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Abstract. In this paper, we introduce a Stancu type generalization of modified Srivastava-Gupta
operators. We obtain the moments of the operators and then prove the basic convergence theorem.
Next, the Voronovskaja type asymptotic formula and some direct results for the above operators are
discussed. Also, the rate of convergence and weighted approximation by these operators in terms of
modulus of continuity are studied. Then, we obtain point-wise estimates using the Lipschitz type
maximal function and two parameter Lipschitz-type space. Further, we study the A-statistical
convergence of these operators. Lastly, we give better estimations of the above operators using
King type approach.
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1. Introduction

In the year 2003, Srivastava and Gupta [33] introduced a general family of summation-
integral type operators {Gn,c} which includes some well-known operators as special cases.
They obtained the rate of convergence for functions of bounded variation. For the details
of special cases in [33], we refer the readers to [13], [20] and [31].
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For f ∈ Cγ [0,∞) := {f ∈ C[0,∞) : |f(t)| ≤M(1+t)γ for some M > 0, γ > 0}, Srivastava
and Gupta proposed a certain family of positive linear operators defined by

Gn,c(f ;x) = n
∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f(t)dt+ pn,0(x, c)f(0), (1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)n,c(x) (2)

and

φn,c(x) =

{
e−nx, c = 0,

(1 + cx)−n/c, c ∈ N .

Verma and Agrawal [35] introduced the generalized form of the operators (1) and studied
some of its approximation properties. Deo [3] gave a modification of these operators and
established the rate of convergence and Voronovskaja type asymptotic result. Recently,
Acar et al. [1] introduced Stancu type generalization of the operators (1) and obtained an
estimate of the rate of convergence for functions having derivatives of bounded variation
and also studied the simultaneous approximation for these operators.
Yadav [36] proposed the modification of the operators (1) using the King approach as

G∗n,c(f ;x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t

n

)
dt+ pn,0(x, c)f(0) (3)

and studied its moment estimates, direct estimate, asymptotic formula and statistical
convergence. Recently, Maheshwari [22] obtained the rate of convergence for the functions
having bounded derivatives on every finite subinterval of [0,∞) for the operators (3). Very
recently, Neer et al. [29] introduced the Bezier variant of the operators (3) and studied
the direct approximation result and estimate of the rate of convergence of these operators
for functions of bounded variation.
In [34], Stancu introduced the positive linear operators P

(α,β)
n : C[0, 1] → C[0, 1] by

modifying the Bernstein polynomial as

P (α,β)
n (f ;x) =

n∑
k=0

bn,k(x)f

(
k + α

n+ β

)
,

where bn,k(x) =
(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1] is the Bernstein basis function and α, β are

any two real numbers which satisfy the condition that 0 ≤ α ≤ β.
In the recent years, Stancu type generalization of the certain operators introduced by
several researchers and obtained different type of approximation properties of many oper-
ators, we refer some of the important papers in this direction as [1], [2], [32] etc.
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For f ∈ Cγ [0,∞), 0 ≤ α ≤ β we introduce the following Stancu type generalization of
the operators (3):

G∗(α,β)n,c (f ;x) = n
∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t+ α

n+ β

)
dt

+pn,0(x, c)f

(
α

n+ β

)
(4)

For α = β = 0, we denote G
∗(α,β)
n,c (f ;x) by G∗n,c(f ;x).

The goal of the present paper is to study the basic convergence theorem, Voronovskaja type
asymptotic result, local approximation theorem, rate of convergence, weighted approxi-
mation, pointwise estimation and A-statistical convergence of the operators (4). Further,
to obtain better approximation, we also propose modification of the operators (4) using
King type approach.

2. Moment Estimates

Lemma 1. [36] For G∗n,c(t
m;x), m = 0, 1, 2, one has

(i) G∗n,c(1;x) = 1;

(ii) G∗n,c(t;x) = x;

(iii) G∗n,c(t
2;x) = (n2−c2)x2+2x(n−c)

n(n−2c) , for n > 2c.

Lemma 2. For the operators G
∗(α,β)
n,c (f ;x) as defined in (4), the following equalities hold:

(i) G
∗(α,β)
n,c (1;x) = 1;

(ii) G
∗(α,β)
n,c (t;x) = nx+α

n+β ;

(iii) G
∗(α,β)
n,c (t2;x) =

{
n(n2−c2)

(n−2c)(n+β)2

}
x2 +

{
2n((n−c)+α(n−2c))

(n−2c)(n+β)2

}
x+ α2

(n+β)2
, for n > 2c.

