#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 3, 2017, 473-487 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global



# Common fixed point theorems for three maps in cone pentagonal metric spaces

Abba Auwalu<sup>1,\*</sup>, Evren Hınçal<sup>1</sup>

<sup>1</sup> Department of Mathematics, Near East University, Nicosia-TRNC, Turkey

**Abstract.** In this paper, we prove some common fixed point theorems of three self mappings in non-normal cone pentagonal metric spaces. Our results extend and improve the recent results announced by many authors.

2010 Mathematics Subject Classifications: 47H10, 54H25

**Key Words and Phrases**: Cone pentagonal metric spaces, Common fixed point, Contraction mapping principle, Weakly compatible maps

## 1. Introduction

The concept of metric space was introduced by Fréchet [8]. Let (X,d) be a metric space and  $S: X \to X$  be a mapping. Then S is called Banach contraction if there exists  $\alpha \in [0,1)$  such that

$$d(Sx, Sy) \le \alpha d(x, y), \text{ for all } x, y \in X.$$
 (1)

Banach [7] proved that if X is complete, then every Banach contraction mapping has a fixed point. The mapping S is called Kannan contraction if there exists  $\alpha \in [0, 1/2)$  such that

$$d(Sx, Sy) \le \alpha [d(x, Sx) + d(y, Sy)], \text{ for all } x, y \in X.$$
 (2)

Kannan [14] proved that if X is complete, then every Kannan contraction has a fixed point. He further showed that the conditions (1) and (2) are independent of each other (see, [14, 15]).

The study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more mappings has become a subject of great interest. Many authors proved the Banach contraction and Kannan contraction principles in various generalized metric spaces (e.g., see [4, 5, 6, 9, 10, 11, 13, 18]).

Long-Guang and Xian [11] introduced the concept of a cone metric space and proved some fixed point theorems for contractive type conditions in cone metric spaces. Later on many

 $Email\ addresses: \verb|abba.auwalu@neu.edu.tr|, \ abbaauwalu@yahoo.com (A.\ Auwalu), evren.hincal@neu.edu.tr|, evrenhincal@yahoo.co.uk (E.\ Hinçal)$ 

<sup>\*</sup>Corresponding author.

authors have (for e.g., [1, 6, 9, 12, 17, 19]) proved some fixed point theorems for different contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [9] introduced the notion of cone pentagonal metric space and proved Banach contraction mapping principle in a normal cone pentagonal metric space setting.

Motivated and inspired by the results of [9, 17, 16], it is our purpose in this paper to continue the study of common fixed points of a three self mappings in non-normal cone pentagonal metric space setting. Our results extend and improve the results of [2, 3, 6, 9, 13, 18, 17, 16], and many others.

# 2. Preliminaries

The following definitions and Lemmas, introduced in [1, 3, 6, 9, 11], are needed in the sequel.

**Definition 1.** Let E be a real Banach space and P subset of E. P is called a cone if and only if:

- (i) P is closed, nonempty, and  $P \neq \{0\}$ ;
- (ii)  $a, b \in \mathbb{R}$ , a, b > 0 and  $x, y \in P \Longrightarrow ax + by \in P$ ;
- (iii)  $x \in P$  and  $-x \in P \Longrightarrow x = 0$ .

Given a cone  $P \subseteq E$ , we defined a partial ordering  $\leq$  with respect to P by  $x \leq y$  if and only if  $y - x \in P$ . We shall write x < y to indicate that  $x \leq y$  but  $x \neq y$ , while  $x \ll y$  will stand for  $y - x \in int(P)$ , where int(P) denotes the interior of P.

A cone P is called normal if there is a number  $k \geq 1$  such that for all  $x, y \in E$ , the inequality

$$0 \le x \le y \Longrightarrow ||x|| \le k||y||. \tag{3}$$

The least positive number k satisfying (3) is called the normal constant of P. In this paper, we always suppose that E is a real Banach space and P is a cone in E with  $int(P) \neq \emptyset$  and  $\leq$  is a partial ordering with respect to P.

**Definition 2.** Let X be a nonempty set. Suppose the mapping  $\rho: X \times X \to E$  satisfies:

- (i)  $0 < \rho(x,y)$  for all  $x,y \in X$  and  $\rho(x,y) = 0$  if and only if x = y;
- (ii)  $\rho(x,y) = \rho(y,x)$  for all  $x,y \in X$ ;
- (iii)  $\rho(x,y) \le \rho(x,z) + \rho(z,y)$  for all  $x,y,z \in X$ .

Then  $\rho$  is called a cone metric on X, and  $(X, \rho)$  is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because each metric space is a cone metric space where  $E = \mathbb{R}$  and  $P = [0, \infty)$  (e.g., see [11]).

