipped with the Lukasiewicz implication —y,
defined by
r —y,y=min{l —x +y,1}, for all 2,y € [0, 1].

Definition 8. Let A be a lbp-BCI algebra. A state-morphism on A is a function m : A —
[0, 1] such that:

(SM1) m(a) =0,m(1,) =1 for alla € M(A).

(SM2) m(y x x) = m(yox) = m(x) —f m(y), for all x,y € A.

Proposition 23. Let A be a lbp-BCI algebra. Then every state-morphism on A is a
Bosbach state on A.

Proof. 1t is similar to the proof of [[4], Proposition 3.9].

Proposition 24. Let A be a lbp-BCI algebra. A Bosbach state m on A is a state-morphism
if and only if m(x A1 y) = min{m(x), m(y)} for all z,y € A, or equivalently, m(x N2 y) =
min{m(x),m(y)} for all z,y € A.

Proof. 1t is similar to the proof of [[4], Proposition 3.10].

Let A be a lbp-BCI algebra and s be a Bosbach state on A. Define a set Ker(s) :=
{r € A|s(x) =1}. Ker(s) is called the kernel of s on A.

Definition 9. Let A be a pseudo BCI algebra and I be a nonempty subset of A. If T
satisfies the following conditions:

(1) 0 eI,

(2)x el andy*xx €l (oryox€l)implyy €I for all z,y € A,
I is called a pseudo ideal of A, simply called an ideal of A.

Let I be a pseudo ideal of a pseudo BCI algebra A. If [ satisfies Oxxz € I and Oox € I,
we call I a closed pseudo ideal of A. If I satisfies x *y € [ if and only if zoy € I, we
call I a normal pseudo ideal of A. If I satisfies x xy € I if and only if z oy € I for all
ae€ M(A),z,y € V(a), we call I a local normal pseudo ideal of A.

Proposition 25. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then Ker(s)
is a closed and local normal proper ideal of A.

Proof. Obviously, 0 € Ker(s) and 1 ¢ Ker(s).

Assume that z,y * x € Ker(s). Then we have 1 = s(z) and s(y x x) = 1. It follows
from Definition 5.1 that s(y) = s(z) + s(y x z) — s(x xy) = 2 — s(x xy) > 1 and thus
s(y) = 1. Hence y € Ker(s). This shows that Ker(s) is a proper ideal of A. For any
x € A, we have 0xz € M(A) and 02 € M(A) by Corollary 2. Hence s(0 * x) = 1 and
s(0ox) = 1. It follows that 0« x € Ker(s) and 0 oz € Ker(s). This shows that I is a
closed pseudo ideal of A. By Proposition 22, we can get that A is local normal.



X.L. Xin, Y.J. Li, Y.L. Fu / Eur. J. Pure Appl. Math, 10 (3) (2017), 455-472 467

Theorem 2. Let A be a pseudo BCI algebra and I be a pseudo ideal of A. Define a binary
relation "~” on A by x ~ y if and only if xxy,y*xx € I if and only if xoy,yox € I. Then
~ is a congruence relation on A. Denote Cpy = {y € A |z ~ y}. Define Cyp x Cy = Cpyy
and Cy 0 Cy = Cyoy. Denote A/I = {Cy | x € A}. Then (A/I,*,0,Cy) is a pseudo BCI
algebra. If I is a closed pseudo ideal of A, then Cy = 1.

Proof. Obviously ~ is reflexive and symmetric. Now we prove that it is transitive. Let
x~yandy~z Then zxy,yxz e l. By (I1), (x*xz)o(xxy) <yxz thusz*xz e I
Similarly we can prove z x z € I. This shows that z ~ z and hence ~ is transitive. Thus
it is an equivalent relation on A. We also can show that ~ is a congruence relation on A
and omit it. Denote A/I = {Cy|x € A}. Then binary operations ”+” and ”0” on A/l are
well-defined. Moreover we can show that (A/I,*,0) satisfies Iy — I5 in Definition 3.1. It
follows that (A/I,x,0,Cp) is a pseudo BCI algebra.

Finally we assume that I is a closed pseudo ideal of A. Then for z € I, we have
Oxx €l and xx0=x € l. Hence x ~ 0, that is, xz € Cy. Therefore Cy = I.

Proposition 26. Let s be a Bosbach state on a lbp-BCI algebra A and K = ker(s). Then
we have the following.

(1) x/K <y/K iff s(xxy) =1 iff s(xoy) =1, where x/K = {y € Aly ~ x} for all x € A.
(2) For all a € M(A) and all z,y € V(a), we have that v/K < y/K iff s(y \1 x) = s(x)
iff s(y Ao ) = s(x).

(3) v/K =y/K iff s(xxy) =s(yxx)=1iff s(xoy) =s(yox)=1.

(4) For all a € M(A) and all x,y € V(a), /K = y/K iff s(x) = s(y) = s(z A1 y) iff
$(2) = s(y) = s(z A2 p).

(5) (A/K,<,%,0,0/K,19/K) is a bounded pseudo-BCK algebra where 1y is the unit of
V(0).