Proof. For x ∈ [0,∞), in view of Lemma 1, we have

G∗(α,β)n,c (1;x) = 1.

Next, for f(t) = t, again applying Lemma 1, we get

G∗(α,β)n,c (t;x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)

(
(n− c)t+ α

n+ β

)
dt+ pn,0(x, c)

(
α

n+ β

)
=

n

n+ β
G∗n,c(t, x) +

α

n+ β
=
nx+ α

n+ β
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Proceeding similarly, we have

G∗(α,β)n,c (t2;x) = n
∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)

(
(n− c)t+ α

n+ β

)2

dt+ pn,0(x, c)

(
α

n+ β

)2

=

(
n

n+ β

)2

G∗n,c(t
2, x) +

2nα

(n+ β)2
G∗n,c(t, x) +

(
α

n+ β

)2

=

{
n(n2 − c2)

(n− 2c)(n+ β)2

}
x2 +

{
2n((n− c) + α(n− 2c))

(n− 2c)(n+ β)2

}
x+

α2

(n+ β)2
.

Lemma 3. For f ∈ CB[0,∞) (space of all bounded and continuous functions on [0,∞)

endowed with norm ‖ f ‖= sup{|f(x)| : x ∈ [0,∞)}), ‖ G∗(α,β)n,c (f ;x) ‖≤‖ f ‖.

Proof. In view of (4) and Lemma 2, the proof of this lemma easily follows.

Remark 1. For every x ≥ 0, n > 2c, we have

G∗(α,β)n,c ((t− x);x) =
α− βx
n+ β

,

and

G∗(α,β)n,c

(
(t− x)2;x

)
=

{
nc(2n− c) + β2(n− 2c)

(n− 2c)(n+ β)2

}
x2

+

{
2n(n− c)− 2αβ(n− 2c)

(n− 2c)(n+ β)2

}
x+

α2

(n+ β)2
, n > 2c

= γ(α,β)n,c (x), (say).

3. Main Results

Theorem 4. (Voronovskaja type theorem) Let f ∈ CB[0,∞). If f ′, f ′′ exists at a fixed
point x ∈ [0,∞), we have

lim
n→∞

n
(
G∗(α,β)n,c (f ;x)− f(x)

)
= (α− βx)f ′(x) + x(1 + cx)f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. From the Taylor’s theorem, we may write

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + ξ(t, x)(t− x)2, (5)

where ξ(t, x) is the peano form of the remainder and lim
t→x

ξ(t, x) = 0.

Applying G
∗(α,β)
n,c (f, x) on both sides of (5), we have

n
(
G∗(α,β)n,c (f ;x)− f(x)

)
= nf ′(x)G∗(α,β)n,c ((t− x);x) +

1

2
nf ′′(x)G∗(α,β)n,c

(
(t− x)2;x

)
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+nG∗(α,β)n,c

(
(t− x)2ξ(t, x);x

)
.

In view of Remark 1, we have

lim
n→∞

nG∗(α,β)n,c ((t− x);x) = α− βx (6)

and

lim
n→∞

nG∗(α,β)n,c

(
(t− x)2;x

)
= 2x(1 + cx). (7)

Now, we shall show that

lim
n→∞

nG∗(α,β)n,c

(
ξ(t, x)(t− x)2;x

)
= 0

By using Cauchy-Schwarz inequality, we have

G∗(α,β)n,c

(
ξ(t, x)(t− x)2;x

)
≤
√
G
∗(α,β)
n,c (ξ2(t, x);x)

√
G
∗(α,β)
n,c ((t− x)4;x). (8)

We observe that ξ2(x, x) = 0 and ξ2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

G∗(α,β)n,c (ξ2(t, x);x) = ξ2(x, x) = 0, (9)

in view of fact that G
∗(α,β)
n,c ((t− x)4;x) = O

(
1

n2

)
. Now, from (8) and (9) we obtain

lim
n→∞

nG∗(α,β)n,c

(
ξ(t, x)(t− x)2;x

)
= 0. (10)

From (6), (7) and (10), we get the required result.