**Definition 3.** Let X be a nonempty set. Suppose the mapping  $\rho: X \times X \to E$  satisfies:

- (i)  $0 < \rho(x,y)$  for all  $x,y \in X$  and  $\rho(x,y) = 0$  if and only if x = y;
- (ii)  $\rho(x,y) = \rho(y,x)$  for all  $x,y \in X$ ;
- (iii)  $\rho(x,y) \leq \rho(x,w) + \rho(w,z) + \rho(z,y)$  for all  $x,y,z \in X$  and for all distinct points  $w,z \in X \{x,y\}$  [Rectangular property].

Then  $\rho$  is called a cone rectangular metric on X, and  $(X, \rho)$  is called a cone rectangular metric space.

**Remark 1.** Every cone metric space is cone rectangular metric space. The converse is not necessarily true (e.g., see [6]).

**Definition 4.** Let X be a non empty set. Suppose the mapping  $d: X \times X \to E$  satisfies:

- (i) 0 < d(x,y) for all  $x, y \in X$  and d(x,y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for  $x, y \in X$ :
- (iii)  $d(x,y) \leq d(x,z) + d(z,w) + d(w,u) + d(u,y)$  for all  $x,y,z,w,u \in X$  and for all distinct points  $z,w,u,\in X-\{x,y\}$  [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X,d) is called a cone pentagonal metric space.

**Remark 2.** Every cone rectangular metric space and so cone metric space is cone pentagonal metric space. The converse is not necessarily true (e.g., see [9]).

Let (X,d) be a cone pentagonal metric space. Let  $\{x_n\}$  be a sequence in X and  $x \in X$ . If for every  $c \in E$  with  $0 \ll c$  there exist  $n_0 \in \mathbb{N}$  and that for all  $n > n_0$ ,  $d(x_n, x) \ll c$ , then  $\{x_n\}$  is said to be convergent and  $\{x_n\}$  converges to x, and x is the limit of  $\{x_n\}$ . We denote this by  $\lim_{n\to\infty} x_n = x$  or  $x_n\to x$  as  $n\to\infty$ . If for every  $c\in E$ , with  $0\ll c$  there exist  $n_0\in\mathbb{N}$  such that for all  $n,m>n_0$ ,  $d(x_n,x_m)\ll c$ , then  $\{x_n\}$  is called Cauchy sequence in X. If every Cauchy sequence is convergent in X, then X is called a complete cone pentagonal metric space.

**Definition 5.** Let P be a cone defined as above and let  $\Phi$  be the set of non decreasing continuous functions  $\varphi: P \to P$  satisfying:

- (i)  $0 < \varphi(t) < t \text{ for all } t \in P \setminus \{0\},$
- (ii) the series  $\sum_{n>0} \varphi^n(t)$  converge for all  $t \in P \setminus \{0\}$

From (i), we have  $\varphi(0) = 0$ , and from (ii), we have  $\lim_{n\to 0} \varphi^n(t) = 0$  for all  $t \in P \setminus \{0\}$ .

Let T and S be self maps of a nonempty set X. If w = Tx = Sx for some  $x \in X$ , then x is called a coincidence point of T and S and W is called a point of coincidence of T and S. Also, T and S are said to be weakly compatible if they commute at their coincidence points, that is, Tx = Sx implies that TSx = STx.

**Lemma 1.** Let T and S be weakly compatible self mappings of nonempty set X. If T and S have a unique point of coincidence w = Tx = Sx, then w is the unique common fixed point of T and S.

**Lemma 2.** Let (X,d) be a cone metric space with cone P not necessary to be normal. Then for  $a, c, u, v, w \in E$ , we have

- (i) If  $a \le ha$  and  $h \in [0, 1)$ , then a = 0.
- (ii) If  $0 \le u \ll c$  for each  $0 \ll c$ , then u = 0.
- (iii) If  $u \le v$  and  $v \ll w$ , then  $u \ll w$ .

**Lemma 3.** Let (X, d) be a complete cone pentagonal metric space. Let  $\{x_n\}$  be a Cauchy sequence in X and suppose that there is natural number N such that:

- (i)  $x_n \neq x_m$  for all n, m > N;
- (ii)  $x_n, x$  are distinct points in X for all n > N;
- (iii)  $x_n, y$  are distinct points in X for all n > N;
- (iv)  $x_n \to x$  and  $x_n \to y$  as  $n \to \infty$ .

Then x = y.

## 3. Main Results

In this section, we prove Banach type and Kannan type contraction principles in cone pentagonal metric spaces of a three self mappings. We give some examples to illustrate the results.

