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1. Introduction

Several known characterizations of compact spaces, nearly compact spaces and H-
closed spaces are unified by generalizing the notion of compactness with the help of
a certain operation y of a topology 7 into the power set P(X) of a space X introduced
and discussed by S. Kasahara [2]. By using operation y, H. Ogata [4], introduced
the concept of y-open sets and investigated the related topological properties of the
associated topology 7, and 7. He introduced the notions of y-T; (i = 0, 1/2, 1, 2)
spaces which generalize T; - spaces (i = 0, 1/2, 1, 2) respectively. Moreover, he
investigated general operator approaches of the closed graph mappings.

In 2003, B. Ahmad and S. Hussain [1] continued studying the properties of y-
operations on topological spaces and investigated many interesting results.

In this paper, we introduce and discuss minimal y-open sets in topological spaces.
We establish some basic properties of minimal y-open sets and provide an example to
illustrate that minimal y-open sets are independent of minimal open sets introduced
and investigated in [3]. We obtain some properties of pre y-open sets using properties
of minimal y-open sets. As an application of a theory of minimal y-open sets, we
obtain a sufficient condition for a y-locally finite space to be a pre y-T, space.

First, we recall some definitions and results used in this paper. Hereafter, we shall

write a space in place of a topological space.

2. Preliminaries

Definition 2.1. [2] Let (X,7) be a space. An operation y : T — P(X) is a function from
T to the power set of X such that V C V7, for each V € 1, where V' denotes the value
of y at V. The operations defined by y(G) = G, y(G) = cl(G) and y(G) = intcl(G) are

examples of operation y.
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Definition 2.2. [4] Let AC X. A point x€ A is said to be y-interior point of A if there
exists an open nbd N of x such that N C A and we denote the set of all such points by
int,(A). Thus

int, (A) ={x€A: xeNetand NV CA} CA
Note that A is y-open [1] iff A =int,(A). A set Ais called y- closed [1] iff X-A is y-open.

Definition 2.3. [4] A point x€ X is called a y-closure point of AC X, if U' NA # ¢, for
each open nbd U of x. The set of all y-closure points of A is called y-closure of A and is
denoted by cl,(A). A subset A of X is called y-closed, if cl,(A) S A. Note that cl,(A) is

contained in every y-closed superset of A.

Definition 2.4. [4] An operation y on T is said be regular, if for any open nbds U,V of

X € X, there exists an open nbd W of x such that U N V" 2> W7.

Definition 2.5. [4] An operation y on T is said to be open, if for any open nbd U of each

Xx € X, there exists y-open set B such that x € B and U" 2 B.

3. Minimal y-open Sets

In view of the definition of minimal open sets [3], we define minimal y-open sets

as:

Definition 3.1. Let X be a space and A € X a y-open set. Then A is called a minimal

y-open set if ¢ and A are the only y-open subsets of A.

The following Example shows that minimal y-open sets and minimal open sets are

independent of each other.

Example 3.1. Let X= {a, b,c}, T = {¢,X, {a}, {b}, {a, b}, {a,c}}. For b € X, define an

operation y : T — P(X) by
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A, ifbeA
cl(A), if b&A.

(A=A =

The y-open sets are ¢, X, {b},{a, b}, {a,c} [4]. Here {a} is a minimal open set which is

not minimal y-open. Also {a,c} is minimal y-open set which is not minimal open.
The following is immediate:

Proposition 3.1. Let X is a space. Then
(1) Let A be a minimal y-open set and B a y-open set. Then ANB = ¢ or A C B, where
y is regular.

(2) Let B and C be minimal y-open sets. Then BN C = ¢ or B= C , where v is regular.

Proposition 3.2. Let X be a space and A a minimal y-open set. If a € A, then for any

y-open nbd B of a, A C B, where y is regular.

Proof. Suppose on the contrary that B is a y-open nbd B of a € A such that A ¢ B
. Since v is a regular operation, therefore AN B is a y-open set [4] with ANB C A and
ANB # ¢. This is a contradiction to our supposition that A is a minimal y-open set.
Hence the proof.

The following example shows that the condition that y is regular is necessary for

the above Proposition.
Example 3.2. Let X={a,b,c}, 7 = {¢,X,{a}, {b}, {a, b},{a,c}}. For b € X, define an

operation y : T — P(X) by

A, ifbeA
cl(A), ifb&A.

