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Abstract. In 1980, Sir Clive W. J. Granger discovered the fractional differencing operator and its
fundamental properties in discrete-time mathematics, which sparked an enormous literature con-
cerning the fractionally integrated autoregressive moving average models. Fractionally integrated
models capture a type of long memory and have useful theoretical properties, although scientists
can find them difficult to estimate or intuitively interpret. His introductory papers from 1980, one
of which with Roselyne Joyeux, show his early and deep understanding of this subject by showing
that familiar short memory processes can produce long memory effects under certain conditions.
Moreover, fractional differencing advanced our understanding of cointegration and the properties
of traditional Dickey-Fuller tests, and motivated the development of new unit-root tests against
fractional alternatives. This article honors his significant contributions by identifying key areas of
research he inspired and surveying recent developments in them.

2010 Mathematics Subject Classifications: 62M10, 62M15, 62M20, 62P20, 91B84, 37M10
Key Words and Phrases: Cointegration, long-range dependence, unit-root, frequency domain

1. Introduction to Fractional Differencing

A stationary process is said to have long memory (or long-range dependence) if its auto-
correlation decays slower than the exponential rate. Hurst [76] noticed this phenomenon
in the streamflow of the Nile, when he was studying the storage capacity of reservoirs
along the river. His work resulted in a measure of long-range dependence called the Hurst
exponent and the development of certain long memory processes in continuous-time math-
ematics by Mandelbrot and Van Ness [96] and Mandelbrot [95]. Also see Lawrence and
Kottegoda [87] and Hipel and McLeod [73].
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Long memory processes have been documented in many scientific fields. Finance and
economics are no exceptions: Ding et al. [46] and Bollerslev and Mikkelsen [19], for in-
stance, illustrated that stock market volatility can be described by a long memory process.
Chortareas et al. [27] made similar findings in the volatility of chosen exchange rates with
the Euro. Fleming and Kirby [52] found that both return volatility and trading volume
of a selected set of twenty equities display long memory. Degiannakis et al. [39], Caporale
and Gil-Alana [22], and many others found more empirical evidence of long memory in
finance and economics.

When scientists apply standard regression frameworks to nonstationary time series,
it is common to difference the series first to remove a unit root. A popular differencing
filter is the n-th difference filter, (1 − Ln), where n ∈ N and L is the lag operator.
Hylleberg and Granger [77] developed tests for roots of this type. This filter is one of
the simplest methods of adjusting for either unit roots or seasonality, and is frequently
viewed as a practical response to time series with persistence that is incompatible with the
standard autoregressive moving average (ARMA) models. From the viewpoint of Granger
and Joyeux [65], a major concern here was that this form of differencing can lead to
over-differencing, in the sense that it can distort interesting short-run dynamics and lead
to misleading conclusions, just like any method of de-trending or de-seasonalizing. The
fractional differencing operator formally introduced in the ARMA context by Granger [60],
Granger and Joyeux [65], and Hosking [74] deepened our understanding of the concept of
differencing, and allowed scientists to model long memory processes using the language of
discrete-time mathematics.

A process yt is said to be integrated of order d (denoted by I(d)) if the differenced
process, (1 − L)dyt, is stationary. d = 0 if yt is an ARMA process and d = 1 if yt
has a unit-root. In fractional differencing, d can be a fraction. Then we may say that
yt is fractionally integrated (or, simply, fractional). One example is the autoregressive
fractionally integrated moving average (ARFIMA) model of the following form:

φ(L)(1− L)dyt = θ(L)εt, (1)

where t ∈ Z, εt is white noise, and φ(z) and θ(z) are finite-order polynomials. Granger
and Joyeux [65] and Hosking [74] showed that d ∈ (−1/2, 1/2) is required for this process
to be stationary and invertible. If d in (1) is greater than one, d can be re-centered to be
inside the unit-circle by applying (1− L) a sufficient number of times to yt.