**Theorem 1.** Let (X,d) be a cone pentagonal metric space. Suppose the mappings  $S, f, g: X \to X$  satisfies the contractive condition:

$$d(Sx, fy) \le \varphi(d(gx, gy)), \tag{4}$$

for all  $x, y \in X$ , where  $\varphi \in \Phi$ . Suppose that  $S(X) \cup f(X) \subseteq g(X)$ , and g(X) is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

*Proof.* Let  $x_0$  be an arbitrary point in X. Since  $S(X) \cup f(X) \subseteq g(X)$ , we can choose  $x_1 \in X$  such that  $gx_1 = Sx_0$ . Also we can choose  $x_2 \in X$  such that  $gx_2 = fx_1$ . Continuing this process, having chosen  $x_n$  in X, we obtain  $x_{n+1}$  such that

$$gx_{n+1} = Sx_n$$
 and  $gx_{n+2} = fx_{n+1}$ , for all  $n = 0, 1, 2, \cdots$ .

If  $gx_n = gx_{n+1}$ , then  $gx_n = Sx_n = fx_n$ , and  $x_n$  is a coincidence point of S, f and g. Hence, we assume that  $x_n \neq x_{n+1}$  for all  $n \in \mathbb{N}$ . Then, from (4), it follows that

$$d(gx_n, gx_{n+1}) = \varphi(d(Sx_{n-1}, fx_n))$$

$$\leq \varphi(d(gx_{n-1}, gx_n))$$

$$\leq \varphi^2(d(gx_{n-2}, gx_{n-1}))$$

$$\vdots$$

$$\leq \varphi^n(d(gx_0, gx_1)). \tag{5}$$

In similar way, it again follows that

$$d(gx_n, gx_{n+2}) \le \varphi^n (d(gx_0, gx_2)), \tag{6}$$

$$d(gx_n, gx_{n+3}) \le \varphi^n (d(gx_0, gx_3)). \tag{7}$$

Similarly, for  $k = 1, 2, 3, \dots$ , it further follows that

$$d(gx_n, gx_{n+3k+1}) \le \varphi^n (d(gx_0, gx_{3k+1})), \tag{8}$$

$$d(gx_n, gx_{n+3k+2}) \le \varphi^n \big( d(gx_0, gx_{3k+2}) \big), \tag{9}$$

$$d(gx_n, gx_{n+3k+3}) \le \varphi^n (d(gx_0, gx_{3k+3})). \tag{10}$$

By pentagonal property and (5), we have

$$d(gx_0, gx_4) \leq d(gx_0, gx_1) + d(gx_1, gx_2) + d(gx_2, gx_3) + d(gx_3, gx_4)$$

$$\leq d(gx_0, gx_1) + \varphi(d(gx_0, gx_1)) + \varphi^2(d(gx_0, gx_1)) + \varphi^3(d(gx_0, gx_1))$$

$$\leq \sum_{i=0}^{3} \varphi^i(d(gx_0, gx_1)),$$

and

$$d(gx_0, gx_7) \le d(gx_0, gx_1) + d(gx_1, gx_2) + d(gx_2, gx_3) + d(gx_3, gx_4)$$

$$+ d(gx_4, gx_5) + d(gx_5, gx_6) + d(gx_6, gx_7)$$

$$\le \sum_{i=0}^{6} \varphi^i (d(gx_0, gx_1)).$$

Now, by induction, we obtain for each  $k = 1, 2, 3, \cdots$ 

$$d(gx_0, gx_{3k+1}) \le \sum_{i=0}^{3k} \varphi^i (d(gx_0, gx_1)). \tag{11}$$

Also, using (5), (6), and pentagonal property, we have that

$$d(gx_0, gx_5) \le \sum_{i=0}^{2} \varphi^i (d(gx_0, gx_1)) + \varphi^3 (d(gx_0, gx_2)),$$

and

$$d(gx_0, gx_8) \le \sum_{i=0}^{5} \varphi^i (d(gx_0, gx_1)) + \varphi^6 (d(gx_0, gx_2)).$$

By induction, we obtain for each  $k = 1, 2, 3, \cdots$ 

$$d(gx_0, gx_{3k+2}) \le \sum_{i=0}^{3k-1} \varphi^i (d(gx_0, gx_1)) + \varphi^{3k} (d(gx_0, gx_2)).$$
 (12)

Again, using (5), (7), and pentagonal property, we have that

$$d(gx_0, gx_6) \le \sum_{i=0}^{2} \varphi^i (d(gx_0, gx_1)) + \varphi^3 (d(gx_0, gx_3)),$$

and

$$d(gx_0, gx_9) \le \sum_{i=0}^{5} \varphi^i (d(gx_0, gx_1)) + \varphi^6 (d(gx_0, gx_3)).$$

By induction, we obtain for each  $k = 1, 2, 3, \cdots$ 

$$d(gx_0, gx_{3k+3}) \le \sum_{i=0}^{3k-1} \varphi^i (d(gx_0, gx_1)) + \varphi^{3k} (d(gx_0, gx_3)).$$
 (13)