3.1. Local approximation

For CB[0,∞), let us consider the following K-functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g
′′ ∈ CB[0,∞)}. By, p. 177, Theorem 2.4 in

[4], there exists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ), (11)

where

ω2(f,
√
δ) = sup

0<h≤
√
δ

sup
x∈[0,∞)

| f(x+ 2h)− 2f(x+ h) + f(x) |
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is the second order modulus of smoothness of f . By

ω(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f(x+ h)− f(x) |,

we denote the usual modulus of continuity of f ∈ CB[0,∞).

Theorem 5. Let f ∈ CB[0,∞). Then, for every x ∈ [0,∞), we have

| G∗(α,β)n,c (f ;x)− f(x) | ≤ Cω2

(
f, δ(α,β)n,c (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
,

where C is an absolute constant and

δ(α,β)n,c (x) =

(
G∗(α,β)n,c ((t− x)2;x) +

(
α− βx
n+ β

)2)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators G
∗(α,β)
n,c defined by

G
∗(α,β)
n,c (f ;x) = G∗(α,β)n,c (f ;x)− f

(
nx+ α

n+ β

)
+ f(x). (12)

From Lemma 2, we observe that the operators G
∗(α,β)
n,c are linear and reproduce the linear

functions.
Hence

G
∗(α,β)
n,c ((t− x);x) = 0. (13)

Let g ∈W 2. By Taylor’s theorem, we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x
(t− v)g′′(v)dv, t ∈ [0,∞).

Applying G
∗(α,β)
n,c on both sides of the above equation and using (13), we have

G
∗(α,β)
n,c (g;x) = g(x) +G

∗(α,β)
n,c

(∫ t

x
(t− v)g′′(v)dv;x

)
.

Thus, by (12) we get

|G∗(α,β)n,c (g;x)− g(x)|

≤ G∗(α,β)n,c

(∣∣∣∣ ∫ t

x
(t− v)g

′′
(v)dv

∣∣∣∣;x)+

∣∣∣∣ ∫ nx+α
n+β

x

(
nx+ α

n+ β
− v
)
g
′′
(v)dv

∣∣∣∣
≤ G∗(α,β)n,c

(∫ t

x
|t− v||g′′(v)|dv;x

)
+

∫ nx+α
n+β

x

∣∣∣∣nx+ α

n+ β
− v
∣∣∣∣|g′′(v)|dv
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≤
[
G∗(α,β)n,c ((t− x)2;x) +

(
α− βx
n+ β

)2]
‖ g′′ ‖

≤
(
δ(α,β)n,c (x)

)2
‖ g′′ ‖ . (14)

On other hand, by (12) and Lemma 3, we have

|G∗(α,β)n,c (f ;x)| ≤ 3 ‖ f ‖ . (15)

Using (14) and (15) in (12), we obtain

|G∗(α,β)n,c (f ;x)− f(x)| ≤ |G∗(α,β)n,c (f − g;x)|+ |(f − g)(x)|+ |G∗(α,β)n,c (g;x)− g(x)|

+

∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣
≤ 4 ‖ f − g ‖ +

(
δ(α,β)n,c (x)

)2
‖ g′′ ‖ +

∣∣∣∣f (nx+ α

n+ β

)
− f(x)

∣∣∣∣.
Hence, taking infimum on the right hand side over all g ∈W 2, we get

| G∗(α,β)n,c (f ;x)− f(x) | ≤ K2

(
f, (δ(α,β)n,c (x))2

)
+ ω

(
f,
|α− βx|
n+ β

)
.

In view of (11), we get

| G∗(α,β)n,c (f ;x)− f(x) | ≤ Cω2

(
f, δ(α,β)n,c (x)

)
+ ω

(
f,
|α− βx|
n+ β

)
.

Hence, the proof is completed.

3.2. Rate of convergence

Let ωb(f, δ) denote the modulus of continuity of f on the closed interval [0, b], b > 0,
and defined as

ωb(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,b]

|f(t)− f(x)|.

We observe that for a function f ∈ CB[0,∞), the modulus of continuity ωb(f, δ) tends to

zero. Now, we give a rate of convergence theorem for the operators G
∗(α,β)
n,c .