The autocorrelation functions of fractionally integrated processes decay at a hyperbolic
rate for d ∈ (0, 1/2). If we write ST =

∑T
t=1 yt, it can be shown that

lim
T→∞

T−(2d+1)Var(ST ) = a positive constant. (2)

This means that ln(Var(ST )) should be a linear function of ln(T ) when T is large. As an
example, Figure 1 shows the daily absolute logarithmic return series, denoted by |rt|, of the
S&P500 index,∗ where the logarithmic returns are defined by rt = 100(ln(pt) − ln(pt−1))

∗The data source is Yahoo! UK & Ireland Finance (uk.finance.yahoo.com).
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Figure 1: Left: |rt| for t ∈ N, where rt is the log-return series of S&P500. Right: the sample
autocorrelation of |rt|. The sample period is between 4 January 1978 and 18 November 2016.
The 2476th observation (which corresponds to 19 October 1987) of |rt| was removed from the
analysis since it was 23.0% and appeared to be an outlier.
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Figure 2: Left: Var(ST ) as T becomes large, where ST =
∑T

t=1 |rt| and rt is the log-return
series of S&P500 displayed in Figure 1. Right: ln(T ) against ln(Var(ST )). The variance is
computed using a common sample variance formula.

and pt is the level of the index at time t ∈ N. The sample autocorrelation of |rt| decays
very slowly. Figure 2 gives the appearance of a linear relationship between ln(Var(ST ))
and ln(T ) for large T . Hence one might speculate that the absolute logarithmic returns
of S&P500 could have long memory. Areal and Taylor [9] gave a similar example. A
graphical illustration of this kind, where both axes are in the logarithmic scale, should
be interpreted with caution because the logarithmic transformation can obfuscate the
behavior of the argument when it is large. Hence, although these pictures might tempt us
to view (2) as a favorable description in this case, formal estimation and testing procedures
are needed to conclude that there is long memory.

The fractional differencing operator, (1− L)d, introduces a type of long memory in a
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Figure 3: |ak| and bk when d = 0.45, compared with φk when φ = 0.95.

model because it translates to an infinite number of very slowly decaying coefficients on
the lags of the variable to which it is applied. To see this, note that one version of the
Binomial formula permits the following expansion:

(1− L)d =
∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk =

∞∑
k=0

akL
k, (3)

where Γ(·) is the gamma function, ak ≡
∏k−1
j=0(j − d)/(j + 1), and

∏−1
0 · = 1. In an

infinite moving average representation, the following expansion may be used:

(1− L)−d =
∞∑
k=0

Γ(k + d)

Γ(d)Γ(k + 1)
Lk =

∞∑
k=0

bkL
k, (4)

where bk ≡
∏k−1
j=0(j + d)/(j + 1). Although |ak| → 0 and |bk| → 0 as k →∞, the speed of

convergence can be very slow. (bk)k∈N are the weights on (εt−k)k∈N that can be very slow
to decay, and they induce long-lasting effects of shocks on today’s outcome. See Figure 3.
These features illustrate how d governs the long-term behavior of the process. (Also see
Hosking [75].) But these features also make fractionally integrated models a challenge to
estimate, as we discuss in Section 2.

2. Estimating Fractionally Integrated Models

It is common to estimate fractionally integrated models in two stages by first estimating
d to fractionally difference (or filter) the series, and then use the filtered series to estimate
the short memory (ARMA) dynamics. See, for instance, Harvey [67] for discussions. A
famous example we outline below was by Geweke and Porter-Hudak [56], who proposed
to estimate d in the frequency domain. Consider the process,

(1− L)dyt = εt (5)
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for t ∈ Z. Suppose we observe y1, . . . , yT for some T ∈ N. Here, εt is a stationary and
invertible process with the power spectrum, fε(λ), where λ ∈ [0, π] is frequency. λ in the
negative range is not considered since the power spectrum is symmetric around zero. The
power spectrum of yt, denoted by fy(λ), is

fy(λ) = |1− e−iλ|−2dfε(λ) = 2−d(1− cosλ)−dfε(λ) = 4−d
(

sin2 λ

2

)−d
fε(λ).

Taking the logarithm of this equation and rearranging both sides using the sample spectral
density,† I(λ), gives

log I(λ) = log fε(0)− d log

[
4 sin2

(
λ

2

)]
+ log

(
fε(λ)

fε(0)

)
+ log

[
I(λ)

fy(λ)

]
.