(A=A =

Then calculations show that the operation y is not regular [4]. The y-open sets are ¢
, X, {b}, {a,b}, {a,c}[4]. Clearly A= {a,c} is a minimal y-open set. Thus for a € A,

there does not exist y-open nbd B of a such that A C B.
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The following proposition easily follows from proposition 3.1.

Proposition 3.3. Let X be a space and A a minimal y-open set. Then for any y € A,

A=nN{B : Bis y-open nbd of y}, where y is regular.
Similarly we have:

Proposition 3.4. Let A be a minimal y-open set in X and x € X such that x ¢ A. Then
for any y-open nbd Cof x, CNA=¢ or AC C.

Corollary 3.1. Let A be a minimal y-open set in X and x € X such that x ¢ A. If
A, ={B:Bisay-opennbdofx}. ThenA,NA=¢ orACA,.

If I'(X) denotes the class of monotone operators, then we have:

Corollary 3.2. Let X be a space and y € I'(X). If A is a nonempty minimal y-open set of
X, then for a nonempty subset C of A, A< cl,(C) , where y is regular.

Proof. Let C be any nonempty subset of A. Let y € A and B be any y-open nbd B of
y. By Proposition 3.3, we have A C B. Also since y is monotone, C =A"NC € B"NC.
Thus we have B"NC # ¢ and hence y € cl,(C)[4]. This implies that A € cl,(C). This

completes the proof.

Proposition 3.5. Let A be a nonempty y-open subset of a space X . If A € cl(C), then
cl,(A) = cl,(C), for any nonempty subset C of A, where y is open.

Proof. Since for any nonempty C such that C € A implies cl,(C) < cl,(A). On the
other hand, by supposition we have A € ¢l (C). Since y is open, cl,(A) < cl,(cL,(C)) =
cl,(C)[4] implies cl,(A) < cl,(C). Hence the proof.

The following example shows that the condition that y is open is necessary for the

above Proposition.

Example 3.3. Let X={a, b,c}, T = {¢,X, {a}, {b}, {a, b}, {a,c}}. For b € X, define an

operation y : T — P(X) by
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cl(4), ifbeA
int(cl(A)), if b €A.

(A=A =

Then the operation ¥y is not open. The y-open sets are ¢, X, {b}, {a,c}. Let A= {b} and
C = {a, b}, then cl (A) = {b} #X = cL(C).

Proposition 3.6. Let A be a nonempty y-open subset of a space X. If cl,,(A) = cl,(C), for

any nonempty subset C of A, then A is a minimal y-open set.

Proof. We suppose on the contrary that A is not a minimal y-open set. Then there
exists a nonempty y-open set D such that D € A and hence there exists an element
x € A such that x ¢ D. Then we have cl ({x}) € D" implies that cl, ({x}) # cl,(A).

This contradiction proves the proposition.

Combining Propositions 3.4, 3.5 and 3.6, we have:

Theorem 3.1. Let A be a nonempty y-open subset of space X and y € I'(X). Then the
following are equivalent:

(1) A is minimal y-open set, where v is regular.

(2) For any nonempty subset C of A, A < cl,(A) , where y is open.

(3) For any nonempty subset C of A, cl,(A) = cl,(C).

Definition 3.2. Let X be a space and A € X. Then A is called a pre-y-open set, if
Acint,(cl,(A)) . The family of all pre-y-open sets of X will be denoted by PO, (X).

In view of the definition of a pre-Hausdorff space [3], we define a y-T, space as:

Definition 3.3. A space X is called a pre y-T, space, if for any x,y € X,x # y, there
exist subsets U and V of PO,(X) such that x €U, y € V.and UNV = ¢.

Proposition 3.7. Let X be a space and y € I'(X). If AC X is a minimal y-open set, then

¢ # C C Ais a pre-y-open set, where y is regular.
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Proof. Let A be a minimal y-open set and ¢ # C € A. By Proposition 3.6, we
have A C cl,(C) implies int,(A) € int,(cl,(C)). Since A is a y-open set, therefore
C € A=int,(A) < int,(cl,(C)) or C < int,(cl,(C)), that is, C is pre-y-open. Hence

the proof.