Theorem 6. Let f ∈ CB[0,∞) and ωb+1(f, δ) be its modulus of continuity on the finite
interval [0, b+ 1] ⊂ [0,∞), where b > 0. Then, for every n > 2c,

|G∗(α,β)n,c (f ;x)− f(x)| ≤ 4Mf (1 + b2)γ(α,β)n,c (x) + 2ωb+1

(
f,

√
γ
(α,β)
n,c (x)

)
,

where γ
(α,β)
n,c (x) is defined in Remark 1 and Mf is a constant depending only on f.
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Proof. For x ∈ [0, b] and t > b+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤Mf (2 + t2 + x2) ≤Mf (t− x)2(2 + 2x+ 2x2) ≤ 4Mf (1 + b2)(t− x)2.

For x ∈ [0, b] and t ≤ b+ 1, we have

|f(t)− f(x)| ≤ ωb+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωb+1(f, δ), δ > 0.

From the above, we have

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωb+1(f, δ), δ > 0.

Thus, by applying Cauchy-Schwarz inequality, we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ 4Mf (1 + b2)(G∗(α,β)n,c (t− x)2;x)

+ωb+1(f, δ)

(
1 +

1

δ
(G∗(α,β)n,c (t− x)2;x)

1
2

)
≤ 4Mf (1 + b2)γ(α,β)n,c (x) + 2ωb+1

(
f,

√
γ
(α,β)
n,c (x)

)
,

on choosing δ =

√
γ
(α,β)
n,c (x). This completes the proof of the theorem.

3.3. Weighted approximation.

Let Cν be the space of all continuous functions on [0,∞) with the norm ‖ f ‖ν=

sup
x∈[0,∞)

|f(x)|
ν(x)

and C0
ν = {f ∈ Cν : lim

x→∞

|f(x)|
ν(x)

<∞}, where ν(x) is a weight function.

In what follows we consider ν(x) = 1 + x2.

Theorem 7. For each f ∈ C0
ν , we have

lim
n→∞

‖ G∗(α,β)n,c (f)− f ‖ν= 0.

Proof. From [8], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖ G∗(α,β)n,c (tk;x)− xk ‖ν= 0, k = 0, 1, 2. (16)

Since G
∗(α,β)
n,c (1;x) = 1, the condition in (16) holds for k = 0.

By Lemma 2, we have

‖ G∗(α,β)n,c (t;x)− x) ‖ν = sup
x∈[0,∞)

|G∗(α,β)n,c (t;x)− x|
1 + x2
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≤ β

n+ β
sup

x∈[0,∞)

x

1 + x2
+

α

n+ β
sup

x∈[0,∞)

1

1 + x2

≤ α+ β

n+ β
,

which implies that the condition in (16) holds for k = 1.
Similarly, we can write for n > 2c

‖ G∗(α,β)n,c (t2;x)− x2 ‖ν = sup
x∈[0,∞)

|G∗(α,β)n,c (t2;x)− x2|
1 + x2

≤
∣∣∣∣ n(n2 − c2)
(n− 2c)(n+ β)2

− 1

∣∣∣∣+

∣∣∣∣2n((n− c) + α(n− 2c))

(n− 2c)(n+ β)2

∣∣∣∣
+

α2

(n+ β)2
,

which implies that lim
n→∞

‖ G∗(α,β)n,c (t2;x)− x2 ‖ν= 0, the equation (16) holds for k = 2.

This completes the proof of theorem.

Now we give the following theorem to approximate all functions in C0
ν . Such type of

results are given in [9] for locally integrable functions.

Theorem 8. For each f ∈ C0
ν and σ > 0, we have

lim
n→∞

sup
x∈[0,∞)

|G∗(α,β)n,c (f ;x)− f(x)|
(1 + x2)σ+1

= 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

|G∗(α,β)n,c (f ;x)− f(x)|
(1 + x2)σ+1

= sup
x≤x0

|G∗(α,β)n,c (f ;x)− f(x)|
(1 + x2)σ+1

+ sup
x>x0

|G∗(α,β)n,c (f ;x)− f(x)|
(1 + x2)σ+1

sup
x∈[0,∞)

|G∗(α,β)n,c (f ;x)− f(x)|
(1 + x2)σ+1

≤ ‖ G∗(α,β)n,c (f)− f ‖C[0,x0]

+ ‖ f ‖ν sup
x>x0

|G∗(α,β)n,c (1 + t2;x)|
(1 + x2)σ+1

+ sup
x>x0

|f(x)|
(1 + x2)σ+1

.