(6) The mapping § : A/K — [0,1] defined by 5(z/K) := s(x)(x € A) is a Bosbach state
on A/K.

Proof. (1) By Theorem 2, we know that (A/K, <,*,0,0/K) is a pseudo-BCI algebra.
Note that /K < y/K iff /K xy/K = (zxy)/K = 0/K iff z xy € K iff s(zxxy) = 1.
Similarly, z/K < y/K iff /K oy/K = (zoy)/K =0/K iff zoy € K iff s(xoy) = 1.

(2) Let a € M(A) and z,y € V(a). As s(zxy) = 1—s(yA1x)+s(z) by Proposition 21,
we get v/ K < y/K iff s(yA1x) = s(x). Similarly, we have z/K < y/K iff s(yAa2z) = s(x).

(3) It follows easily from (1).

(4) It follows easily from (2).

(5) First we prove M(A/K) = {0/K}. Let z/K < 0/K. By (1), s(x *0) = 1. Note
that Oxz € M(A), then we have s(0xx) = 1. By (3), /K =0/K. Thus 0/K € M(A/K).

Conversely let /K € M(A/K). Obviously (0 x (0 z))/K < x/K. Hence (0 x (0 %
x))/K = z/K. Since for any a € M(A), s(a*0) = s(0xa) = 1, we have 0/K = a/K.
Thus /K = (0% (0% x))/K = 0/K. This shows that M(A/K) = {0/K}, and hence
(A/K,<,%,0,0/K) is a pseudo-BCK algebra.

Now we prove that 1o/ K is the greatest element of A/K. First we claim 19/K = 1,/K
for all @ € M(A). Note that s(1g) + s(14 % 19) = s(14) + s(1p * 1,) and s(1p) = s(1,) =0
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by Definition 7, we have s(14 % 19) = s(1p * 1,). Moreover s(14 * 19) + s(a o (15 * 1p)) =
s(a) + s((14 * 1p) o a) by Definition 7. By Corollary 1, a o (1, * 1g) € M(A), and so
s(ao(lgx1p)) = 1. Since (1% 1g)oa = (1,0a)*1g and 1,0a € V(0) by Proposition 12, we
have s((14%1p)oa) = s((1g0a)*1p) = s(0) = 1. Hence s(14x1p) = 1. By (3), 1o/K = 1,/K
for all a € M(A). Let /K € A/K. Then z/K < 1(p4(0oz))/K = 1o/K. This shows
that 1p/K is the greatest element of A/K. It follows that (A/K,<,*,0,0/K,19/K) is a
bounded pseudo BCK algebra.
(6) The fact that § is a well-defined Bosbach state on A/K is now straightforward.

Definition 10. Let A be a lbp-BCI algebra. Then
(1) A is called good if x=~ =z~ for all x € A.
(2) A is with the condition (pDN) if x=~ = x™~~ =z for all x € A.

Proposition 27. Let s be a Bosbach state on a bounded pseudo-BCI algebra A and let
K = ker(s). For every element x € A, we have 2™~ /K = z/K = 2~ /K, that is, A/K
satisfies the (pDN) condition.

Proof. Tt is similar to the proof of [[4], Proposition 3.14].

Remark 2. Let s be a Bosbach state on a pseudo-BCI algebra A. According to the proof
of Proposition 27, we have s(xxx™~) =1=s(xxz~") and s(xoz™™) =1=s(zxoz™7).

Theorem 3. Let A be a lbp-BCI algebra, s be a Bosbach state on A and K = ker(s). Then
A/K is Ni-commutative as well as No-commutative. In addition, A/K is a N-semilattice
and good.

Proof. 1t is similar to the proof of [[4], Proposition 3.16].

Proposition 28. (/}]) Let A be a good pseudo-BCK algebra. We define a binary operation
@ onAbyx®y:=y ~xx™. Forall x,y € A, the following hold:

(1) x@y=z~""oy .

(2) @y <xzvy.

(3)zel=10xr=21x>".

(4) z20=0®z =0.

(5) (z@y) " =ry=x"Qy ".

(6) ® is associative.

An MV-algebra is an algebra (A, ®,” ,0) of type (2, 1,0) such that (i) @ is commutative
and associative, (ii) @0 = z, (iii) 200" =07 ,(iv) e~ =z,(V)yd (yd2z") =
x®(x®dy ). If wedefinex*xy =xzoy =y~ & ux, then (A4,%,0,1,0) is a bounded
pseudo-BCK algebra.

An MV-state on an MV-algebra A is a mapping s : A — [0, 1] such that s(1) = 1 and
s(a®b) = s(a)+s(b) whenever a®b = 0. Every MV-algebra admits at least one MV-state,
and due to [17], every MV-state on A coincides with a Bosbach state on the BCK algebra
A and vice versa.
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We note that the radical, Rad(A), of an MV-algebra A is the intersection of all maximal
ideals of A([7]).

Proposition 29. (/9]). In any MV-algebra A the following conditions are equivalent:
(a) Rad(A) = 0.

(b) nx <z~ for alln € N implies x = 0.

(¢c) ne <y~ for alln € N implies x Ny = 0.

