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1. Introduction

The concept of metric space was introduced by Fŕechet [8]. Let (X, d) be a metric
space and S : X → X be a mapping. Then S is called Banach contraction if there exists
α ∈ [0, 1) such that

d(Sx, Sy) ≤ αd(x, y), for all x, y ∈ X. (1)

Banach [7] proved that if X is complete, then every Banach contraction mapping has a
fixed point. The mapping S is called Kannan contraction if there exists α ∈ [0, 1/2) such
that

d(Sx, Sy) ≤ α
[
d(x, Sx) + d(y, Sy)

]
, for all x, y ∈ X. (2)

Kannan [14] proved that if X is complete, then every Kannan contraction has a fixed
point. He further showed that the conditions (1) and (2) are independent of each other
(see, [14, 15]).
The study of existence and uniqueness of fixed points of a mapping and common fixed
points of two or more mappings has become a subject of great interest. Many authors
proved the Banach contraction and Kannan contraction principles in various generalized
metric spaces (e.g., see [4, 5, 6, 9, 10, 11, 13, 18]).

Long-Guang and Xian [11] introduced the concept of a cone metric space and proved some
fixed point theorems for contractive type conditions in cone metric spaces. Later on many
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authors have (for e.g., [1, 6, 9, 12, 17, 19]) proved some fixed point theorems for different
contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [9] introduced the notion of cone pentagonal metric space and
proved Banach contraction mapping principle in a normal cone pentagonal metric space
setting.

Motivated and inspired by the results of [9, 17, 16], it is our purpose in this paper to
continue the study of common fixed points of a three self mappings in non-normal cone
pentagonal metric space setting. Our results extend and improve the results of [2, 3, 6, 9,
13, 18, 17, 16], and many others.

2. Preliminaries

The following definitions and Lemmas, introduced in [1, 3, 6, 9, 11], are needed in the
sequel.

Definition 1. Let E be a real Banach space and P subset of E. P is called a cone if and
only if:

(i) P is closed, nonempty, and P 6= {0};

(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P =⇒ ax+ by ∈ P ;

(iii) x ∈ P and −x ∈ P =⇒ x = 0.

Given a cone P ⊆ E, we defined a partial ordering ≤ with respect to P by x ≤ y if
and only if y− x ∈ P. We shall write x < y to indicate that x ≤ y but x 6= y, while x� y
will stand for y − x ∈ int(P ), where int(P ) denotes the interior of P.

A cone P is called normal if there is a number k ≥ 1 such that for all x, y ∈ E, the
inequality

0 ≤ x ≤ y =⇒ ‖x‖ ≤ k‖y‖. (3)

The least positive number k satisfying (3) is called the normal constant of P.
In this paper, we always suppose that E is a real Banach space and P is a cone in E with
int(P ) 6= ∅ and ≤ is a partial ordering with respect to P.

Definition 2. Let X be a nonempty set. Suppose the mapping ρ : X ×X → E satisfies:

(i) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because
each metric space is a cone metric space where E = R and P = [0,∞) (e.g., see [11]).
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Definition 3. Let X be a nonempty set. Suppose the mapping ρ : X ×X → E satisfies:

(i) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) ρ(x, y) ≤ ρ(x,w) + ρ(w, z) + ρ(z, y) for all x, y, z ∈ X and for all distinct points
w, z ∈ X − {x, y} [Rectangular property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular
metric space.

Remark 1. Every cone metric space is cone rectangular metric space. The converse is
not necessarily true (e.g., see [6]).

Definition 4. Let X be a non empty set. Suppose the mapping d : X ×X → E satisfies:

(i) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) + d(u, y) for all x, y, z, w, u ∈ X and for all
distinct points z, w, u,∈ X − {x, y} [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal
metric space.

Remark 2. Every cone rectangular metric space and so cone metric space is cone pen-
tagonal metric space. The converse is not necessarily true (e.g., see [9]).

Let (X, d) be a cone pentagonal metric space. Let {xn} be a sequence in X and x ∈ X.
If for every c ∈ E with 0 � c there exist n0 ∈ N and that for all n > n0, d(xn, x) � c,
then {xn} is said to be convergent and {xn} converges to x, and x is the limit of {xn}.
We denote this by limn→∞ xn = x or xn → x as n → ∞. If for every c ∈ E, with 0 � c
there exist n0 ∈ N such that for all n,m > n0, d(xn, xm)� c, then {xn} is called Cauchy
sequence in X. If every Cauchy sequence is convergent in X, then X is called a complete
cone pentagonal metric space.

