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1. Introduction

The concept of metric space was introduced by Frechet [8]. Let (X, d) be a metric
space and S : X — X be a mapping. Then S is called Banach contraction if there exists
a € [0,1) such that

d(Sz,Sy) < ad(z,y), forall z,y € X. (1)

Banach [7] proved that if X is complete, then every Banach contraction mapping has a
fixed point. The mapping S is called Kannan contraction if there exists a € [0,1/2) such
that

d(Sz,Sy) < ald(z, Sz) +d(y, Sy)], forall z,y € X. (2)

Kannan [14] proved that if X is complete, then every Kannan contraction has a fixed
point. He further showed that the conditions (1) and (2) are independent of each other
(see, [14, 15]).

The study of existence and uniqueness of fixed points of a mapping and common fixed
points of two or more mappings has become a subject of great interest. Many authors
proved the Banach contraction and Kannan contraction principles in various generalized
metric spaces (e.g., see [4, 5, 6, 9, 10, 11, 13, 18]).

Long-Guang and Xian [11] introduced the concept of a cone metric space and proved some
fixed point theorems for contractive type conditions in cone metric spaces. Later on many
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authors have (for e.g., [1, 6,9, 12, 17, 19]) proved some fixed point theorems for different
contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [9] introduced the notion of cone pentagonal metric space and
proved Banach contraction mapping principle in a normal cone pentagonal metric space
setting.

Motivated and inspired by the results of [9, 17, 16], it is our purpose in this paper to
continue the study of common fixed points of a three self mappings in non-normal cone
pentagonal metric space setting. Our results extend and improve the results of [2, 3, 6, 9,
13, 18, 17, 16], and many others.

2. Preliminaries

The following definitions and Lemmas, introduced in [1, 3, 6, 9, 11], are needed in the
sequel.

Definition 1. Let E be a real Banach space and P subset of E. P is called a cone if and
only if:

(i) P is closed, nonempty, and P # {0};
(ii) a,b € R, a,b>0 and x,y € P = ax + by € P;
(iii) x € P and —v € P =2 = 0.

Given a cone P C F, we defined a partial ordering < with respect to P by « < y if
and only if y — z € P. We shall write x < y to indicate that x < y but z # y, while z < y
will stand for y — € int(P), where int(P) denotes the interior of P.

A cone P is called normal if there is a number k£ > 1 such that for all z,y € E, the
inequality

0<a<y=— ] <klyl. (3)

The least positive number £ satisfying (3) is called the normal constant of P.
In this paper, we always suppose that F is a real Banach space and P is a cone in F with
int(P) # () and < is a partial ordering with respect to P.

Definition 2. Let X be a nonempty set. Suppose the mapping p : X x X — E satisfies:
(i) 0 < p(z,y) for all z,y € X and p(x,y) =0 if and only if x = y;
(ii) p(x,y) = py,z) for all z,y € X;

(111) p(z,y) < p(x, z) + p(z,y) for all z,y,z € X.

Then p is called a cone metric on X, and (X, p) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because
each metric space is a cone metric space where E = R and P = [0, 00) (e.g., see [11]).
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Definition 3. Let X be a nonempty set. Suppose the mapping p : X X X — E satisfies:
(i) 0 < p(z,y) for all z,y € X and p(x,y) = 0 if and only if x = y;

(i) p(x,y) = p(y,x) for all z,y € X;

(iii) p(z,y) < p(z,w)+ p(w,z) + p(z,y) for all z,y,z € X and for all distinct points
w,z € X —{x,y} [Rectangular property].

Then p is called a cone rectangular metric on X, and (X, p) is called a cone rectangular
metric space.

Remark 1. FEvery cone metric space is cone rectangular metric space. The converse is
not necessarily true (e.g., see [6]).

Definition 4. Let X be a non empty set. Suppose the mapping d : X x X — E satisfies:
(i) 0 < d(z,y) for all z,y € X and d(x,y) = 0 if and only if x = y;

(“) d((L’,y) = d(y7$) fO’f’ z,y € X;

(iii) d(z,y) < d(z,z) + d(z,w) + d(w,u) + d(u,y) for all x,y,z,w,u € X and for all
distinct points z,w,u, € X — {x,y} [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X,d) is called a cone pentagonal
melric space.

Remark 2. Every cone rectangular metric space and so cone metric space is cone pen-
tagonal metric space. The converse is not necessarily true (e.g., see [9]).

