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On identities for sequences of binomial sums with the
terms of sequences {ukn} and {vkn}
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Abstract. In this paper, considering technique used in [4], and the sequences {ukn} and {vkn} ,
we derive the sequences {gkn} and {hkn} . Also with the aid of generating matrix for the terms of
these sequences for a positive integer k, we derive some combinatorial identities for the sequence
{gkn} .
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1. Introduction

Matrix methods are very convenient for deriving certain of linear recurrence sequences.
Some authors have used matrix methods of other methods to derive some identities, com-
binatorial representations of linear recurrence relations etc[3, 6, 10, 13, 14, 15, 16, 8, 9].

In [13], the author gives a new formula for the nth power of an arbitrary 2× 2 matrix
and derive various matrix identities and formulae for the nth power of particular matrices
to obtain various combinatorial identities. The generalized second order sequences {un}
and {vn} , are defined for n > 0 and nonzero integer numbers p, q by

un+1 = pun + qun−1 and vn+1 = pvn + qvn−1

in which u0 = 0, u1 = 1 and v0 = 2, v1 = p, respectively. When p = q = 1, un = Fn (the
nth Fibonacci number) and vn = Ln (the nth Lucas number).

If α and β are the roots of equation x2−px−q = 0, the Binet formulae of the sequences
{un} and {vn} have the form

un =
αn − βn

α− β
and vn = αn + βn,
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respectively. From [7], E. Kılıç and P. Stanica derived the following recurrence relations
for the sequences {ukn} and {vkn} for k ≥ 0, n > 0. It is clearly that

uk(n+1) = vkukn + (−1)k+1 qkuk(n−1) and vk(n+1) = vkvkn + (−1)k+1 qkvk(n−1),

where the initial conditions of the sequences {ukn} and {vkn} are 0, uk, and 2, vk, respec-
tively. The Binet formulae of the sequences {ukn} and {vkn} are given by

ukn =
αkn − βkn

α− β
and vkn = αkn + βkn,

respectively. From the Binet formulas, one can see that u−kn = (−1)kn+1 ukn and u2kn =
uknvkn.

In [1] and [2], the authors obtained some new identities for the sequence {un}. For
example, for n ≥ 1,

n∑
k=0

(
n

k

)(
α

q

)k

uk =
α

q

(
pα

q
+ 2

)n−1
,

and
n∑

k=0

(
n

k

)(
β

q

)k

uk =
β

q

(
pβ

q
+ 2

)n−1
.

Let {ak} and {bk} be sequences with the property that ak is the finite difference of bk,
that is, ak = ∆bk := bk+1 − bk, for k ≥ 0. We take

gn =
n∑

k=0

(
n

k

)
ak and hn =

n∑
k=0

(
n

k

)
bk. (1)

In [11], Komatsu obtained several sequences of binomial sums of generalized Fibonacci
numbers. For example,

n∑
k=0

(
n

k

)
ckuk = rn (n ≥ 0)

satisfies the recurrence relation

rn = (ac+ 2) rn−1 +
(
bc2 − ac− 1

)
rn−2 (n ≥ 2)

with r0 = 0, r1 = c and
n∑

k=0

(
n

k

)
cn−kdkuk = λn (n ≥ 0)

satisfies the recurrence relation

λn = (ad+ 2c)λn−1 +
(
bd2 − acd− c2

)
λn−2 (n ≥ 2)

with initial conditions λ0 = 0 and λ1 = d, where c, d are nonzero real numbers.
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In [4], the authors obtain some binomial summation identities of sequences {rn} and
{λn}:

2n∑
k=0

(
2n

k

)
(−1)k

(
bc2 − ac− 1

)2n−k
r2k+1 = (ac+ 2)2n r2n+1,

2n∑
k=0

(
2n

k

)
(−1)k

(
bc2 − ac− 1

)2n−k
r2k = (ac+ 2)2n r2n.

2. Some Results

In this section, firstly, we define sequences {gkn} and {hkn} and then derive some new
combinatorial identities for these sequences.