Suppose the last term can be considered to be negligible. Then based on this equation,
we have a regression model:

log I(λj) = β0 + β1 log

[
4 sin2

(
λj
2

)]
+ vj , (6)

where vj ≡ log (fε(λj)/fε(0)) is assumed to be independently and identically distributed
(i.i.d.) with zero mean and variance, π2/6. We typically set λj = 2πj/T for j = 0, . . . ,m
and m � T such that λj ∈ [0, π] for each j. We denote estimated quantities by ·̂ . Re-

gressing log I(λj) on log[4 sin2(λj/2)] and taking minus β̂1 yields d̂. For some appropriate
choice of m, we have

(d̂ − d)/

√
Var(d̂ )

d→ N(0, 1),

where Var(d̂ ) is obtained from the regression.
It is common to use a rule-of-thumb that sets m as a simple function of the sample size,

T . See Geweke and Porter-Hudak [56] and Robinson [109] for consistency and asymptotic
normality of d̂ and the conditions m needs to satisfy to get these results. The choice of
m also affects the bias-variance trade-off. Bias in d̂ can be large if m is too large. A
popular choice is m = T δ, where δ is between 0.5 and 0.8. Diebold and Rudebusch [44]

†The sample spectral density is given by

I(λ) =
1

2π

[
c(0) + 2

T−1∑
τ=1

c(τ) cos(λτ)

]
,

where c(τ) is the sample autocovariance formula given by

c(τ) =
1

T

T∑
t=τ+1

(yt − ȳ)(yt−τ − ȳ), τ = 1, 2, . . . ,

with ȳ = T−1 ∑T
t=1 yt. The sample spectrum computes I(λ) at chosen frequencies, denoted by λj for

j = 1, . . . ,m. Although λj can be any number in [0, π], it is typically computed at λj = 2πj/T for
j = 1, . . . , bT/2c.
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used m =
⌊
T 1/2

⌋
. Whether d̂ is a good estimator also depends on the serial dependence

of the short memory process, εt. If it is very persistent, (6) may hold only for λj near
zero. Alternative estimators of d can be also sensitive to the degree of autocorrelation in
the fractionally differenced series, (1− L)dyt. See Agiakloglou et al. [3].

2.1. How to Treat Initial Values

The above estimation procedure handles the fractional difference operator in the fre-
quency domain. In fact, it is common in this literature to transform a problem defined
in the time domain to a problem in the frequency domain. For instance, the harmonized
representations defined in the frequency domain of the ARFIMA models are often used
instead. Davidson and Hashimzade [36] would describe (5) a one-sided (or causal) model
that depends on lags, and its harmonized representation a two-sided model that depends
on both lags and leads. These authors cautioned against viewing the two versions as being
equivalent because their limiting properties in the time domain and the frequency domain
can be different.

The need to convert the domain from the time domain to the frequency domain stems
from the long lag structure of fractionally integrated models we noted at the end of Section
1. Although the following representation of (5) is permitted:

yt = (1− L)−dεt =

∞∑
k=0

bkεt−k, (7)

for d ∈ (0, 1/2), computational limitations might mean that we choose to simulate from

y∗t = (1− L)−dεt1{t>0} =

t−1∑
k=0

bkεt−k, (8)

where the finite sum on the right hand side is well-defined for any d > 0. (7) is a
fractional model of type I, which is a function of an infinite number of lags. (8) is a
type II model, which truncates lags at some point. Since fractional models of type I tend
to be computationally demanding to simulate from and estimate, type II models are often
used in simulation and estimation exercises. An alternative form of truncation may keep
the length of the summation window fixed and roll it with t. If we assume that the true
model is (7) but make inferences based on (8), the effects of the truncation may not be
inconsequential, in the sense that the critical values of test statistics that correspond to
type II models are different from the ones that correspond to type I models even in large
sample. Davidson and Hashimzade [37] studied the distortions that arise from truncations
and suggested a simulation method in the time domain to adjust for them. They noted that
the computational techniques they investigated can be useful for estimating the ARFIMA
models of type I.

The relation (8) assumes that the value of the process before time t = 1 is zero. It is
a convenient assumption if the model is estimated by the least squares (or the conditional
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maximum likelihood) estimation procedure, which is based on the Gaussian likelihood.
Since it minimizes the sum of squared residuals, this procedure is also called the con-
ditional sum-of-squares (CSS). In the time domain, the CSS is more popular and com-
putationally easier to implement than the maximum likelihood procedure that is based
on the unconditional Gaussian likelihood function, because the latter involves repeatedly
constructing and inverting the covariance matrix. (See, for instance, Harvey [67, p.149].)
Doornik and Ooms [48] studied the computational properties of the maximum likelihood
based on the unconditional Gaussian likelihood and the CSS.