Let (X, d) be a cone pentagonal metric space. Let {x,} be a sequence in X and z € X.
If for every ¢ € E with 0 < ¢ there exist ng € N and that for all n > ng, d(z,,z) < ¢,
then {z,} is said to be convergent and {z,} converges to z, and x is the limit of {z,}.
We denote this by lim, s x, = = or x,, = z as n — oo. If for every ¢ € E, with 0 < ¢
there exist ng € N such that for all n,m > ng, d(zy, Tm) < ¢, then {z,} is called Cauchy
sequence in X. If every Cauchy sequence is convergent in X, then X is called a complete
cone pentagonal metric space.

Definition 5. Let P be a cone defined as above and let ® be the set of non decreasing
continuous functions ¢ : P — P satisfying:

(1) 0 < p(t) <t forallt € P\ {0},
(i) the series 3, <" (t) converge for all t € P\ {0}
From (i), we have ¢(0) =0, and from (ii), we have lim,,_o @™ (t) =0 for all t € P\ {0}.

Let T and S be self maps of a nonempty set X. If w = Tx = Sz for some x € X, then
x is called a coincidence point of 7" and S and w is called a point of coincidence of T and
S. Also, T and S are said to be weakly compatible if they commute at their coincidence
points, that is, Tx = Sx implies that T'St = STx.
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Lemma 1. Let T and S be weakly compatible self mappings of nonempty set X. If T and
S have a unique point of coincidence w = Tx = Sz, then w is the unique common fized
point of T and S.

Lemma 2. Let (X,d) be a cone metric space with cone P not necessary to be normal.
Then for a,c,u,v,w € E, we have

(1) If a < ha and h € [0,1), then a = 0.
(ii) If 0 < u < ¢ for each 0 < ¢, then u = 0.
(111) If u <wv and v < w, then u < w.

Lemma 3. Let (X,d) be a complete cone pentagonal metric space. Let {x,} be a Cauchy
sequence in X and suppose that there is natural number N such that:

(i) ©p # T for allm,m > N;

(ii) xp,x are distinct points in X for alln > N;
(iii) xy,y are distinct points in X for all n > N;
(iv) xn, — = and x, =y as n — oo.

Then x = y.

3. Main Results

In this section, we prove Banach type and Kannan type contraction principles in cone
pentagonal metric spaces of a three self mappings. We give some examples to illustrate
the results.

Theorem 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g :
X — X satisfies the contractive condition:

d(Sz, fy) < (d(gz, gy)), (4)

for all x,y € X, where ¢ € ®. Suppose that S(X) U f(X) C ¢g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S,g) and (f,qg) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. Let xp be an arbitrary point in X. Since S(X) U f(X) C g(X), we can choose
x1 € X such that gr; = Sxg. Also we can choose o € X such that gzs = fx;. Continuing
this process, having chosen z,, in X, we obtain x,1 such that

gxn+1 = Sy and gxpio = frugq, foralln=0,1,2,--- .
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If gz, = grpy1, then gz, = Sz, = fx,, and z, is a coincidence point of S, f and g.
Hence, we assume that z,, # z,41 for all n € N. Then, from (4), it follows that
d(.gxnagxn-l—l) ( (an lvfxn))
( ( Tn—1,9%Tn )
< ¥ (d(g$n,2,gl‘n,1))

< " (d(gzo, gz1)). (5)
In similar way, it again follows that

d(gmn,g$n+2) < SDn(d(ngOaglﬁ))a (6)
d(92n, 9Tnts) < ¢"(d(gro, gz3))- (7)

Similarly, for k =1,2,3,---, it further follows that
d(gﬂfmgxn—&-%—i-l) < Son (d(gx()ag:riik-i-l))a (8)
d(gzn, 9Tpisir2) < 0" (d(920, 9T3112)), 9)
d(92n, 9Tntsk+3) < @™ (d(gz0, gT31+3)). (10)

By pentagonal property and (5), we have

d(gxo, gxa) < d(gxo, gz1) + d(gz1, gr2) + d(922, 923) + d(923, gT4)
d(gzo, 9z1) + ¢ (d(gwo, g21)) + ©*(d(920, 921)) + ©° (d(920, 921))
3
<> ¢’ (d(gzo, ga1)),
1=0

and

d(gwo, gr7) < d(gxo, gz1) + d(g71, 972) + d(922, 9g23) + d(973, g74)
+ d(gz4, gv5) + d(g75, g6) + d(976, 927)
6
<> ¢’ (d(gzo, ga1)).
i=0
Now, by induction, we obtain for each k =1,2,3,---