Lemma 1. For n ≥ 0, the sum
n∑

i=0

(
n
i

)
ckiuki = gkn satisfies the recurrence relation

gk(n+2) =
(
ckvk + 2

)
gk(n+1) −

(
c2k(−q)k + ckvk + 1

)
gkn,

where initial conditions g0 = 0, gk = ckuk.

Proof. Considering akn = cknukn and bkn = ck(n+1)uk(n+1) in (1), the proof is com-
pleted as similar to proof technique in [11].

Lemma 2. The generating function U(z) of
n∑

i=0

(
n
i

)
ckiuki = gkn is given by

U(z) =
zkgk

1− (ckvk + 2) zk + (c2k(−q)k + ckvk + 1) z2k
.

Proof. Observed that

U(z) = g0z
0 + gkz

k + g2kz
2k + ...+ gknz

kn + ...

zkU(z) = g0z
k + gkz

2k + g2kz
3k + ...+ gk(n−1)z

kn + ...

z2kU(z) = g0z
2k + gkz

3k + g2kz
4k + ...+ gk(n−2)z

kn + ...

...

From here, we have

U(z)
(

1−
(
ckvk + 2

)
zk −

(
c2k(−q)k + ckvk + 1

)
z2k
)

= zkgk +

∞∑
i=2

(
gki −

(
ckvk + 2

)
gk(i−1) +

(
c2k(−q)k + ckvk + 1

)
gk(i−2)

)
zki.

From the recurrence relation in Lemma 1, we complete the proof for U(z).

Similarly, the proofs of the following lemmas are given as the proofs of Lemmas 1 and
2.
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Lemma 3. For n ≥ 0, the sum
n∑

i=0

(
n
i

)
ckivki = hkn satisfies the recurrence relation

hk(n+2) =
(
ckvk + 2

)
hk(n+1) −

(
c2k(−q)k + ckvk + 1

)
hkn,

where initial conditions h0 = 2, hk = 2 + ckvk.

Lemma 4. The generating function V (z) of
n∑

i=0

(
n
i

)
ckivki = hkn is given by

V (z) =
zk
(
hk − 2

(
ckvk + 2

))
+ 2

1− (ckvk + 2) zk + (c2k(−q)k + ckvk + 1) z2k
.

If ckαk + 1 and ckβk + 1 are the roots of equation

x2 −
(
ckvk + 2

)
x+

(
c2k(−q)k + ckvk + 1

)
= 0,

Binet formulae of sequences {gkn} and {hkn} are

gkn =

(
ckαk + 1

)n − (ckβk + 1
)n

α− β
and hkn =

(
ckαk + 1

)n
+
(
ckβk + 1

)n
,

respectively. It is clear that

g−kn = −
(
c2k(−q)k + ckvk + 1

)−n
gkn, g2kn = gknhkn (2)

and h−kn =
(
(−q)kc2k + ckvk + 1

)−n
hkn.

Now, we define a 2× 2 matrix A and then we give some new results for the sequences
{gkn} and {hkn} by matrix methods.

Consider the 2× 2 matrix A as follows:

A =

[
ckvk + 2 −

(
c2k(−q)k + ckvk + 1

)
1 0

]
.

The eigenvalues of the matrix A are

λ1 = ckαk + 1, λ2 = ckβk + 1.

Also λ1, λ2 are distinct. Let V be the 2× 2 matrix defined as follows:

V =

[
ckαk + 1 ckβk + 1

1 1

]
.

One can easily verify that
AV = V D1,
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where D1 = diag (λ1, λ2) . Since detV 6= 0, the matrix V invertible. So, we write

D1 = V −1AV.

Thus, the matrix A is similar to the diagonal matrix D1. We obtain

An = V Dn
1V
−1

=
1

ckuk

 gk(n+1) −
(
c2k (−q)k + ckvk + 1

)
gkn

gkn −
(
c2k (−q)k + ckvk + 1

)
gk(n−1)

 .
Clearly, the matrix An satisfies the recurrence relation: for n > 0,

An+1 =
(
ckvk + 2

)
An −

(
c2k(−q)k + ckvk + 1

)
An−1,

where initial conditions A0 = 0, A1 = A.
Also by matrix methods, it is clearly that

An

[
gk
g0

]
=

[
gk(n+1)

gkn

]
. (3)

For n ≥ 0, if we consider the fact that det(An) = (detA)n, then we obtain the Cassini
identity

g2kn − gk(n+1)gk(n−1) =
(
c2k (−q)k + ckvk + 1

)n−1
g2k.