We use Theorem 3.1(3) and prove the following:

Theorem 3.2. Let B be a nonempty subset of a space X. Let A be a minimal y-open set
in X and y € T'(X). If there exists a y-open set C containing B such that C < cl, (B UA)
, then for any nonempty subset D of A, BU D is a pre-y-open set, where y is regular and

open.

Proof. Suppose A is a minimal y-open set in X. Since vy is regular, therefore for
any nonempty subset D of A, we have
cl,(BuD)=cl.(B)uUcl,(D)=cl,(B)Ucl,(A)=cl,(BUA).

By supposition, we have C < cl,(BUA) = cl,(BUD) implies int,(C) < int,(cl,(BUD))
, C being y-open set such that B C C. It follows that

B < C=int,(C) <int,(cl,(BUD))orB<Cint,(cl,(BUD)).....(1)

and

int,(A) =A< cl(A) € cl(B)ucl,(A) =cl (BUA) implies int,(A) < int,(cl,(BUA))

Since A is a y-open set, therefore
D cA=int,(A) Cint (cl,(BUA))=C int,(cl,(BUD)) .....(3)
From (1) and (3),

BUD Cint,(cl,(BUD)) implies BU D is a pre-y-open set. This completes the proof.

Corollary 3.3. Let X be a space, ¢ # B € X , A a minimal y-open set of a space X and
v € T'(X). If there exists a y-open set C containing B such that C < cl,(A), then for any

nonempty subset D of A, BU D is a pre y-open set, where y is regular and open.
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Proof. Let A be a minimal y-open set and B € X. Suppose there exists a y-open set
C containing B such that C € cl,(A). Then we have C < cl,(B)Ucl,(A) = cl,(AUB)[4].
By Theorem 3.2, it follows that for any nonempty subset D of A, BUD is a pre y-open

set. This completes the proof.

4. Finite y-open Sets

Proposition 4.1. Let X be a space and ¢ # B a finite y-open set in X. Then there exists

at least one (finite) minimal y-open set A such that A C B.

Proof. Suppose that B is a finite y-open set in X. Then we have the following two

possibilities:
(1) B is a minimal y-open set.
(2) B is not a minimal y-open set.

In case (1), if we choose B = A, then the theorem is proved. If the case (2) is
true, then there exists a nonempty (finite) y-open set B; which is properly contained
in B. If B; is minimal y-open, we take A = B;. If B; is not a minimal y-open set, then
there exists a nonempty (finite) y-open set B, such that B, C B; C B. We continue
this process and have a sequence of y-open sets ... C B,, C ... C B, C B; C B. Since B
is a finite, this process will end in a finite number of steps. That is, for some natural
number k, we have a minimal y-open set B, such that B, = A. This completes the

proof.
In view of the Definition of locally finite space [3], we define y-locally finite space
as:

Definition 4.1. A space X is said to be a y-locally finite space, if for each x € X there

exists a finite y-open set A in X such that x € A.
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Example 4.1. Let X={a, b,c}, 7 = {¢, X, {a}, {b}, {a, b}, {a,c}} [4]. For b € X, define
an operation y : T — P(X) by

A, ifbeA
cl(h), if b&A.

r(A)=A" =

Then calculations show that the y-open sets are ¢ , X, {b}, {a, b}, {a,c}[4]. Clearly X

is y-locally finite space.

Proposition 4.2. Let ¢ # B be a y-open set in a y-locally finite space X. Then there exists

at least one (finite) minimal y-open set A which is contained in B, where vy is regular.

Proof. Let y € B. Since X is a y-locally finite space, then there exists a finite
y-open set B, such that y € B,. Since BN B, is a finite y-open set [4], therefore by
proposition 4.1 there exists a minimal y-open set A such that A€ BN B, < B. This

completes the proof.

Proposition 4.3. Let X be a y-locally finite space and for any a € I, B, a y-open set and

¢ # A a finite y-open set. Then AN (ﬂael B,) is a finite y-open set, where y is regular.

Proof. Since X is a y-locally finite space, then there exists an integer k such that
AN((,e;Bo) =AN (ﬂle B;) . Since y is regular [4], AN ([),; Bo) is a finite y-open

set. This completes the proof.