It is common to assume that the initial values are zero in the CSS procedure. Johansen
and Nielsen [80, 81] considered the use of non-zero initial values when fractional processes
are nonstationary. The initial values are assumed to be a deterministic bounded sequence.
More recently, Johansen and Nielsen [83] studied the role of initial values in the CSS
estimator when the true fractional process is nonstationary. They considered a version
of (5) in which d > 1/2, yt is re-centered around µ ∈ R, and εt is i.i.d. with zero mean
and variance σ2. They assumed that data do not exist before time t = −N0 for some
N0 ∈ N, that unobservable data exist between t = −N0 +1 and t = 0, and that observable
data exist from t = 1. They set aside the first N ∈ N observed data as the initial values
and investigated their effects. They showed that, if the CSS is used to estimate (d, µ, σ2),
the estimator of d is consistent and asymptotically normal, but the estimator of µ is not
consistent. The bias correction procedure they proposed eliminates the second-order bias
completely if N0 = 0, but only partly if N0 > 0 because the second-order bias term can
be only diminished by increasing N .

3. Why Long Memory

The above discussions highlight that fractional models are theoretically important,
but computationally challenging mainly because of the long lag structure and the need
for many data points to estimate them. It can be also difficult to interpret fractional
differencing intuitively, or to extend it to multivariate cases. See, for instance, Corsi [31]
and references therein. Researchers have sought to explain and replicate long memory
behavior using models that are simpler, more intuitive, and easier to estimate.

3.1. Sum of Short-Run Components

A useful insight into long memory came from Granger [60] and Granger and Joyeux
[65]. They showed that long memory can be a consequence of aggregating short memory
processes. Formally, it was shown that the autocorrelation function of the aggregated
process,

xt =

K∑
i=1

xi,t, xi,t = φixi,t−1 + εi,t, (9)

where (εi,t)t∈N are i.i.d. white noise for each i, converges to that of a long memory process
as K →∞ if (φi)i∈N are i.i.d. Beta random variables. The degree of persistence depends
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Figure 4: Left: the autocorrelation functions (ACFs) of x1,t, x2,t, and xt with K = 2 when
φ1 = 0.995, φ2 = 0.45, Var(ε1,t) = 0.81, and Var(ε2,t) = 30.25. Right: the autocorrelation
functions of xt and yt defined by (1− L)dyt = εt, where d = 0.45 and εt is white noise.

on the shape of the Beta distribution near unity. Linden [91] considered the special case of
the standard uniformly distributed autoregressive coefficient. Zaffaroni [128] relaxed the
Beta distribution assumption to a flexible semi-parametric probability distribution, and
showed that the aggregated process is more persistent if the density of the autoregressive
parameter is more concentrated around unity. Robinson [107] considered the properties
of time series with a random autoregressive coefficient before Granger [60].

What Granger [60] had in mind in the above theoretical derivation was perhaps the
fact that macroeconomic variables such as employment and gross domestic product are fre-
quently the result of aggregating quantities that are measured for microunits such as firms
and families. Granger [63] formally investigated the implication of aggregating microunit
dynamics. The problem is still considered almost three decades later by, for instance,
Pesaran and Chudik [101], who studied the effect of aggregating microunits in a dynamic
panel setting.

The effect of aggregation can be translated to attractive stories of long memory. For
instance, it is plausible that markets are driven by a large number of short-term fluctu-
ations that lead to long memory phenomena in economic and financial time series. See
Andersen and Bollerslev [5] and Taylor [123, p.340] for related discussions and financial
applications. Striking empirical results reinforcing the usefulness of this insight are that,
in practice, we don’t need K to be large for xt in (9) to mimic long memory; K can be
two to four. Gallant et al. [54] empirically demonstrated that the sum of only two short
memory components are able to mimic certain long memory dynamics. Figure 4 illustrates
this possibility. Since component models consisting of short memory processes tend to be
easier to estimate and interpret than fractionally integrated models, the former became a
very popular mode of long memory models. See, for instance, Engle and Lee [50], Harvey
[68, 69], Alizadeh et al. [4], Barndorff-Nielsen and Shephard [16, 17], LeBaron [88], and
Pong et al. [104], and Andersen et al. [6], among many others.
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3.2. Structural Breaks

About twenty years after Granger’s [60] seminal work, Diebold and Inoue [43] pre-
sented another useful insight into long memory. They found that short memory processes
with structural breaks can be easily mistaken as possessing long memory. This insight
sparked studies on discriminating short memory with structural breaks from long mem-
ory. Granger and Hyung [64] contributed to this discussion by showing that occasional
structural breaks cause the appearance of slowly decaying autocorrelations comparable to
fractionally integrated processes.