3k

d(9x0, gr3r+1) < Zwi (d(gwo, gz1)). (11)
=0

Also, using (5), (6), and pentagonal property, we have that

2
gx079x5 Z gxo,gah)) +§03(d(g$079x2))7
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and

5
d(gzo, grs) < Y _ &' (d(gwo, g21)) + ¢ (d(g0, g72)).
i=0

By induction, we obtain for each £ =1,2,3,---

3k—1

d(gw0, gr3k12) < Z SOi (d(gxo,gxl)) + 903k (d(gﬂfo,g@))-
i=0

Again, using (5), (7), and pentagonal property, we have that

2

gx(),g$6 Z gx(]:gxl ) +§03(d(gl‘0>g$3))7
=0

and ;
d(gxo, gxg) Z d(gz0, 971)) + ©° (d(gz0, g73)).
—0

By induction, we obtain for each ¥ =1,2,3,---
3k—1
d(g9x0, gr3k+3) < Z ' (d(gwo, gz1)) + ¢** (d(gz0, ga3)).
i=0
Using (8) and (11), for k =1,2,3,---, we have
3k

(g, 9Tni3e11) < @™ ¢ (d(gro, g1))
i=0

| A

[ZSO gl‘()agl‘l +d(g$0>g$2) +d(g$07g$3)):|

o0

IN

i=0
Similarly for £ =1,2,3,---, (9) and (12) implies that

3k—1
d(9Tn, 9Tn3k+2) < ¢ [ Z ' (d(gzo, gz1)) + @™ (d(9$07g$2))}

[Z ¢ (d(gxo, gz1) + d(gxo, gr2) + d(gﬂfo,gl“?,))} :

Again, for k =1,2,3,---, (10) and (13) implies that

o0

d(9Tn, 9Ty 3k43) < O" [Z ¢ (d(gzo, g1) + d(gxo, gr2) + d(go, g$3))} -

=0

" [ ¢ (d(gzo, gz1) + d(gzo, gz2) + d(gfﬁo,gﬂf?)))} :

478

(12)

(14)

(15)

(16)
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Thus, by (14), (15), and (16), we have, for each m,

(g0, gTnim) < ¢" [ > ¢ (d(gzo, gz1) + d(gzo, gz2) + d(go, gw3))} . (1)
=0

Since - " (d(g9wo, gz1) + d(gz0, gz2) + d(920, 973)) converges (by definition 5), where
d(gzo, gr1)+d(gzo, gz2)+d(gzo, gx3) € P\{0}, and P is closed, then )% ¢ (d(gxo, gr1)+
d(gwo, gx2) + d(gxo, gx3)) € P\ {0}. Hence

o0
lim ©" [
i=0

o' (d(gwo, gx1) + d(gzo, g2) + d(go, 9933))} = 0.
Then, for given ¢ > 0, there is a natural number N such that
" [Z@Z (d(9$07g$1) + d(gxo, gz2) + d(9$079$3))] <c¢, Vn 2> Ny (18)

Thus, from (17) and (18), we have
d(gTn, gTnim) < ¢, for all n > Nj.

Therefore, {gx,} is a Cauchy sequence in X. Since g(X) is a complete subspace of X,
there exists a points u,v € g(X) such that lim,_,~ gz, = v = gu.

Now, we show that gu = Su. Given ¢ > 0, we choose a natural numbers Na, N3 such that

d(v,g9zn) < §, Vn > Na, and d(gz,, grny1) < §, Vn > N3. Since z,, # xp, for n # m,
by pentagonal property, we have that

d(gu, Su) < d(gu, gzn) + d(9Tn, gTnt1) + d(gTn+1, 9Tn2) + d(gTnt2, Su)
= d(v, gzn) + d(gTn, 9Tn11) + d(gTni1, gTni2) + d(Su, frni1)
< d(v,gzn) + d(gn, 9Tni1) + d(gTni1, gTny2) + @(d(gu, grn 1))
< d(v, gfvn) + d(gwn, 9Tni1) + d(9Tny1, 9Tnr2) + d(v, gTni1)

c
—_ —_ —_ - = >
<<4+4—|—4—}—4 ¢, for alln > N,

where N := max{N2, N3}. Since c is arbitrary, we have d(gu, Su) < 5, Vm € N. Since
< — 0 as m — oo, we conclude -~ — d(gu, Su) — —d(gu, Su) as m — oo. Since P is
closed, —d(gu,Su) € P. Hence d(gu,Su) € P N —P. By definition of cone we get that
d(gu, Su) = 0, and so gu = Su = v. Hence, v is a coincidence point of S and g. Similarly,
we can prove that gu = fu = v, which implies that v is a point of coincidence of S, f and

g, i.e. gu= fu= Su=w.