Definition 5. Let P be a cone defined as above and let Φ be the set of non decreasing
continuous functions ϕ : P → P satisfying:

(i) 0 < ϕ(t) < t for all t ∈ P \ {0},

(ii) the series
∑

n≥0 ϕ
n(t) converge for all t ∈ P \ {0}

From (i), we have ϕ(0) = 0, and from (ii), we have limn→0 ϕ
n(t) = 0 for all t ∈ P \ {0}.

Let T and S be self maps of a nonempty set X. If w = Tx = Sx for some x ∈ X, then
x is called a coincidence point of T and S and w is called a point of coincidence of T and
S. Also, T and S are said to be weakly compatible if they commute at their coincidence
points, that is, Tx = Sx implies that TSx = STx.
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Lemma 1. Let T and S be weakly compatible self mappings of nonempty set X. If T and
S have a unique point of coincidence w = Tx = Sx, then w is the unique common fixed
point of T and S.

Lemma 2. Let (X, d) be a cone metric space with cone P not necessary to be normal.
Then for a, c, u, v, w ∈ E, we have

(i) If a ≤ ha and h ∈ [0, 1), then a = 0.

(ii) If 0 ≤ u� c for each 0� c, then u = 0.

(iii) If u ≤ v and v � w, then u� w.

Lemma 3. Let (X, d) be a complete cone pentagonal metric space. Let {xn} be a Cauchy
sequence in X and suppose that there is natural number N such that:

(i) xn 6= xm for all n,m > N ;

(ii) xn, x are distinct points in X for all n > N ;

(iii) xn, y are distinct points in X for all n > N ;

(iv) xn → x and xn → y as n→∞.

Then x = y.

3. Main Results

In this section, we prove Banach type and Kannan type contraction principles in cone
pentagonal metric spaces of a three self mappings. We give some examples to illustrate
the results.

Theorem 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g :
X → X satisfies the contractive condition:

d(Sx, fy) ≤ ϕ
(
d(gx, gy)

)
, (4)

for all x, y ∈ X, where ϕ ∈ Φ. Suppose that S(X) ∪ f(X) ⊆ g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since S(X) ∪ f(X) ⊆ g(X), we can choose
x1 ∈ X such that gx1 = Sx0. Also we can choose x2 ∈ X such that gx2 = fx1. Continuing
this process, having chosen xn in X, we obtain xn+1 such that

gxn+1 = Sxn and gxn+2 = fxn+1, for all n = 0, 1, 2, · · · .
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If gxn = gxn+1, then gxn = Sxn = fxn, and xn is a coincidence point of S, f and g.
Hence, we assume that xn 6= xn+1 for all n ∈ N. Then, from (4), it follows that

d(gxn, gxn+1) = ϕ
(
d(Sxn−1, fxn)

)
≤ ϕ

(
d(gxn−1, gxn)

)
≤ ϕ2

(
d(gxn−2, gxn−1)

)
...

≤ ϕn
(
d(gx0, gx1)

)
. (5)

In similar way, it again follows that

d(gxn, gxn+2) ≤ ϕn
(
d(gx0, gx2)

)
, (6)

d(gxn, gxn+3) ≤ ϕn
(
d(gx0, gx3)

)
. (7)

Similarly, for k = 1, 2, 3, · · · , it further follows that

d(gxn, gxn+3k+1) ≤ ϕn
(
d(gx0, gx3k+1)

)
, (8)

d(gxn, gxn+3k+2) ≤ ϕn
(
d(gx0, gx3k+2)

)
, (9)

d(gxn, gxn+3k+3) ≤ ϕn
(
d(gx0, gx3k+3)

)
. (10)

By pentagonal property and (5), we have

d(gx0, gx4) ≤ d(gx0, gx1) + d(gx1, gx2) + d(gx2, gx3) + d(gx3, gx4)

≤ d(gx0, gx1) + ϕ
(
d(gx0, gx1)

)
+ ϕ2

(
d(gx0, gx1)

)
+ ϕ3

(
d(gx0, gx1)

)
≤

3∑
i=0

ϕi
(
d(gx0, gx1)

)
,

and

d(gx0, gx7) ≤ d(gx0, gx1) + d(gx1, gx2) + d(gx2, gx3) + d(gx3, gx4)

+ d(gx4, gx5) + d(gx5, gx6) + d(gx6, gx7)

≤
6∑
i=0

ϕi
(
d(gx0, gx1)

)
.