For example, for k = c = p = q = 1, we write F 2
2n−F2n+1F2n−1 = −1( see page 74, [12]).

Similarly

A−n =
1

ckuk

(
c2k (−q)k + ckvk + 1

)n ×
[
−
(
c2k (−q)k + ckvk + 1

)
gk(n−1)

(
c2k (−q)k + ckvk + 1

)
gkn

−gkn gk(n+1)

]

and

A−n
[
gk
g0

]
=

[
gk(−n+1)

g−kn

]
. (4)

By considering sequence {hkn}, we write the simple relation between the vector of
sequence {hkn} and generating matrix of sequence {gkn} :

[
hk(n+1)

hkn

]
=

1

ckuk

 gk(n+1) −
(
c2k (−q)k + ckvk + 1

)
gkn

gkn −
(
c2k (−q)k + ckvk + 1

)
gk(n−1)

[ ckvk + 2
2

]
.
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Theorem 1. For all n,m ∈ Z, we have

ckukgk(n+m) = gkngk(m+1) −
(
c2k (−q)k + ckvk + 1

)
gk(n−1)gkm. (5)

Proof. After some simplications,(2, 1)−entries of AnAm = An+m give the conclusion.

For example, when n = m in (5), we have

ckukg2kn = gkngk(n+1) −
(
c2k (−q)k + ckvk + 1

)
gkngk(n−1),

or
ckukhkn = gk(n+1) −

(
c2k (−q)k + ckvk + 1

)
gk(n−1).

Theorem 2. For all n ∈ Z, we have

ckuk
(
gk(2n+1) + gk(2n−1)

)
= g2k(n+1) −

(
c2k (−q)k + ckvk

)
g2kn −

(
c2k (−q)k + ckvk + 1

)
g2k(n−1),

ckuk
(
gk(2n+1) − gk(2n−1)

)
= g2k(n+1) −

(
c2k (−q)k + ckvk + 2

)
g2kn +

(
c2k (−q)k + ckvk + 1

)
g2k(n−1).

Proof. Considering the (1, 1) and (2, 2)−entries of the matrix equation A2n = (An)2,
we have

g2k(n+1) −
(
c2k (−q)k + ckvk + 1

)
g2kn = ckukgk(2n+1), (6)

g2kn −
(
c2k (−q)k + ckvk + 1

)
g2k(n−1) = ckukgk(2n−1). (7)

By adding and substracting of (6) and (7) side by side, we have the conclusion.

Theorem 3. For n > 0, we have

gkn =
n∑

t=0

(
n

t

)(
ckvk + 2

)t
(−1)n−t

(
c2k(−q)k + ckvk + 1

)−n+t
gk(n−t).

Proof. From the matrix relation, we write

An =
((
ckvk + 2

)
I −

(
c2k(−q)k + ckvk + 1

)
A−1

)n
=

n∑
t=0

(
n

t

)(
ckvk + 2

)t (
c2k(−q)k+1 − ckvk − 1

)n−t
A−(n−t). (8)

Then equating (2, 1)−entries of the equality (8), we get

gkn =

n∑
t=0

(
n

t

)(
ckvk + 2

)t
(−1)n−t

(
c2k(−q)k + ckvk + 1

)−n+t
gk(n−t).
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Theorem 4. For n > 0, we have

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)2n−i
gk(2i+1) =

(
ckvk + 2

)2n
gk(2n+1),

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)2n−i
g2ki =

(
ckvk + 2

)2n
g2kn.

Proof. The matrix A2 is[ (
ckvk + 2

)2
+ qk(−1)k+1c2k − ckvk − 1

(
ckvk + 2

) (
qk(−1)k+1c2k − ckvk − 1

)
ckvk + 2 qk(−1)k+1c2k − ckvk − 1

]
and the characteristic equation for A2 is

λ
(
ckvk + 2

)2
=
(
λ+

(
c2k(−q)k + ckvk + 1

))2
. (9)

From the Caley-Hamilton Theorem for A2, we have

A2
(
ckvk + 2

)2
=
(
A2 +

(
c2k(−q)k + ckvk + 1

)
I
)2
.