Next, we show that v is unique. For suppose v’ be another point of coincidence of S, f
and g, that is Su’ = fu' = gu’ = v/, for some v’ € X, then

d(v,v") = d(Su, fu') < o(d(gu, gu')) = ¢(d(v,0v")) < d(v,v").
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Hence v = v'. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique
common fixed point of S, f and g. This completes the proof of the theorem.

Example 1. Let X = {1,2,3,4,5}, E = R? and P = {(=,y) : ,y > 0} is a cone in E.
Define d : X x X — E as follows:

d(z,z) =0,V € X,
d(1,2) = d(2,1) = (4,8);
d(1,3) = d(3,1) = d(3,4) = d(4,3) = d(2,4) = d(4,2) = (1,2);
d(1,5) =d(5,1) =d(2,5) = d(5,2) = d(3,5) = d(5,3) = d(4,5) = d(5,4) = (3,6).

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric
space because it lacks the rectangular property:

(4,8) = d(1,2) > d(1,3) +d(3,4) + d(4,2)
(1,2) +(1,2) +(1,2)
= (3,6) as (4,8) — (3,6) = (1,2) € P.

Define a mapping 5, f and g : X — X as follows:

S(z) =4, Vx € X.

[ 4, ifx#5;
f(x)_{Q, if z = 5.

g(z) ==z, Vz € X.

Clearly S(X)U f(X) C ¢g(X), g(X) is a complete subspace of X. Also, the pairs (5, g)
and (f,g) are weakly compatibles. The conditions of Theorem 1 holds for all z,y € X,
where (t) = %t, and 4 is the unique common fixed point of the mappings S, f and g.

Corollary 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g
X — X satisfies the contractive condition:

d(Sz, fy) < Ad(gz, gy),

for all x,y € X, where A € [0,1). Suppose that S(X) U f(X) C ¢g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence

in X. Moreover, if (S,g) and (f,qg) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. Define ¢ : P — P by ¢(t) = At. Then it is clear that ¢ satisfies the conditions
in definition 5. Hence the results follows from Theorem 1.
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Corollary 2. (see [4]) Let (X, d) be a cone pentagonal metric space. Suppose the mappings
S,g: X — X satisfies the contractive condition:

d(Sz, Sy) < ¢(d(gz, gy)),

for all x,y € X, where ¢ € ®. Suppose that S(X) C g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fized
point in X.

Proof. Putting f = .5 in Theorem 1. This completes the proof.

Corollary 3. Let (X,d) be a cone pentagonal metric space. Suppose the mappings S, g :
X — X satisfies the contractive condition:

d(Sz, Sy) < Ad(gz, gy),

for all z,y € X, where X\ € [0,1). Suppose that S(X) C g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fized
point in X.

Proof. Putting f =S in Theorem 1. The results follows from Corollary 1.

Corollary 4. (see [16]) Let (X,d) be a cone rectangular metric space. Suppose the map-
pings S, f,g : X — X satisfies the contractive condition:

d(Sz, fy) < Ad(gz, gy),

for all z,y € X, where A € [0,1). Suppose that S(X)U f(X) C g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S,g) and (f,g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 1.

Corollary 5. (see [17]) Let (X,d) be a cone rectangular metric space. Suppose the map-
pings S, g : X — X satisfies the contractive condition:

d(Sz, Sy) < ¢(d(gr, gy)),

for all z,y € X, where ¢ € ®. Suppose that S(X) C g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fized
point in X.
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Proof. This follows from the Remark 2 and Corollary 2.

Corollary 6. (see [2]) Let (X,d) be a cone pentagonal metric space. Suppose the mapping
S : X — X satisfy the following:

d(Sz, Sy) < p(d(x,y)),
for all x,y € X, where ¢ € ®. Then S has a unique fized point in X.

Proof. Putting g = I in Corollary 2, where I is the identity mapping. This completes
the proof.