Structural breaks can exist in different distribution parameters. Studies on this subject
have mainly focused on the implications of breaks in the mean parameter or volatility. In
terms of breaks in the fractional differencing parameter, d, Granger [60] showed that
time series with a break in d can be represented by another long memory process with
memory parameter, d∗, that is a weighted average of the pre- and the post-break memory
parameters.

Many economic and financial time series are subject to structural breaks (see, for
instance, Stock and Watson [121]). If breaks are at least partly responsible for long
memory effects, one may want to control for them in order to mitigate bias, forecast
failures, and misleading inference. For the importance of break corrections and procedures,
see, for instance, Campos et al. [21], Hendry [72], Clements and Hendry [30], Pesaran and
Timmerman [102, 103], Perron [100], Castle et al. [23], Castle et al. [24], and references
therein.

But it is often a challenge to accurately estimate the timing or duration and the
magnitude of breaks, and to decisively conclude that long memory in individual time
series is purely due to structural breaks. Extending the results of Nunes et al. [98], Kuan
and Hsu [86] showed that standard break tests applied to highly persistent stationary
processes with no break can misleadingly suggest a significant break. Break detection
in long memory time series is an active area of research today. In finance, for instance,
Choi et al. [26] examined the possibility of structural breaks in a measure of volatility,
called the daily realized volatility (RV), of selected currency exchange rates, and found
that breaks in the mean are partly accountable for the persistence of the RV. Garvey and
Gallagher [55] suggested that long memory in the volatility of sixteen chosen FTSE100
stocks between 1997 and 2003 is not due to breaks. Also see, for instance, Perron and Qu
[99], Wang and Vasilakis [125], and Shi and Ho [116] for more empirical investigations and
some proposed testing procedures.

4. Fractional Cointegration

Fractional differencing naturally led to the concept of fractional cointegration (see
Granger [62]). It is a generalization of cointegration in the I(0)/I(1) paradigm formally
introduced by Engle and Granger [49], which is discussed by Jennifer L. Castle and David
F. Hendry in this volume. Two I(d) series, xt and yt, are said to be fractionally cointe-
grated (or cofractional) if there exists a linear combination (say, yt−αxt with α ∈ R) of xt
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and yt that is I(d−b) with b > 0. We commonly denote this relationship by CI(d, b). Since
cointegration is usually about a stationary relationship between (nonstationary) variables,
we usually concern ourselves with d− b < 1/2.

For modeling the cofractional relationships of order (d, b), Granger [62] proposed the
following vector autoregressive model:

Φ∗(L)(1− L)dyt = −(1− (1− L)b)(1− L)d−bγα>yt−1 + θ(L)εt, (10)

where the dimension of yt is D ∈ N, Φ∗(0) is the D × D identity matrix, Φ∗(1) is of
full-rank, and εt is a serially independent zero mean process with a joint distribution. α
and γ are D× r matrices of rank r ≤ D. Johansen [79] extended (10) by replacing Φ∗(L)
with another polynomial, Φ((1 − (1 − L)b). When cointegration models defined in the
I(0)/I(1) paradigm are generalized to encompass fractional dynamics in this fashion, it is
important to know the conditions under which the solutions of new dynamic equations are
well-defined and are allowed to be fractional, so that the equations serve as valid platforms
for making inference on cofractional relationships and fractional orders. See Granger [62]
and Johansen [79] for a detailed account on this issue.