Thus

A2n
(
ckvk + 2

)2n
=
(
A2 +

(
c2k(−q)k + ckvk + 1

)
I
)2n

.

By Binomial Theorem and (3), we have

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)2n−i
A2i = A2n

(
ckvk + 2

)2n
2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)2n−i [ gk(2i+1)

g2ki

]
=

(
ckvk + 2

)2n [ gk(2n+1)

g2kn

]
,

as claimed.

Theorem 5. For n > 0, we have

2n∑
i=0

(
2n

i

)
(−1)i

(
c2k(−q)k + ckvk + 1

)2n−i
gk(2i+1) = c2kn

(
v2k + 4qk (−1)k+1

)n
gk(2n+1),

2n∑
i=0

(
2n

i

)
(−1)i

(
c2k(−q)k + ckvk + 1

)2n−i
g2ki = c2kn

(
v2k + 4qk (−1)k+1

)n
g2kn.

Proof. Writing 4λ
(
qk(−1)k+1c2k − ckvk − 1

)
to each side of (3), we write

λc2k
(
v2k − 4 (−q)k

)2
=
(
λ+

(
qk(−1)k+1c2k − ckvk − 1

))2
. (10)

Similarly, using (10), as the proof of Theorem 1, the proof is completed.
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Theorem 6. For n > 0, we have

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)i
gk(−2i+1) =

(
ckvk + 2

)2n
gk(−2n+1),

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)i
g−2ki =

(
ckvk + 2

)2n
g−2kn.

Proof. The characteristic equation for A−2 is(
λ
(
c2k(−q)k + ckvk + 1

)
+ 1
)2

= λ
(
ckvk + 2

)2
.

From the Caley-Hamilton Theorem for A−2, we have(
A−2

(
c2k(−q)k + ckvk + 1

)
+ 1
)2

=
(
ckvk + 2

)2
A−2.

Thus (
A−2

(
c2k(−q)k + ckvk + 1

)
+ 1
)2n

=
(
ckvk + 2

)2n
A−2n.

By Binomial Theorem and (4), we have

2n∑
i=0

(
2n

i

)(
(−q)kc2k + ckvk + 1

)i
A−2i =

(
ckvk + 2

)2n
A−2n

2n∑
i=0

(
2n

i

)(
c2k(−q)k + ckvk + 1

)i [ gk(−2i+1)

g−2ki

]
=

(
ckvk + 2

)2n [ gk(−2n+1)

g−2kn

]
.

Thus, the proof is completed.

Let C be an arbitrary 2× 2 matrix, T and D denote the trace and determinant of C,
respectively. For the distinct eigenvalues a and b of matrix C, the following result can be
found in [5, 10]:

Lemma 5.

zn :=
an − bn

a− b
=

1

2n−1

b(n−1)/2c∑
i=0

(
n

2i+ 1

)
Tn−2i−1(T 2 − 4D)i,

then Cn = znC − zn−1DI2, where I2 is the identity matrix of order 2.

As a consequence of Lemma 5, we obtain that

2n−1gkn = ukc
k

b(n−1)/2c∑
i=0

(
n

2i+ 1

)(
ckvk + 2

)n−2i−1
(c2kv2k − 4c2k (−q)k)i.
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Let w be a complex number such that w2 + Tw +D 6= 0, w 6= 0. For a positive integer n,

Cn =

(
wD

w2 + Tw +D

)n 2n∑
t=0

t∑
i=0

(
n

i

)(
n

t− i

)(
D

w2

)i (w
D

)t
Ct. (11)

Therefore we get the following result of equality (11).

Theorem 7. For n > 0 and any complex number w different from 0, ckαk+1 and ckβk+1,

gkn =

 w
(
c2k (−q)k + ckvk + 1

)
w2 + (ckvk + 2)w + (c2k(−q)k + ckvk + 1)

n

×

2n∑
t=0

t∑
i=0

(
n

i

)(
n

t− i

)(
qk(−1)kc2k + ckvk + 1

)i−t
wt−2igkt.
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