The first term of the above inequality tends to zero from Theorem 6. By Lemma 2, for
any fixed x0 > 0, it is easily prove that

sup
x>x0

|G∗(α,β)n,c (1 + t2;x)|
(1 + x2)σ+1

→ 0

as n → ∞. We can choose x0 > 0 so large that the last part of the above inequality can
be small.
Hence the proof is completed.
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3.4. Pointwise Estimates

In this section, we establish some pointwise estimates of the rate of convergence of the

operators G
∗(α,β)
n,c . First, we give the relationship between the local smoothness of f and

local approximation.
We know that a function f ∈ C[0,∞) is in LipM (α) on E, α ∈ (0, 1], E⊂ [0,∞) if it
satisfies the condition

|f(t)− f(x)| ≤M |t− x|α, t ∈ [0,∞) and x ∈ E,

where M is a constant depending only on α and f .

Theorem 9. Let f ∈ C[0,∞) ∩ LipM (α), E ⊂ [0,∞) and α ∈ (0, 1]. Then, we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ M

((
γ(α,β)n,c (x)

)α/2
+ 2dα(x,E)

)
, x ∈ [0,∞),

where M is a constant depending on α and f and d(x,E) is the distance between x and E
defined as

d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point x0 ∈ E
such that

d(x,E) = |x− x0|.

By our hypothesis and the monotonicity of G
∗(α,β)
n,c , we get

|G∗(α,β)n,c (f ;x)− f(x)| ≤ G∗(α,β)n,c (|f(t)− f(x0)|;x) +G∗(α,β)n,c (|f(x)− f(x0)|;x)

≤ M
(
G∗(α,β)n,c (|t− x0|α;x) + |x− x0|α

)
≤ M

(
G∗(α,β)n,c (|t− x|α;x) + 2|x− x0|α

)
.

Now, applying Hölder’s inequality with p =
2

α
and

1

q
= 1− 1

p
, we obtain

|G∗(α,β)n,c ((f ;x)− f(x)| ≤M
(
{G∗(α,β)n,c (|t− x|2;x)}α/2 + 2dα(x,E)

)
,

from which the desired result immediate.

Next, we obtain the local direct estimate of the operators defined in (4), using the
Lipschitz-type maximal function of order α introduced by B. Lenze [19] as

ω̃α(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|α

, x ∈ [0,∞) and α ∈ (0, 1]. (17)
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Theorem 10. Let f ∈ CB[0,∞) and 0 < α ≤ 1. Then, for all x ∈ [0,∞) we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ ω̃α(f, x)
(
γ(α,β)n,c (x)

)α/2
.

Proof. From the equation (17), we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ ω̃α(f, x)G∗(α,β)n,c (|t− x|α;x).

Applying the Hölder’s inequality with p =
2

α
and

1

q
= 1− 1

p
, we get

|G∗(α,β)n,c (f ;x)− f(x)| ≤ ω̃α(f, x)G∗(α,β)n,c ((t− x)2;x)
α
2 ≤ ω̃α(f, x)

(
γ(α,β)n,c (x)

)α/2
.

Thus, the proof is completed.

For a, b > 0, Özarslan and Aktuğlu [30] consider the Lipschitz-type space with two
parameters:

Lip
(a,b)
M (α) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|α

(t+ ax2 + bx)α/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < α ≤ 1.

Theorem 11. For f ∈ Lip(a,b)M (α). Then, for all x > 0, we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤M

(
γ
(α,β)
n,c (x)

ax2 + bx

)α/2
.

Proof. First we prove the theorem for α = 1. Then, for f ∈ Lip(a,b)M (1), and x ∈ [0,∞),
we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ G∗(α,β)n,c (|f(t)− f(x)|;x)

≤ MG∗(α,β)n,c

(
|t− x|

(t+ ax2 + bx)1/2
;x

)
≤ M

(ax2 + bx)1/2
G∗(α,β)n,c (|t− x|;x).

Applying Cauchy-Schwarz inequality, we get

|G∗(α,β)n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)1/2

(
G∗(α,β)n,c ((t− x)2;x)

)1/2
≤ M

(
γ
(α,β)
n,c (x)

ax2 + bx

)1/2

.
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Thus the result holds for α = 1.
Now, we prove that the result is true for 0 < α < 1. Then, for f ∈ Lip

(a,b)
M (α), and

x ∈ [0,∞), we get

|G∗(α,β)n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)α/2
G∗(α,β)n,c (|t− x|α;x).