Using (8) and (11), for  $k = 1, 2, 3, \dots$ , we have

$$d(gx_{n}, gx_{n+3k+1}) \leq \varphi^{n} \sum_{i=0}^{3k} \varphi^{i} (d(gx_{0}, gx_{1}))$$

$$\leq \varphi^{n} \Big[ \sum_{i=0}^{3k} \varphi^{i} (d(gx_{0}, gx_{1}) + d(gx_{0}, gx_{2}) + d(gx_{0}, gx_{3})) \Big]$$

$$\leq \varphi^{n} \Big[ \sum_{i=0}^{\infty} \varphi^{i} (d(gx_{0}, gx_{1}) + d(gx_{0}, gx_{2}) + d(gx_{0}, gx_{3})) \Big].$$
(14)

Similarly for  $k=1,2,3,\cdots$ , (9) and (12) implies that

$$d(gx_n, gx_{n+3k+2}) \le \varphi^n \Big[ \sum_{i=0}^{3k-1} \varphi^i \big( d(gx_0, gx_1) \big) + \varphi^{3k} \big( d(gx_0, gx_2) \big) \Big]$$

$$\le \varphi^n \Big[ \sum_{i=0}^{\infty} \varphi^i \big( d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3) \big) \Big].$$
 (15)

Again, for  $k = 1, 2, 3, \dots$ , (10) and (13) implies that

$$d(gx_n, gx_{n+3k+3}) \le \varphi^n \Big[ \sum_{i=0}^{\infty} \varphi^i \big( d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3) \big) \Big].$$
 (16)

Thus, by (14), (15), and (16), we have, for each m,

$$d(gx_n, gx_{n+m}) \le \varphi^n \Big[ \sum_{i=0}^{\infty} \varphi^i \big( d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3) \big) \Big]. \tag{17}$$

Since  $\sum_{i=0}^{\infty} \varphi^i (d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3))$  converges (by definition 5), where  $d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3) \in P \setminus \{0\}$ , and P is closed, then  $\sum_{i=0}^{\infty} \varphi^i (d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3)) \in P \setminus \{0\}$ . Hence

$$\lim_{n \to \infty} \varphi^n \Big[ \sum_{i=0}^{\infty} \varphi^i \Big( d(gx_0, gx_1) + d(gx_0, gx_2) + d(gx_0, gx_3) \Big) \Big] = 0.$$

Then, for given  $c \gg 0$ , there is a natural number  $N_1$  such that

$$\varphi^{n} \left[ \sum_{i=0}^{\infty} \varphi^{i} \left( d(gx_{0}, gx_{1}) + d(gx_{0}, gx_{2}) + d(gx_{0}, gx_{3}) \right) \right] \ll c, \quad \forall n \geq N_{1}.$$
 (18)

Thus, from (17) and (18), we have

$$d(gx_n, gx_{n+m}) \ll c$$
, for all  $n \geq N_1$ .

Therefore,  $\{gx_n\}$  is a Cauchy sequence in X. Since g(X) is a complete subspace of X, there exists a points  $u, v \in g(X)$  such that  $\lim_{n\to\infty} gx_n = v = gu$ .

Now, we show that gu = Su. Given  $c \gg 0$ , we choose a natural numbers  $N_2, N_3$  such that  $d(v, gx_n) \ll \frac{c}{4}$ ,  $\forall n \geq N_2$ , and  $d(gx_n, gx_{n+1}) \ll \frac{c}{4}$ ,  $\forall n \geq N_3$ . Since  $x_n \neq x_m$  for  $n \neq m$ , by pentagonal property, we have that

$$\begin{split} d(gu,Su) & \leq d(gu,gx_n) + d(gx_n,gx_{n+1}) + d(gx_{n+1},gx_{n+2}) + d(gx_{n+2},Su) \\ & = d(v,gx_n) + d(gx_n,gx_{n+1}) + d(gx_{n+1},gx_{n+2}) + d(Su,fx_{n+1}) \\ & \leq d(v,gx_n) + d(gx_n,gx_{n+1}) + d(gx_{n+1},gx_{n+2}) + \varphi \Big( d(gu,gx_{n+1}) \Big) \\ & < d(v,gx_n) + d(gx_n,gx_{n+1}) + d(gx_{n+1},gx_{n+2}) + d(v,gx_{n+1}) \\ & \ll \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} = c, \text{ for all } n \geq N, \end{split}$$

where  $N:=\max\{N_2,N_3\}$ . Since c is arbitrary, we have  $d(gu,Su)\ll\frac{c}{m},\ \forall m\in\mathbb{N}$ . Since  $\frac{c}{m}\to 0$  as  $m\to\infty$ , we conclude  $\frac{c}{m}-d(gu,Su)\to -d(gu,Su)$  as  $m\to\infty$ . Since P is closed,  $-d(gu,Su)\in P$ . Hence  $d(gu,Su)\in P\cap -P$ . By definition of cone we get that d(gu,Su)=0, and so gu=Su=v. Hence, v is a coincidence point of S and g. Similarly, we can prove that gu=fu=v, which implies that v is a point of coincidence of S,f and g, i.e. gu=fu=Su=v.