Now, by induction, we obtain for each k = 1, 2, 3, · · ·

d(gx0, gx3k+1) ≤
3k∑
i=0

ϕi
(
d(gx0, gx1)

)
. (11)

Also, using (5), (6), and pentagonal property, we have that

d(gx0, gx5) ≤
2∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ3

(
d(gx0, gx2)

)
,
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and

d(gx0, gx8) ≤
5∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ6

(
d(gx0, gx2)

)
.

By induction, we obtain for each k = 1, 2, 3, · · ·

d(gx0, gx3k+2) ≤
3k−1∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ3k

(
d(gx0, gx2)

)
. (12)

Again, using (5), (7), and pentagonal property, we have that

d(gx0, gx6) ≤
2∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ3

(
d(gx0, gx3)

)
,

and

d(gx0, gx9) ≤
5∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ6

(
d(gx0, gx3)

)
.

By induction, we obtain for each k = 1, 2, 3, · · ·

d(gx0, gx3k+3) ≤
3k−1∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ3k

(
d(gx0, gx3)

)
. (13)

Using (8) and (11), for k = 1, 2, 3, · · · , we have

d(gxn, gxn+3k+1) ≤ ϕn
3k∑
i=0

ϕi
(
d(gx0, gx1)

)
≤ ϕn

[ 3k∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
≤ ϕn

[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
. (14)

Similarly for k = 1, 2, 3, · · · , (9) and (12) implies that

d(gxn, gxn+3k+2) ≤ ϕn
[ 3k−1∑
i=0

ϕi
(
d(gx0, gx1)

)
+ ϕ3k

(
d(gx0, gx2)

)]
≤ ϕn

[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
. (15)

Again, for k = 1, 2, 3, · · · , (10) and (13) implies that

d(gxn, gxn+3k+3) ≤ ϕn
[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
. (16)



A. Auwalu, E. Hınçal / Eur. J. Pure Appl. Math, 10 (3) (2017), 473-487 479

Thus, by (14), (15), and (16), we have, for each m,

d(gxn, gxn+m) ≤ ϕn
[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
. (17)

Since
∑∞

i=0 ϕ
i
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)
converges (by definition 5), where

d(gx0, gx1)+d(gx0, gx2)+d(gx0, gx3) ∈ P\{0}, and P is closed, then
∑∞

i=0 ϕ
i
(
d(gx0, gx1)+

d(gx0, gx2) + d(gx0, gx3)
)
∈ P \ {0}. Hence

lim
n→∞

ϕn
[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
= 0.

Then, for given c� 0, there is a natural number N1 such that

ϕn
[ ∞∑
i=0

ϕi
(
d(gx0, gx1) + d(gx0, gx2) + d(gx0, gx3)

)]
� c, ∀n ≥ N1. (18)

Thus, from (17) and (18), we have

d(gxn, gxn+m)� c, for all n ≥ N1.

Therefore, {gxn} is a Cauchy sequence in X. Since g(X) is a complete subspace of X,
there exists a points u, v ∈ g(X) such that limn→∞ gxn = v = gu.

Now, we show that gu = Su. Given c� 0, we choose a natural numbers N2, N3 such that
d(v, gxn) � c

4 , ∀n ≥ N2, and d(gxn, gxn+1) � c
4 , ∀n ≥ N3. Since xn 6= xm for n 6= m,

by pentagonal property, we have that

d(gu, Su) ≤ d(gu, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(gxn+2, Su)

= d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(Su, fxn+1)

≤ d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + ϕ
(
d(gu, gxn+1)

)
< d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(v, gxn+1)

� c

4
+
c

4
+
c

4
+
c

4
= c, for all n ≥ N,

where N := max{N2, N3}. Since c is arbitrary, we have d(gu, Su) � c
m , ∀m ∈ N. Since

c
m → 0 as m → ∞, we conclude c

m − d(gu, Su) → −d(gu, Su) as m → ∞. Since P is
closed, −d(gu, Su) ∈ P. Hence d(gu, Su) ∈ P ∩ −P. By definition of cone we get that
d(gu, Su) = 0, and so gu = Su = v. Hence, v is a coincidence point of S and g. Similarly,
we can prove that gu = fu = v, which implies that v is a point of coincidence of S, f and
g, i.e. gu = fu = Su = v.