Using Proposition 4.3, we can prove the following:

Theorem 4.1. Let X be a space and for any a €I, B, a y-open set and for any B €J ,
Ag a nonempty finite y-open set. Then (UﬁEJAﬁ) N ((),e; Ba) is a y-open set, where y is

regular.
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5. Applications

Let A be a nonempty finite y-open set. It is clear, by Proposition 3.1 and Proposi-
tion 4.3, that if y is regular, then there exists a natural number m such that
{A,A,, ...,A,,} is the class of all minimal y-open sets in A satisfying the following two
conditions:
(1) Forany l,nwith1 <l,n<mandl#n,A NA, = ¢.
(2) If C is a minimal y-open set in A, then there exists [ with 1 <[ < m such that

C:Al.

Theorem 5.1. Let X be a space and ¢ # A a finite y-open set such that A is not a
minimal y-open set. Let {A;,A,,...,A,,} be a class of all minimal y-open sets in A and
Yy €A—(AJUAU...UA,). IfA, =N{B : Bis a y-open nbd of y }. Then there exists a

natural number k € {1,2,...,m} such that A, is contained in A,, where v is regular.

Proof. Suppose on the contrary that for any natural number k € {1,2,...,m} , A, is
not contained in A,. By Corollary 3.1, for any minimal y-open set A, in A, A;NA, = ¢
. By Proposition 4.3, ¢ # A, is a finite y-open set. Therefore by Proposition 4.1, there
exists a minimal y-open set C such that C £ A, . Since C S A, € A, then Cis a
minimal y-open set in A. By supposition, for any minimal y-open set A,, we have
A,NC S A NA, = ¢. Therefore for any natural number k € {1,2,...,m}, C # A,.

This is a contradiction to our supposition. Hence the proof.

Proposition 5.1. Let X be a space and ¢ # A be a finite y-open set which is not a
minimal y-open set. Let {A;,A,,...,A,,} be a class of all minimal y-open sets in A and
ye€A—(A,UA,U...UA,). Then there exists a natural number k € {1,2,...,m} such

that for any y-open nbd By, of y, Ay is contained in B,, where y is regular.

Proof. This follows from Theorem 5.1 as N{B : B is a y-open nbd of y } € B, .

Hence the proof.
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Theorem 5.2. Let X be a space and ¢ # A be a finite y-open set which is not a minimal
y-open set. Let {A;,A,,...,A,,} be the class of all minimal y-open sets in A and y €
A—(A;UA,U...UA,). Then there exists a natural number k € {1,2,...,m} such that

Y €cl,(Ay), where v is regular.

Proof. It follows from Proposition 5.1 that there exists a natural number k €
{1,2,...,m} such that A, C B for y-open nbd B of x. Therefore ¢ #A, NA, CA, NB C

A, NB" implies y € cl,(Ax). This completes the proof.

Proposition 5.2. Let ¢ # A be a finite y-open set in a space X, y € I'(X) and for each
ke {1,2,...,m}, A, a minimal y-open set in A. If the class {A;,A,,...,A,,} contains all
minimal y-open sets in A, then for any ¢ # B, € Ay, A< cl, (B UB,U...UB,,), where

y is regular and open.

Proof. Let ¢ # A be a finite y-open set. We consider the following two cases:
Case 1. If A is a minimal y-open set, then this follows directly from Proposition 3.6.
Case 2. If A is not a minimal y-open set. y € A—(A; UA,U...UA,,). Then by Theorem
5.2, it follows that y € cl,(A;) Ucl,(Ay) U...Ucl (A;,). Therefore by Proposition 3.6,
we have
ACcl(A))ucl, (Ay)u...ucl (A,) = cl (By)ucl, (By)U...Ucl (B,,) = cl,(B;UB,U...UB,,).

This completes the proof.

Proposition 5.3. Let X be a space and ¢ # A a finite y-open set and A, a minimal -
open setin A, for each k € {1,2,...,m}. If for any ¢ # B, € Ay, A< cl(B;UB,U...UB,,)

then cl (A) = cl, (B, UB, U ...UB,,), where y is open.