Next, we show that v is unique. For suppose v' be another point of coincidence of S, f and g, that is Su' = fu' = gu' = v', for some  $u' \in X$ , then

$$d(v,v') = d(Su,fu') \le \varphi \big(d(gu,gu')\big) = \varphi \big(d(v,v')\big) < d(v,v').$$

Hence v = v'. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique common fixed point of S, f and g. This completes the proof of the theorem.

**Example 1.** Let  $X = \{1, 2, 3, 4, 5\}$ ,  $E = \mathbb{R}^2$  and  $P = \{(x, y) : x, y \ge 0\}$  is a cone in E. Define  $d: X \times X \to E$  as follows:

$$d(x,x) = 0, \forall x \in X;$$
 
$$d(1,2) = d(2,1) = (4,8);$$
 
$$d(1,3) = d(3,1) = d(3,4) = d(4,3) = d(2,4) = d(4,2) = (1,2);$$
 
$$d(1,5) = d(5,1) = d(2,5) = d(5,2) = d(3,5) = d(5,3) = d(4,5) = d(5,4) = (3,6).$$

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric space because it lacks the rectangular property:

$$(4,8) = d(1,2) > d(1,3) + d(3,4) + d(4,2)$$
  
=  $(1,2) + (1,2) + (1,2)$   
=  $(3,6)$  as  $(4,8) - (3,6) = (1,2) \in P$ .

Define a mapping S, f and  $g: X \to X$  as follows:

$$S(x) = 4, \ \forall x \in X.$$

$$f(x) = \begin{cases} 4, & \text{if } x \neq 5; \\ 2, & \text{if } x = 5. \end{cases}$$

$$q(x) = x, \ \forall x \in X.$$

Clearly  $S(X) \cup f(X) \subseteq g(X)$ , g(X) is a complete subspace of X. Also, the pairs (S,g) and (f,g) are weakly compatibles. The conditions of Theorem 1 holds for all  $x,y \in X$ , where  $\varphi(t) = \frac{1}{3}t$ , and 4 is the unique common fixed point of the mappings S, f and g.

**Corollary 1.** Let (X, d) be a cone pentagonal metric space. Suppose the mappings  $S, f, g : X \to X$  satisfies the contractive condition:

$$d(Sx, fy) < \lambda d(qx, qy),$$

for all  $x, y \in X$ , where  $\lambda \in [0,1)$ . Suppose that  $S(X) \cup f(X) \subseteq g(X)$ , and g(X) is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S,g) and (f,g) are weakly compatible then S, f and g have a unique common fixed point in X.

*Proof.* Define  $\varphi: P \to P$  by  $\varphi(t) = \lambda t$ . Then it is clear that  $\varphi$  satisfies the conditions in definition 5. Hence the results follows from Theorem 1.

**Corollary 2.** (see [4]) Let (X, d) be a cone pentagonal metric space. Suppose the mappings  $S, g: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \varphi(d(gx, gy)),$$

for all  $x, y \in X$ , where  $\varphi \in \Phi$ . Suppose that  $S(X) \subseteq g(X)$ , and g(X) or S(X) is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

*Proof.* Putting f = S in Theorem 1. This completes the proof.

**Corollary 3.** Let (X,d) be a cone pentagonal metric space. Suppose the mappings  $S,g:X\to X$  satisfies the contractive condition:

$$d(Sx, Sy) < \lambda d(qx, qy),$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1)$ . Suppose that  $S(X) \subseteq g(X)$ , and g(X) or S(X) is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

*Proof.* Putting f = S in Theorem 1. The results follows from Corollary 1.

**Corollary 4.** (see [16]) Let (X, d) be a cone rectangular metric space. Suppose the mappings  $S, f, g: X \to X$  satisfies the contractive condition:

$$d(Sx, fy) \le \lambda d(gx, gy),$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1)$ . Suppose that  $S(X) \cup f(X) \subseteq g(X)$ , and g(X) is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

*Proof.* This follows from the Remark 2 and Theorem 1.

**Corollary 5.** (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the mappings  $S, g: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \varphi(d(gx, gy)),$$

for all  $x, y \in X$ , where  $\varphi \in \Phi$ . Suppose that  $S(X) \subseteq g(X)$ , and g(X) or S(X) is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

*Proof.* This follows from the Remark 2 and Corollary 2.

**Corollary 6.** (see [2]) Let (X, d) be a cone pentagonal metric space. Suppose the mapping  $S: X \to X$  satisfy the following:

$$d(Sx, Sy) \le \varphi(d(x, y)),$$

for all  $x, y \in X$ , where  $\varphi \in \Phi$ . Then S has a unique fixed point in X.