(d) nx <y for alln € N implies @Oy = x, where nx = x1®- -z, withx) = -+ = T, = T.

Remark 3. An MV-algebra A is archimedean in the sense of [9] if it satisfies the condition
(b) of Proposition 29 and A is archimedean in Belluces sense [1] if it satisfies the condition
(d) of Proposition 29. By Proposition 29 the two definitions of archimedean MV-algebras
are equivalent.

Theorem 4. Let s be a Bosbach state on a lbp-BCI algebra A and let K = Ker(s).
Then (A/K,®,” ,0/K), where a/K ® b/K = (bxa™)/K and (a/K)” = a” /K, is an
archimedean MV-algebra and the map §(a/K) := s(a) is an MV-state on this MV-algebra.

Proof. 1t is similar to the proof of [[4], Theorem 3.20].

By Theorem 3, A/K is a good pseudo-BCK algebra that is a A-semilattice and § on
A/K is a Bosbach state such that Ker(s) = {0/K}. Due to [[20], Proposition 3.4.7],
(A/K)/Ker(3) is term-equivalent to an MV-algebra that is archimedean and § is an MV-
state on it. Since A/K = (A/K)/Ker(5), the same is true also for A/K, and this proves
the theorem.

In the following, we give properties of state-morphisms on lbp-BCI algebras.

Lemma 1. Let A be a lbp-BCI algebra and m be a state-morphism on A. Then we have
the following.

(1) m(y=" xx™) = min{m(x) + m(y), 1}, for alla € M(A) and z,y € V(a).

(2) m(z~~ oy~ ) = min{m(x) + m(y), 1}, for all a € M(A) and z,y € V(a).

Proof. Assume that m is a state-morphism on A, so it is a Bosbach state on A. By
Propositions 19 and 20, for for all a € M(A) and z,y € V(a), we have m(y~"~ x z™) =
miy * 2~) = m(z™) =y, m(y) = m(@) -y, m(y) = min{l — m(z)~ + m(y),1} =
min{m(z) + m(y),1}. Similarly we can prove m(z™~~ oy~ ) = min{m(xz) + m(y), 1}, for
all a € M(A) and z,y € V(a).

Proposition 30. Let A be a Ibp-BCI algebra and s be a Bosbach state on A. Then the
following are equivalent:

(1) s is a state-morphism.

(2) ker(s) is a maximal ideal of A.

Proof. Tt is similar to the proof of [[4], Proposition 3.22].
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Lemma 2. Let m be a state-morphism on a lbp-BCI algebra A and K = ker(m). Then
(1) a/K < b/K if and only if m(a) < m(b),
(2) a/K = b/K if and only if m(a) = m(b).

Proof. 1t is similar to the proof of [[4], Lemma 3.23].

Proposition 31. Let A be a lbp-BCI algebra and mi,ms be two state-morphisms on A
such that ker(my) = ker(mg). Then mp = ma.

Proof. By Proposition 23, m; and m; are two Bosbach states on A. Since ker(m) =
ker(mz), we have A/ker(mi) = A/ker(ms). By the proof of Proposition 30, we have that
A/ker(my) is in fact an MV-subalgebra of the MV-algebra of the real interval [0, 1]. But
ker(my) = 0/K = ker(mz). Hence, by [[11], Proposition 4.5], ni; = mig, consequently,
mi1 = Mmy.

Let A be a 1bp-BCI algebra. We say that a Bosbach state s is extremal if for any
0 < A < 1 and for any two Bosbach states s1,s2 on A, s = Asy + (1 — A)sg implies s1 = so.
Summarizing previous characterizations of state-morphisms, we have the following result.

Theorem 5. Let s be a Bosbach state on a lbp-BCI algebra A. Then the following are
equivalent:

(1) s is an extremal Bosbach state.

(2) s(x A1 y) = max{s(x),s(y)} for all x,y € A.

(3) s(x Nay) = max{s(x),s(y)} for all z,y € A.

(4) s is a state-morphism.

(5) ker(s) is a maximal ideal.

Proof. 1t is similar to the proof of [[4], Theorem 3.26].

5. Conclusions

Until now, the states on unbounded algebraic structures have been studied for Hilbert
algebras and integral residuated lattices in [2] and [6], respectively.

In this paper, we first study state theory on non-bounded algebraic structures, and in-
troduce a notion of state on pseudo-BCI algebras. In order to adapt a state to pseudo-BCI
algebras, we first discuss the structure of pseudo-BCI algebras, which can be decomposed
in to the union of it’s branches. Note that for all @ € M(A) and a # 0, V(a) is not a
BCK-algebra, hence the structure of pseudo-BCI algebras is different from the structure of
pseudo-BCK algebras. Therefore it is valuable to study state theory on pseudo-BCI alge-
bras. Moreover we introduce a notion of local bounded pseudo-BCI algebras and set up the
theory of states on such algebraic structure. We also introduce a notion of state-morphisms
on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states
and state-morphisms. By use of state’s theory, we discuss the relation between pseudo-
BCI algebras and MV-algebras. In the next work, we will consider the following problem:
satisfying what apposite conditions a local bounded pseudo-BCI algebra admits a Bosbach
state?
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