Next, we show that v is unique. For suppose v′ be another point of coincidence of S, f
and g, that is Su′ = fu′ = gu′ = v′, for some u′ ∈ X, then

d(v, v′) = d(Su, fu′) ≤ ϕ
(
d(gu, gu′)

)
= ϕ

(
d(v, v′)

)
< d(v, v′).
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Hence v = v′. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique
common fixed point of S, f and g. This completes the proof of the theorem.

Example 1. Let X = {1, 2, 3, 4, 5}, E = R2 and P = {(x, y) : x, y ≥ 0} is a cone in E.
Define d : X ×X → E as follows:

d(x, x) = 0, ∀x ∈ X;

d(1, 2) = d(2, 1) = (4, 8);

d(1, 3) = d(3, 1) = d(3, 4) = d(4, 3) = d(2, 4) = d(4, 2) = (1, 2);

d(1, 5) = d(5, 1) = d(2, 5) = d(5, 2) = d(3, 5) = d(5, 3) = d(4, 5) = d(5, 4) = (3, 6).

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric
space because it lacks the rectangular property:

(4, 8) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 2)

= (1, 2) + (1, 2) + (1, 2)

= (3, 6) as (4, 8)− (3, 6) = (1, 2) ∈ P.

Define a mapping S, f and g : X → X as follows:

S(x) = 4, ∀x ∈ X.

f(x) =

{
4, if x 6= 5;
2, if x = 5.

g(x) = x, ∀x ∈ X.

Clearly S(X)∪ f(X) ⊆ g(X), g(X) is a complete subspace of X. Also, the pairs (S, g)
and (f, g) are weakly compatibles. The conditions of Theorem 1 holds for all x, y ∈ X,
where ϕ(t) = 1

3 t, and 4 is the unique common fixed point of the mappings S, f and g.

Corollary 1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g :
X → X satisfies the contractive condition:

d(Sx, fy) ≤ λd(gx, gy),

for all x, y ∈ X, where λ ∈ [0, 1). Suppose that S(X) ∪ f(X) ⊆ g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. Define ϕ : P → P by ϕ(t) = λt. Then it is clear that ϕ satisfies the conditions
in definition 5. Hence the results follows from Theorem 1.
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Corollary 2. (see [4]) Let (X, d) be a cone pentagonal metric space. Suppose the mappings
S, g : X → X satisfies the contractive condition:

d(Sx, Sy) ≤ ϕ
(
d(gx, gy)

)
,

for all x, y ∈ X, where ϕ ∈ Φ. Suppose that S(X) ⊆ g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed
point in X.

Proof. Putting f = S in Theorem 1. This completes the proof.

Corollary 3. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, g :
X → X satisfies the contractive condition:

d(Sx, Sy) ≤ λd(gx, gy),

for all x, y ∈ X, where λ ∈ [0, 1). Suppose that S(X) ⊆ g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed
point in X.

Proof. Putting f = S in Theorem 1. The results follows from Corollary 1.

Corollary 4. (see [16]) Let (X, d) be a cone rectangular metric space. Suppose the map-
pings S, f, g : X → X satisfies the contractive condition:

d(Sx, fy) ≤ λd(gx, gy),

for all x, y ∈ X, where λ ∈ [0, 1). Suppose that S(X) ∪ f(X) ⊆ g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 1.

Corollary 5. (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the map-
pings S, g : X → X satisfies the contractive condition:

d(Sx, Sy) ≤ ϕ
(
d(gx, gy)

)
,

for all x, y ∈ X, where ϕ ∈ Φ. Suppose that S(X) ⊆ g(X), and g(X) or S(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed
point in X.
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Proof. This follows from the Remark 2 and Corollary 2.

Corollary 6. (see [2]) Let (X, d) be a cone pentagonal metric space. Suppose the mapping
S : X → X satisfy the following:

d(Sx, Sy) ≤ ϕ
(
d(x, y)

)
,

for all x, y ∈ X, where ϕ ∈ Φ. Then S has a unique fixed point in X.

Proof. Putting g = I in Corollary 2, where I is the identity mapping. This completes
the proof.