*Proof.* Putting g=I in Corollary 2, where I is the identity mapping. This completes the proof.

**Corollary 7.** (see [17]) Let (X, d) be a cone rectangular metric space. Suppose the mapping  $S: X \to X$  satisfy the following:

$$d(Sx, Sy) \le \varphi(d(x, y)),$$

for all  $x, y \in X$ , where  $\varphi \in \Phi$ . Then S has a unique fixed point in X.

*Proof.* This follows from the Remark 2 and Putting q = I in Corollary 2.

**Corollary 8.** (see [9]) Let (X,d) be a cone pentagonal metric space and P be a normal cone with normal constant k. Suppose the mapping  $S: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \lambda d(x, y),$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1)$ . Then S has a unique fixed point in X.

*Proof.* Putting g = I in Corollary 3, where I is the identity mapping. This completes the proof.

**Corollary 9.** (see [6]) Let (X,d) be a cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mapping  $S: X \to X$  satisfies:

$$d(Sx, Sy) < \lambda d(x, y),$$

for all  $x, y \in X$ , where  $\lambda \in [0,1)$ . Then S has a unique fixed point in X.

*Proof.* Putting q = I in Corollary 3 and Remark 2, the results follows.

**Theorem 2.** Let (X,d) be a cone pentagonal metric space. Suppose the mappings  $S, f, g: X \to X$  satisfies the contractive condition:

$$d(Sx, fy) \le \lambda \left[ d(gx, Sx) + d(gy, fy) \right], \tag{19}$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Suppose that  $S(X) \cup f(X) \subseteq g(X)$ , and g(X) is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

*Proof.* Let  $x_0$  be an arbitrary point in X. Define, like in Theorem 1, a sequence  $\{gx_n\}$  in X such that

$$gx_{n+1} = Sx_n$$
 and  $gx_{n+2} = fx_{n+1}$ , for all  $n = 0, 1, 2, \cdots$ .

We assume that  $x_n \neq x_{n+1}$ , for all  $n \in \mathbb{N}$ . Then, from (19), it follows that

$$d(gx_n, gx_{n+1}) = d(Sx_{n-1}, fx_n)$$

$$\leq \lambda (d(gx_{n-1}, Sx_{n-1}) + d(gx_n, fx_n))$$

$$\leq \lambda (d(gx_{n-1}, gx_n) + d(gx_n, gx_{n+1})).$$

So that,

$$d(gx_n, gx_{n+1}) \leq \frac{\lambda}{1-\lambda} d(gx_{n-1}, gx_n)$$

$$\leq rd(gx_{n-1}, gx_n), \text{ where } r = \frac{\lambda}{1-\lambda} \in [0, 1)$$

$$\leq r^2 d(gx_{n-2}, gx_{n-1})$$

$$\vdots$$

$$\leq r^n (d(gx_0, gx_1)). \tag{20}$$

In similar way, it again follows that

$$d(gx_n, gx_{n+2}) \le r^n \big( d(gx_0, gx_2) \big), \tag{21}$$

and

$$d(gx_n, gx_{n+3}) \le r^n (d(gx_0, gx_3)).$$
 (22)

Similarly, for  $k = 1, 2, 3, \dots$ , It further follows that

$$d(gx_n, gx_{n+3k+1}) \le r^n (d(gx_0, gx_{3k+1})), \tag{23}$$

$$d(gx_n, gx_{n+3k+2}) \le r^n (d(gx_0, gx_{3k+2})), \tag{24}$$

$$d(gx_n, gx_{n+3k+3}) \le r^n (d(gx_0, gx_{3k+3})). \tag{25}$$

Using the same argument in the proof of Theorem 1, we can show that  $\{gx_n\}$  is a Cauchy sequence in X. Since g(X) is a complete subspace of X, there exists a points  $u, v \in g(X)$  such that  $\lim_{n\to\infty} gx_n = v = gu$ .

Now, we show that gu = Su. Given  $c \gg 0$ , we choose a natural numbers  $M_1, M_2, M_3$  such that  $d(v, gx_n) \ll \frac{c(1-\lambda)}{3}$ ,  $\forall n \geq M_1$ ,  $d(gx_n, gx_{n+1}) \ll \frac{c(1-\lambda)}{3}$ ,  $\forall n \geq M_2$  and  $d(gx_{n+1}, gx_{n+2}) \ll \frac{c(1-\lambda)}{3(1+\lambda)}$ ,  $\forall n \geq M_3$ . Since  $x_n \neq x_m$  for  $n \neq m$ , by pentagonal property, we have that

$$d(gu, Su) \le d(gu, gx_n) + d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + d(gx_{n+2}, Su)$$

$$\leq d(v, gx_n) + d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + d(fx_{n+1}, Su)$$