Proof. For any ¢ # By S Ay, k € {1,2,...,m}, we have cl.(B;UB,U...UB,,) < cl (A).
Also, we have
cl,(A) Sl (cl,(ByUB,U...UB,)))=cl (ByUB,U...UB,,) .
This implies that for any ¢ # By € Ay, cl,(A) = cl,(B; UB,U...UB,,). Hence the proof.
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Proposition 5.4. Let X be a space and ¢ # A be a finite y-open set and for each k €
{1,2,...,m}, Ay a minimal y-open set in A. If for any ¢ # By € Ay, cl.(A) = cl,(B; U

B, U...UB,,), then the class {A;,A,, ...,A,,} contains all minimal y-open sets in A.

Proof. Suppose on the contrary that C is a minimal y-open set in A and for
k €{1,2,..,m}, C #A,. Therefore, for each k € {1,2,...,m}, CNcl (A) = ¢. This
implies that any element of C is not contained in cl (A; UA,U...UA,,). This is a contra-

diction to the fact that C € A € cl,(A) = cl,(B;UB,U...UB,,). This completes the proof.

Combining Propositions 5.2, 5.3 and 5.4, we have the following theorem:

Theorem 5.3. Let X be a space and ¢ # A be a finite y-open set and for each k €
{1,2,...,m}, Ay a minimal y-open set in A. Then the following three conditions are equiv-
alent:

(1) The class {A;,A,, ...,A,,} contains all minimal y-open sets in A.

(2) For any ¢ # By € Ay, cl,(A) S cl,(ByUB,U...UB,,).

(3) For any ¢ # By € Ay, cl,(A) =cl,(B;UB,U...UB,,), where vy is regular and open.

Remark 5.1. Suppose that ¢ # A is a finite y-open set and {A;,A,,...,A,} is a class
of all minimal y-open sets in A such that for each k € {1,2,...,m}, y, € A,. Then by

Theorem 5.3, it is clear that {y;, Y5, ..., Y} IS a pre-y-open set.

Theorem 5.4. Let X be a space. Suppose that ¢ # Ais a finite y-open set and {A,,A,, ...,A,,}
is a class of all minimal y-open sets in A. If for any B € A—{A;,A,, ...,A,,}and ¢ # B, C
Ay, for each k € {1,2,...,m}, then BUB, UB, U...UB,, is a pre-y-open set, where y is

regular and open.

Proof. Suppose that ¢ # A is a finite y-open set and {A;,A,, ...,A,,} is a class of all
minimal y-open sets in A. Then by Proposition 5.2

Accl,(ByUByU..UB,) S cl (BUB;UB,U...UB,).
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Also, A is y-open implies
BUB,UB,U...UB,, CA=int,(A) S int,(c[,(BUB; UB,U...UB,)).

This follows that BUB; UB, U...UB,, is a pre-y-open set. This completes the proof.

Theorem 5.5. Let X be a y-locally finite space and y € T'(X). If a minimal y-open set
A C X has more than one element, then X is a pre y-T, space, where y is regular and

open.

Proof. Let a,b € X such that a # b. Since X is y-locally finite, therefore there
exist finite y-open sets V and W containing a and b respectively. Proposition 4.1
implies that there exist a class {V;,V,,...,V,,} of all minimal y-open sets in V and a
class {W;, W,,...,W;} of all minimal y-open sets in W. We consider three possibilities:

1. Suppose there exist k € {1,2,...,m} and i € {1,2,...,1} such that a € V, and
b € W,. Then Proposition 3.7 implies that {a} and {b} are pre-y-open sets such that
ac{a}, be{b}and {a}Nn{b}=¢ .

2. Suppose there exist k € {1,2,...,m} and i € {1,2,...,1} such that a € V}, and
b ¢ W, . Then by supposition, proposition 3.7 and Theorem 5.4, we can find for
each i, b; € W, such that {a} and {b, b,, b,,...,b;} are pre-y-open sets and {a} N
{b,by, by,...., b} = ¢.

3. Suppose that there exist k € {1,2,...,m} and i € {1,2,...,1} such that a ¢ V, and
b ¢ W,. Then by supposition and Theorem 5.4, for each k and i, we can find elements
a, € Vi and b; € W, such that {a,qa;,a,,...,a,} and {b, by, b,, ..., b;} are pre-y-open
sets and {a,a,,a,,...,a,,} N {b, by, b,,...,b;} = ¢. Hence X is a pre y-T, space. This

completes the proof.
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