Corollary 7. (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the map-
ping S : X → X satisfy the following:

d(Sx, Sy) ≤ ϕ
(
d(x, y)

)
,

for all x, y ∈ X, where ϕ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2 and Putting g = I in Corollary 2.

Corollary 8. (see [9]) Let (X, d) be a cone pentagonal metric space and P be a normal
cone with normal constant k. Suppose the mapping S : X → X satisfies the contractive
condition:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. Putting g = I in Corollary 3, where I is the identity mapping. This completes
the proof.

Corollary 9. (see [6]) Let (X, d) be a cone rectangular metric space and P be a normal
cone with normal constant k. Suppose the mapping S : X → X satisfies:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. Putting g = I in Corollary 3 and Remark 2, the results follows.

Theorem 2. Let (X, d) be a cone pentagonal metric space. Suppose the mappings S, f, g :
X → X satisfies the contractive condition:

d(Sx, fy) ≤ λ
[
d(gx, Sx) + d(gy, fy)

]
, (19)

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that S(X) ∪ f(X) ⊆ g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique
common fixed point in X.
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Proof. Let x0 be an arbitrary point in X. Define, like in Theorem 1, a sequence {gxn}
in X such that

gxn+1 = Sxn and gxn+2 = fxn+1, for all n = 0, 1, 2, · · · .

We assume that xn 6= xn+1, for all n ∈ N. Then, from (19), it follows that

d(gxn, gxn+1) = d(Sxn−1, fxn)

≤ λ
(
d(gxn−1, Sxn−1) + d(gxn, fxn)

)
≤ λ

(
d(gxn−1, gxn) + d(gxn, gxn+1)

)
.

So that,

d(gxn, gxn+1) ≤
λ

1− λ
d(gxn−1, gxn)

≤ rd(gxn−1, gxn), where r =
λ

1− λ
∈ [0, 1)

≤ r2d(gxn−2, gxn−1)

...

≤ rn
(
d(gx0, gx1)

)
. (20)

In similar way, it again follows that

d(gxn, gxn+2) ≤ rn
(
d(gx0, gx2)

)
, (21)

and
d(gxn, gxn+3) ≤ rn

(
d(gx0, gx3)

)
. (22)

Similarly, for k = 1, 2, 3, · · · , It further follows that

d(gxn, gxn+3k+1) ≤ rn
(
d(gx0, gx3k+1)

)
, (23)

d(gxn, gxn+3k+2) ≤ rn
(
d(gx0, gx3k+2)

)
, (24)

d(gxn, gxn+3k+3) ≤ rn
(
d(gx0, gx3k+3)

)
. (25)

Using the same argument in the proof of Theorem 1, we can show that {gxn} is a Cauchy
sequence in X. Since g(X) is a complete subspace of X, there exists a points u, v ∈ g(X)
such that limn→∞ gxn = v = gu.

Now, we show that gu = Su. Given c � 0, we choose a natural numbers M1,M2,M3

such that d(v, gxn) � c(1−λ)
3 , ∀n ≥ M1, d(gxn, gxn+1) � c(1−λ)

3 , ∀n ≥ M2 and

d(gxn+1, gxn+2)� c(1−λ)
3(1+λ) , ∀n ≥M3. Since xn 6= xm for n 6= m, by pentagonal property,

we have that

d(gu, Su) ≤ d(gu, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(gxn+2, Su)
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≤ d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(fxn+1, Su)

≤ d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + λ
(
d(gu, Su) + d(gxn+1, fxn+1)

)
< d(v, gxn) + d(gxn, gxn+1) + d(gxn+1, gxn+2) + λ

(
d(gu, Su) + d(gxn+1, gxn+2)

)
d(gu, Su) ≤ 1

1− λ
(
d(v, gxn) + d(gxn, gxn+1) + (1 + λ)d(gxn+1, gxn+2)

)
� c

3
+
c

3
+
c

3
= c, for all n ≥M,

where M := max{M1,M2,M3}. Since c is arbitrary, we have d(gu, Su) � c
m , ∀m ∈ N.

Since c
m → 0 as m → ∞, we conclude c

m − d(gu, Su) → −d(gu, Su) as m → ∞. Since
P is closed, −d(gu, Su) ∈ P. Hence d(gu, Su) ∈ P ∩ −P. By definition of cone we get
that d(gu, Su) = 0, and so gu = Su = v. Hence, v is a point of coincidence of S and g.
Similarly, we can prove that gu = fu = v, which implies that v is a point of coincidence
of S, f and g, i.e. gu = fu = Su = v.