$$\leq d(v, gx_n) + d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + \lambda \left(d(gu, Su) + d(gx_{n+1}, fx_{n+1})\right)$$

$$< d(v, gx_n) + d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + \lambda \left(d(gu, Su) + d(gx_{n+1}, gx_{n+2})\right)$$

$$d(gu, Su) \leq \frac{1}{1 - \lambda} \left(d(v, gx_n) + d(gx_n, gx_{n+1}) + (1 + \lambda)d(gx_{n+1}, gx_{n+2})\right)$$

$$\ll \frac{c}{3} + \frac{c}{3} + \frac{c}{3} = c, \text{ for all } n \geq M,$$

where  $M := \max\{M_1, M_2, M_3\}$ . Since c is arbitrary, we have  $d(gu, Su) \ll \frac{c}{m}$ ,  $\forall m \in \mathbb{N}$ . Since  $\frac{c}{m} \to 0$  as  $m \to \infty$ , we conclude  $\frac{c}{m} - d(gu, Su) \to -d(gu, Su)$  as  $m \to \infty$ . Since P is closed,  $-d(gu, Su) \in P$ . Hence  $d(gu, Su) \in P \cap -P$ . By definition of cone we get that d(gu, Su) = 0, and so gu = Su = v. Hence, v is a point of coincidence of S and g. Similarly, we can prove that gu = fu = v, which implies that v is a point of coincidence of S, f and g, i.e. gu = fu = Su = v.

Next, we show that v is unique. For suppose v' be another point of coincidence, that is qu' = fu' = Su' = v', for some  $u' \in X$ , then

$$d(v,v') = d(Su, fu') \le \lambda \big(d(gu, Su) + d(gu', fu')\big) \le \lambda \big(d(v,v) + d(v',v')\big).$$

Hence v = v'. Since (S, g) and (f, g) are weakly compatible, by Lemma 1, v is the unique common fixed point of S, f and g. This completes the proof of the theorem.

**Corollary 10.** (see [5]) Let (X,d) be a cone pentagonal metric space. Suppose the mappings  $S, g: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \lambda [d(qx, Sx) + d(qy, Sy)],$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Suppose that  $S(X) \subseteq g(X)$ , and S(X) or g(X) is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

*Proof.* Putting f = S in Theorem 2. This completes the proof.

**Corollary 11.** (see [16]) Let (X,d) be a cone rectangular metric space. Suppose the mappings  $S, f, g: X \to X$  satisfies the contractive condition:

$$d(Sx,fy) \leq \lambda \big[ d(gx,Sx) + d(gy,fy) \big],$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Suppose that  $S(X) \cup f(X) \subseteq g(X)$ , and g(X) is a complete subspace of X, then the mappings S, f and g have a unique point of coincidence in X. Moreover, if (S, g) and (f, g) are weakly compatible then S, f and g have a unique common fixed point in X.

*Proof.* This follows from the Remark 2 and Theorem 2.

**Corollary 12.** (see [3]) Let (X,d) be a complete cone pentagonal metric space and P be a normal cone with normal constant k. Suppose the mapping  $S: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \lambda \left[ d(x, Sx) + d(y, Sy) \right],\tag{26}$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Then

- (i) S has a unique fixed point in X.
- (ii) For any  $x \in X$ , the iterative sequence  $\{S^n x\}$  converges to the fixed point.

*Proof.* Putting g = I in Corollary 10. This completes the proof.

**Corollary 13.** (see [18]) Let (X,d) be a cone rectangular metric space. Suppose the mappings  $S, g: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \lambda [d(gx, Sx) + d(gy, Sy)],$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Suppose that  $S(X) \subseteq g(X)$ , and S(X) or g(X) is a complete subspace of X, then the mappings S and g have a unique point of coincidence in X. Moreover, if S and g are weakly compatible then S and g have a unique common fixed point in X.

*Proof.* This follows from the Remark 2 and Corollary 10.

**Corollary 14.** (see [13]) Let (X, d) be a complete cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mapping  $S: X \to X$  satisfies the contractive condition:

$$d(Sx, Sy) \le \lambda [d(x, Sx) + d(y, Sy)], \tag{27}$$

for all  $x, y \in X$ , where  $\lambda \in [0, 1/2)$ . Then

- (i) S has a unique fixed point in X.
- (ii) For any  $x \in X$ , the iterative sequence  $\{S^n x\}$  converges to the fixed point.

*Proof.* Putting q = I in Corollary 10 and Remark 2. This completes the proof.