The maximum likelihood method based on the conditional Gaussian likelihood can be
used to estimate cofractional models in the time domain. Johansen and Nielsen [81] consid-
ered this for the above vector autoregressive model with Φ∗(L) replaced by a polynomial in
(1−L)b. Their analysis assumed that errors are i.i.d. with suitable moment conditions and
that initial values are a deterministic bounded sequence. They showed that the maximum
likelihood estimator is consistent, and that the likelihood ratio test for cointegration rank
has standard limiting distributions (Gaussian or chi-squared) when b < 1/2. Johansen
and Nielsen [80] derived analogous results in the context of univariate nonstationary frac-
tional processes. The choice of the treatment of initial values can have a non-negligible
impact on the inference as we discussed in Section 2.1. Alternatively, Davidson [33, 34]
implemented bootstrap procedures to test cofractional relationship. Their procedures can
be useful if one suspects that the assumptions of standard test statistics might be vio-
lated. Fractional cointegration can be estimated also in the frequency domain using the
narrow-band least squares estimator proposed by Robinson [111]. The properties of this
estimator were studied by, for instance, Lobato [93], Robinson and Marinucci [113, 114],
and Christensen and Nielsen [28].

In finance and economics, fractional cointegration shed light on several empirical puz-
zles that have attracted attention. For instance, spot exchange rates that are individually
found to be nonstationary often appear to be tied to each other in the long-run. This
relationship could not be sufficiently explained by cointegration models in the I(0)/I(1)
paradigm. Baillie and Bollerslev [11] found that allowing for long-range dependence in
individual series can reveal fractionally cointegrated relationships between them.

Another puzzle concerns the relationship between implied volatility (IV) and realized
volatility (RV), which we touched on earlier.‡ If traders are rational and markets are

‡IV is the value of the volatility parameter in Black and Scholes’s [18] option pricing formula that is
consistent with observed option prices. RV is the sum of squared returns of the underlying asset measured
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efficient, financial theories suggest that IV is an unbiased predictor of RV. However, IV
tended to be biased empirically. Using either selected foreign exchange rates or stock
prices, studies showed that allowing for long-range dependence in both IV and RV can
unveil a fractionally cointegrated relationship between them with the associated α̂ sug-
gesting the unbiasedness of IV. See Kellard et al. [84], Nielsen [97], Bandi and Perron [15],
and Christensen and Nielsen [28].

Another example of fractional cointegration is between spot commodity prices and
the present price of the corresponding futures contract. See Baillie and Bollerslev [10],
Figuerola-Ferretti and Gonzalo [51], Westerlund and Narayan [126], and Cavaliere et al.
[25] for discussions.

5. Unit-Root and Fractional Alternatives

Around the same time as Granger’s [60, 61, 62] introduction to fractional differencing
and (fractional) cointegration, Dickey and Fuller [41, 42] developed unit-root tests, which
have been routinely applied to discriminate between stationary and nonstationary time
series. Clive Granger’s work also influenced the way we understand unit-root tests, and
compelled researchers to develop unit-root tests against fractional alternatives.

Sowell [120] formally showed that misspecifying the order of fractional integration can
lead to the use of different and wrong limiting distributions in tests for nonstationarity.
Sowell [120] derived asymptotic distributions for the ordinary least squares (OLS) esti-
mate of the first-order autoregression when the series are I(1 + d′) with d′ ∈ (−1/2, 1/2),
and showed that the support of the limiting distribution (termed the fractional unit-root
distribution) is non-positive if d′ ∈ (−1/2, 0), nonnegative if d′ ∈ (0, 1/2), and the entire
real line if d′ = 0. Moreover, Sowell [120] showed that the t-statistic that results from this
OLS estimation converges only when d′ = 0.

The Dickey-Fuller (DF) unit-root tests cannot be used to distinguish between unit-
root processes and fractional processes by construction because the series being tested
are I(0) under the alternative hypothesis. See Diebold and Rudebusch [45] and Hassler
and Wolters [70] for discussions. Robinson [108, 110] introduced new testing procedures
based on the Lagrange multiplier (LM) statistics that can be used to test unit-roots against
fractional alternatives. The proposed testing procedure is attractive since the test statistic
asymptotically has a familiar (chi-squared) distribution, and is locally most powerful under
Gaussianity. Agiakloglou and Newbold [2] extended the setting of the LM test to general
ARFIMA processes. Breitung and Hassler [20] proposed an augmented LM test for unit
roots against fractional alternatives that can be generalized to multivariate cointegration
tests for determining the cointegration rank of fractionally integrated processes. This work
follows Johansen’s [78] development of likelihood ratio (LR) tests for cointegration rank,
which can be interpreted as a generalization of the DF test in the I(0)/I(1) paradigm. Also
see Johansen and Nielsen’s [80, 81] LR tests in the univariate and multivariate fractional
settings, which we mentioned in Section 2.1.

in high frequency.
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The development of testing procedures in this context have typically relied on the as-
sumption of homoscedastic errors. Cavaliere et al. [25] cautioned against the conventional
use of likelihood-based tests in the presence of heteroscedastic errors, as the tests may not
be asymptotically correctly sized under the null and can lead to misleading conclusions
about the order of integration. For related discussions, also see Baillie et al. [12], Ling
and Li [92], Demetrescu et al. [40], Hassler et al. [71], and Kew and Harris [85]. The
development of heteroscedasticity-robust tests in this setting is an active field of research.