Corollary 7. (see [17]) Let (X,d) be a cone rectangular metric space. Suppose the map-
ping S : X — X satisfy the following:

d(Sz, Sy) < p(d(@,y)),
for all x,y € X, where p € ®. Then S has a unique fized point in X.
Proof. This follows from the Remark 2 and Putting g = I in Corollary 2.
Corollary 8. (see [9]) Let (X,d) be a cone pentagonal metric space and P be a normal

cone with normal constant k. Suppose the mapping S : X — X satisfies the contractive
condition:

d(Sz, Sy) < Md(z,y),
for all z,y € X, where A € [0,1). Then S has a unique fized point in X.
Proof. Putting g = I in Corollary 3, where [ is the identity mapping. This completes
the proof.

Corollary 9. (see [6]) Let (X,d) be a cone rectangular metric space and P be a normal
cone with normal constant k. Suppose the mapping S : X — X satisfies:

d(Sz, Sy) < Ad(z,y),
for all z,y € X, where A € [0,1). Then S has a unique fized point in X.

Proof. Putting g = I in Corollary 3 and Remark 2, the results follows.

Theorem 2. Let (X,d) be a cone pentagonal metric space. Suppose the mappings S, f, g :
X — X satisfies the contractive condition:

d(Sz, fy) < Ad(gz, Sz) + d(gy, fy)], (19)

for all x,y € X, where X € [0,1/2). Suppose that S(X) U f(X) C g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S,g) and (f,g) are weakly compatible then S, f and g have a unique
common fixed point in X.



A. Auwalu, E. Hincal / Eur. J. Pure Appl. Math, 10 (3) (2017), 473-487 483

Proof. Let z¢ be an arbitrary point in X. Define, like in Theorem 1, a sequence {gzy, }
in X such that

gxn+1 = Sz, and grnio = frpqq, foralln=0,1,2,--- .
We assume that z, # z,41, for all n € N. Then, from (19), it follows that

d(gxnv gxn-‘rl) = d(an_l, fxn)
)\(d(gxn—h an—l) + d(gl’n, fmn))
A

<
< Md(g92n-1, 9%n) + d(g2n, gTnt1)).

So that,

A
d(g:cn, gxn—f—l) < ﬁd(gxn—h gwn)

A
< rd(gzn-1,9xy), where r = T €[0,1)

< rd(grn_2,9Tn_1)

< r"(d(gwo, gz1)). (20)
In similar way, it again follows that
d(gxp, gTpt2) < ™ (d(gz0, gz2)), (21)

and
d(gzn, gTn+3) < 1" (d(gwo, g3)). (22)
Similarly, for k =1,2,3,---, It further follows that

d(gxp, 9Tpiset1) < " (d(gzo, gT3k41)), (23)
d(gxp, 9Tpiset2) < " (d(gzo, gT3K42)), (24)
d(9xn, 9Tpisiets) < 1" (d(gzo, gT3k+3))- (25)

Using the same argument in the proof of Theorem 1, we can show that {gx,} is a Cauchy
sequence in X. Since g(X) is a complete subspace of X, there exists a points u,v € g(X)
such that lim,, ,- gz, = v = gu.

Now, we show that gu = Su. Given ¢ > 0, we choose a natural numbers M7, Ma, M3
such that d(v,gx,) < @7 Vn > My, d(gzn, gTn+1) < @, Vn > My and

d(gTn+1, gTni2) K 0(17_7_:3, Vn > Ms. Since x,, # x,, for n # m, by pentagonal property,

31
we have that

d(gu, Su) < d(gu, gzn) + d(9Tn, 9Tni1) + d(92Zni1, 9Tny2) + d(gTny2, Su)
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< d(v,97n) + d(9Tn, 9Tnt1) + d(gTnt1, 9Tnt2) + d(fTni1, Su)

< d(’l) gxn) + d(ga:n, gmn-‘rl) + d(gwn+1,gxn+2) ( (gu Su) + d(gxn+1, f$n+1))

< d(v 92p) + d(gTn, gTnt1) + d(gTni1, 9Tnt2) + A(d(gu, Su) + d(9Tn11, gTni2))
( (

d(gu, Su) < 7( v, 92n) + d(gTn, gTni1) + (1 + N)d(92n i1, gTn12))

<<3+3+3—C, for all n > M,
where M := max{Mj, My, M3}. Since c is arbitrary, we have d(gu, Su) < %, ¥m € N.
Since .= — 0 as m — oo, we conclude > — d(gu, Su) — —d(gu, Su) as m — oo. Since
P is closed, —d(gu,Su) € P. Hence d(gu,Su) € P N —P. By definition of cone we get
that d(gu, Su) = 0, and so gu = Su = v. Hence, v is a point of coincidence of S and g.
Similarly, we can prove that gu = fu = v, which implies that v is a point of coincidence

of S, f and g, i.e. gu = fu = Su=w.