**Example 2.** Let  $X = \{1, 2, 3, 4, 5\}$ ,  $E = \mathbb{R}^2$  and  $P = \{(x, y) : x, y \ge 0\}$  is a cone in E. Define  $d: X \times X \to E$  as follows:

$$d(x,x) = 0, \forall x \in X;$$
 
$$d(1,2) = d(2,1) = (4,8);$$
 
$$d(1,3) = d(3,1) = d(3,4) = d(4,3) = d(2,4) = d(4,2) = (1,2);$$
 
$$d(1,5) = d(5,1) = d(2,5) = d(5,2) = d(3,5) = d(5,3) = d(4,5) = d(5,4) = (3,6).$$

REFERENCES 486

Then (X, d) is a cone pentagonal metric space, but (X, d) is not a cone rectangular metric space because it lacks the rectangular property:

$$(4,8) = d(1,2) > d(1,3) + d(3,4) + d(4,2)$$
  
=  $(1,2) + (1,2) + (1,2)$   
=  $(3,6)$  as  $(4,8) - (3,6) = (1,2) \in P$ .

Define a mapping S, f and  $g: X \to X$  as follows:

$$S(x) = 4, \ \forall x \in X.$$

$$f(x) = \begin{cases} 4, & \text{if } x \neq 5; \\ 2, & \text{if } x = 5. \end{cases}$$

$$g(x) = \begin{cases} 3, & \text{if } x = 1; \\ 1, & \text{if } x = 2; \\ 2, & \text{if } x = 3; \\ 4, & \text{if } x = 4; \\ 5, & \text{if } x = 5. \end{cases}$$

Clearly  $S(X) \cup f(X) \subseteq g(X)$ , g(X) is a complete subspace of X. Also, the pairs (S,g) and (f,g) are weakly compatibles. The conditions of Theorem 2 holds for all  $x,y \in X$ , where  $\lambda = \frac{1}{3}$ , and 4 is the unique common fixed point of the mappings S, f and g.

# Acknowledgements

This research project was supported by the Center of Excellence, Near East University, Nicosia-TRNC, Mersin 10, Turkey.

### References

- [1] M Abbas and G Jungck. Common fixed point results for non commuting mappings without continuity in cone metric spaces. *Journal of Mathematical Analysis and Applications*, 341(1):416–420, 2008.
- [2] A Auwalu. Banach fixed point theorem in a cone pentagonal metric spaces. *Journal of Advanced Studies in Topology*, 7(2):60–67, 2016.
- [3] A Auwalu. Kannan fixed point theorem in a cone pentagonal metric spaces. *Journal of Mathematics and Computational Sciences*, 6(4):515–526, 2016.
- [4] A Auwalu and E Hınçal. Common fixed points of two maps in cone pentagonal metric spaces. Global Journal of Pure and Applied Mathematics, 12(3):2423–2435, 2016.

REFERENCES 487

[5] A Auwalu and E Hinçal. Kannan - type fixed point theorem in cone pentagonal metric spaces. *International Journal of Pure and Applied Mathematics*, 108(1):29–38, 2016.

- [6] A Azam, M M Arshad, and I Beg. Banach contraction principle on cone rectangular metric spaces. *Applicable Analysis and Discrete Mathematics*, 3(2):236–241, 2009.
- [7] S Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3:133–181, 1922.
- [8] M Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22:1–74, 1906.
- [9] M Garg and S Agarwal. Banach contraction principle on cone pentagonal metric space. *Journal of Advanced Studies in Topology*, 3(1):12–18, 2012.
- [10] R George, S Janković, K Reshma, and S Shukla. Rectangular b-metric space and contraction principles. *Journal of Nonlinear Science and Applications*, 8(6):1005–1013, 2015.
- [11] L Huang and X Zhang. Cone metric spaces and fixed point theorems of contractive mappings. *Journal of Mathematical Analysis and Applications*, 332(2):1468–1476, 2007.
- [12] D Ilić and V Rakoćević. Common fixed points for maps on cone metric space. *Journal of Mathematical Analysis and Applications*, 341(2):876–882, 2008.
- [13] M Jleli and B Samet. The kannans fixed point theorem in a cone rectangular metric space. *Journal of Nonlinear Sciences and Applications*, 2(3):161–167, 2009.
- [14] R Kannan. Some results on fixed points. Bulletin of Calcutta Mathematical Society, 60:71–76, 1968.
- [15] R Kannan. Some results on fixed points ii. American Mathematics Monthly, 76:405–408, 1969.
- [16] S Patil and J Salunke. Fixed point theorems for expansion mappings in cone rectangular metric spaces. *General Mathematics Notes*, 29(1):30–39, 2015.
- [17] R Rashwan and S Saleh. Some fixed point theorems in cone rectangular metric spaces. *Mathematica Aeterna*, 2(6):573–587, 2012.
- [18] M Reddy and M Rangamma. A common fixed point theorem for two self maps in a cone rectangular metric space. Bulletin of Mathematics and Statistics Research, 3(1):47–53, 2015.
- [19] S Rezapour and R Hamlbarani. Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings. *Journal of Mathematical Analysis and Applications*, 345(2):719–724, 2008.