Next, we show that v is unique. For suppose v′ be another point of coincidence, that is
gu′ = fu′ = Su′ = v′, for some u′ ∈ X, then

d(v, v′) = d(Su, fu′) ≤ λ
(
d(gu, Su) + d(gu′, fu′)

)
≤ λ

(
d(v, v) + d(v′, v′)

)
.

Hence v = v′. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique
common fixed point of S, f and g. This completes the proof of the theorem.

Corollary 10. (see [5]) Let (X, d) be a cone pentagonal metric space. Suppose the map-
pings S, g : X → X satisfies the contractive condition:

d(Sx, Sy) ≤ λ
[
d(gx, Sx) + d(gy, Sy)

]
,

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that S(X) ⊆ g(X), and S(X) or g(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed
point in X.

Proof. Putting f = S in Theorem 2. This completes the proof.

Corollary 11. (see [16]) Let (X, d) be a cone rectangular metric space. Suppose the
mappings S, f, g : X → X satisfies the contractive condition:

d(Sx, fy) ≤ λ
[
d(gx, Sx) + d(gy, fy)

]
,

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that S(X) ∪ f(X) ⊆ g(X), and g(X) is a
complete subspace of X, then the mappings S, f and g have a unique point of coincidence
in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique
common fixed point in X.

Proof. This follows from the Remark 2 and Theorem 2.
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Corollary 12. (see [3]) Let (X, d) be a complete cone pentagonal metric space and P be
a normal cone with normal constant k. Suppose the mapping S : X → X satisfies the
contractive condition:

d(Sx, Sy) ≤ λ
[
d(x, Sx) + d(y, Sy)

]
, (26)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

(i) S has a unique fixed point in X.

(ii) For any x ∈ X, the iterative sequence {Snx} converges to the fixed point.

Proof. Putting g = I in Corollary 10. This completes the proof.

Corollary 13. (see [18]) Let (X, d) be a cone rectangular metric space. Suppose the
mappings S, g : X → X satisfies the contractive condition:

d(Sx, Sy) ≤ λ
[
d(gx, Sx) + d(gy, Sy)

]
,

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that S(X) ⊆ g(X), and S(X) or g(X) is a
complete subspace of X, then the mappings S and g have a unique point of coincidence in
X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed
point in X.

Proof. This follows from the Remark 2 and Corollary 10.

Corollary 14. (see [13]) Let (X, d) be a complete cone rectangular metric space and P
be a normal cone with normal constant k. Suppose the mapping S : X → X satisfies the
contractive condition:

d(Sx, Sy) ≤ λ
[
d(x, Sx) + d(y, Sy)

]
, (27)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

(i) S has a unique fixed point in X.

(ii) For any x ∈ X, the iterative sequence {Snx} converges to the fixed point.

Proof. Putting g = I in Corollary 10 and Remark 2. This completes the proof.

Example 2. Let X = {1, 2, 3, 4, 5}, E = R2 and P = {(x, y) : x, y ≥ 0} is a cone in E.
Define d : X ×X → E as follows:

d(x, x) = 0,∀x ∈ X;

d(1, 2) = d(2, 1) = (4, 8);

d(1, 3) = d(3, 1) = d(3, 4) = d(4, 3) = d(2, 4) = d(4, 2) = (1, 2);

d(1, 5) = d(5, 1) = d(2, 5) = d(5, 2) = d(3, 5) = d(5, 3) = d(4, 5) = d(5, 4) = (3, 6).
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Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric
space because it lacks the rectangular property:

(4, 8) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 2)

= (1, 2) + (1, 2) + (1, 2)

= (3, 6) as (4, 8)− (3, 6) = (1, 2) ∈ P.

Define a mapping S, f and g : X → X as follows:

S(x) = 4, ∀x ∈ X.

f(x) =

{
4, if x 6= 5;
2, if x = 5.

g(x) =


3, if x = 1;
1, if x = 2;
2, if x = 3;
4, if x = 4;
5, if x = 5.

Clearly S(X)∪ f(X) ⊆ g(X), g(X) is a complete subspace of X. Also, the pairs (S, g)
and (f, g) are weakly compatibles. The conditions of Theorem 2 holds for all x, y ∈ X,
where λ = 1

3 , and 4 is the unique common fixed point of the mappings S, f and g.
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