6. Other Developments and Frontiers

In Section 2.1, we noted the work by Davidson and Hashimzade [38] on the distortions
that arise from truncating the lags of fractional models. Their discussions use the limiting
distribution derived by Davidson and Hashimzade [38] of the sample covariance between a
nonstationary fractionally integrated process and the stationary increments of itself, or of
another process. Their theoretical results can be used in the theory of cofractional models.

Li and McLeod [89] and Robinson [110] introduced the use of the CSS to estimate
fractionally integrated models. Chung and Baillie [29] considered the small sample prop-
erties of the CSS estimator when it is used to estimate the ARFIMA models. Sowell
[119] discussed computational procedures to evaluate the likelihood function in the uncon-
ditional Gaussian maximum likelihood. Lieberman and Phillips [90] derived asymptotic
expansions of the distribution of the estimator for d that results in this procedure when
the fractional processes are stationary. A minimum distance estimator, similar to the
generalized method of moment estimator, has been considered by Tieslau et al. [124]. It
minimizes the difference between sample and population autocorrelations.

Fox and Taqqu [53] and Giraitis and Surgailis [58] considered the use of the quadratic
term in the Gaussian likelihood to estimate long memory parameter. Robinson [112]
considered maximizing an approximate form of frequency domain Gaussian likelihood.
Whittle’s [127] work on likelihood approximation in the frequency domain has been widely
applied in this field. Several versions of the Whittle estimator (e.g. local, exact, and
extended versions) have been developed for long memory processes. See Giraitis and
Robinson [57], Dalla et al. [32], Shimotsu and Phillips [117, 118], Haldrup and Nielsen
[66], Abadir et al. [1], Shao [115], and references therein.

Baillie et al. [13] studied the implications of the choice of estimator to the predictive
performance of the ARFIMA models. Semiparametric local-Whittle estimators and the
maximum likelihood estimators are compared. Studies have also been dedicated to ex-
amining bootstrap-based estimation procedures and inference. See, for instance, Andrews
and Lieberman [7], Andrews et al. [8], Poskitt [105], and Poskitt et al. [106].

In Section 2, we discussed the importance of the choice of m, which determines the
number of frequencies used in a frequency domain estimation. This choice of the pa-
rameter, m, also appears in other frequency-domain procedures such as the local-Whittle
estimator. But m is still usually a simple function of the sample size. Baillie et al. [14]
recently proposed a cross-validation method as an alternative for choosing m; this method
is based on the forecasting ability of the model to improve both the estimation of d and
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model’s predictive performance.
As regard unit-root tests, Dolado et al. [47] extended the DF test in the I(0)/I(1)

paradigm to the fractional case and introduced the so-called fractional Dickey-Fuller (F-
DF) test in the time domain. Their proofs use the convergence properties of the partial
sums of the truncated and non-truncated processes derived by Gourieroux et al. [59] and
Davidson and de Jong [35]. Note that Johansen and Nielsen [82] investigated the necessary
moment conditions under which the fractional functional central limit theorem for partial
sums of fractional processes hold, and pointed out corrections to Davidson and de Jong’s
[35] asymptotic results. Lobato and Velasco [94] studied the efficiency property of the F-
DF test, and introduced a simple two-step OLS estimation procedure that leads to a t-test,
which can be interpreted as a Wald test and is asymptotically equivalent to Robinson’s
[108, 110] LM statistics. Tanaka [122] considered nonstationary fractional unit-root tests
in the time domain.

7. Concluding Remarks

Sir Clive Granger’s work on long memory has had a major impact on time series anal-
ysis. He developed invaluable mathematical tools for more accurate data analysis through
his lifelong dedication to scientific discoveries and knowledge sharing. Scientists continue
to learn from him beyond his lifetime, as discussed above and by other contributors of this
volume.
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