Next, we show that v is unique. For suppose v’ be another point of coincidence, that is
gu' = fu' = Su' =/, for some v’ € X, then

d(v,v") = d(Su, fu') < A(d(gu, Su) + d(gv/, fu')) < Md(v,v) + d(V',v")).
Hence v = v'. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique
common fixed point of S, f and g. This completes the proof of the theorem.

Corollary 10. (see [5]) Let (X,d) be a cone pentagonal metric space. Suppose the map-
pings S, g : X — X satisfies the contractive condition:

d(Sz,Sy) < A|d(gz, Sz) + d(gy, Sy)],

for all z,y € X, where A € [0,1/2). Suppose that S(X) C g(X), and S(X) or g(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fized
point i X.

Proof. Putting f =S in Theorem 2. This completes the proof.

Corollary 11. (see [16]) Let (X,d) be a cone rectangular metric space. Suppose the
mappings S, f,g : X — X satisfies the contractive condition:

d(Sz, fy) < A[d(gz, Sz) + d(gy, fy)],

for all x,y € X, where X\ € [0,1/2). Suppose that S(X) U f(X) C g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S,g) and (f,g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 2.
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Corollary 12. (see [3]) Let (X,d) be a complete cone pentagonal metric space and P be
a normal cone with normal constant k. Suppose the mapping S : X — X satisfies the
contractive condition:

d(Sz, Sy) < A[d(z, Sz) + d(y, Sy)], (26)

for all xz,y € X, where X\ € [0,1/2). Then
(i) S has a unique fized point in X.
(ii) For any x € X, the iterative sequence {S™x} converges to the fized point.
Proof. Putting g = I in Corollary 10. This completes the proof.

Corollary 13. (see [18]) Let (X,d) be a cone rectangular metric space. Suppose the
mappings S, g : X — X satisfies the contractive condition:

d(Sz, Sy) < A|d(gz, Sz) + d(gy, Sy)],

for all z,y € X, where A € [0,1/2). Suppose that S(X) C g(X), and S(X) or g(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fized
point in X.

Proof. This follows from the Remark 2 and Corollary 10.
Corollary 14. (see [13]) Let (X,d) be a complete cone rectangular metric space and P

be a normal cone with normal constant k. Suppose the mapping S : X — X satisfies the
contractive condition:

d(Sz, Sy) < A[d(z, Sz) + d(y, Sy)], (27)
for all z,y € X, where X\ € [0,1/2). Then

(i) S has a unique fized point in X.
(ii) For any x € X, the iterative sequence {S™x} converges to the fized point.

Proof. Putting g = I in Corollary 10 and Remark 2. This completes the proof.

Example 2. Let X = {1,2,3,4,5}, E = R? and P = {(x,y) : x4, > 0} is a cone in E.
Define d: X x X — E as follows:

d(z,z) =0,Vz € X,
d(1,2) =d(2,1) = (4,8);
d(1,3) =d(3,1) =d(3,4) =d(4,3) =d(2,4) = d(4,2) = (1,2);
d(1,5) =d(5,1) = d(2,5) = d(5,2) =d(3,5) = d(5,3) = d(4,5) = d(5,4) = (3,6)
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Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric
space because it lacks the rectangular property:

(4,8) =

d(1,2) > d(1,3) +d(3,4) +d(4,2)

=(L2)+(1,2) +(1,2)
=(3,6) as (4,8) —(3,6) = (1,2) € P.
Define a mapping S, f and g : X — X as follows:
S(z) =4, Vx € X.

|4, if x#5;

ﬂm_{z,ﬁxza

3, ifx=1;

1, ifx=2

glz)=¢ 2, if z=3;

4, if = 4;

5, if z =5.

)

Clearly S(X)U f(X) C

9(X), g(X) is a complete subspace of X. Also, the pairs (.5, g)

and (f,9) are weakly compatibles. The conditions of Theorem 2 holds for all xz,y € X,

where \ = 3,

and 4 is the unique common fixed point of the mappings S, f and g¢.
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