Taking p = 1
α and q = p

p−1 , applying the Hölders inequality, we have

|G∗(α,β)n,c (f ;x)− f(x)| ≤ M

(ax2 + bx)α/2

(
G∗(α,β)n,c (|t− x|;x)

)α
.

Finally by Cauchy-Schwarz inequality, we get

|G∗(α,β)n,c (f ;x)− f(x)| ≤ M

(
γ
(α,β)
n,c (x)

ax2 + bx

)α/2
.

Thus, the proof is completed.

3.5. Statistical convergence

Let A = (ank), (n, k ∈ N), be a non-negative infinite summability matrix. For a given
sequence x := (x)n, the A-transform of x denoted by Ax : ((Ax)n) is defined as

(Ax)n =

∞∑
k=1

ankxk

provided the series converges for each n. A is said to be regular if lim
n

(Ax)n = L whenever

lim
n
xn = L. The sequence x = (x)n is said to be a A- statistically convergent to L i.e.

stA − lim
n

(x)n = L if for every ε > 0, lim
n

∑
k:|xk−L|≥ε

ank = 0. If we replace A by C1 then A

is a Cesáro matrix of order one and A- statistical convergence is reduced to the statistical
convergence. Similarly, if A = I, the identity matrix, then A- statistical convergence
coincides with the ordinary convergence. It is to be noted that the concept of A-statistical
convergence may also be given in normed spaces. Many researchers have investigated
the statistical convergence properties for several sequences and classes of linear positive
operators (see [5], [6], [7], [10], [23], [28]). In the following result we prove a weighted
Korovkin theorem via A-statistical convergence.
Throughout this section, let us assume that ei(t) = ti, i = 0, 1, 2.

Theorem 12. Let (ank) be a non-negative regular infinite summability matrix and x ∈
[0,∞). Let νς ≥ 1 be a continuous function such that

lim
x→∞

ν(x)

νς(x)
= 0.
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Then, for all f ∈ C0
ν , we have

stA − lim
n
‖ G∗(α,β)n,c (f)− f ‖νς= 0.

Proof. From ([7] p. 195, Th. 6), it is enough to show that

stA − lim
n
‖ G∗(α,β)n,c (ei)− ei ‖ν= 0.

From Lemma 2, we get

stA − lim
n
‖ G∗(α,β)n,c (e0)− e0 ‖ν= 0.

Again by using Lemma 2, we have

‖ G∗(α,β)n,c (e1)− e1 ‖ν ≤ β

(n+ β)
sup

x∈[0,∞)

x

1 + x2
+

α

n+ β
sup

x∈[0,∞)

1

1 + x2

≤ α+ β

n+ β
.

For any given ε > 0, let us define the following sets:

S :=
{
n :‖ G∗(α,β)n,c (e1)− e1 ‖ν≥ ε

}
,

S1 :=

{
n :

α

n+ β
≥ ε

2

}
and

S2 :=

{
n :

β

n+ β
≥ ε

2

}
.

Then, we get S ⊆ S1 ∪ S2 which implies that∑
k∈S

ank ≤
∑
k∈S1

ank +
∑
k∈S2

ank

and hence

stA − lim
n
‖ G∗(α,β)n,c (e1)− e1 ‖ν= 0.

Similarly, we have

‖ G∗(α,β)n,c (e2)− e2 ‖ν ≤
(

n(n2 − c2)
(n− 2c)(n+ β)2

− 1

)
+

2n((n− c) + α(n− 2c))

(n− 2c)(n+ β)2
+

α2

(n+ β)2
.

Now, we define the following sets:

U :=
{
n :‖ G∗(α,β)n,c (e2)− e2 ‖ν≥ ε

}
,
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U1 :=

{
n :

(
n(n2 − c2)

(n− 2c)(n+ β)2
− 1

)
≥ ε

3

}
,

U2 :=

{
n :

2n((n− c) + α(n− 2c))

(n− 2c)(n+ β)2
≥ ε

3

}
and

U3 :=

{
n :

α2

(n+ β)2
≥ ε

3

}
.

Then, we get U ⊆ U1 ∪ U2 ∪ U3 which implies that∑
k∈U

ank ≤
∑
k∈U1

ank +
∑
k∈U2

ank +
∑
k∈U3

ank

and hence

stA − lim
n
‖ G∗(α,β)n,c (e2)− e2 ‖ν= 0.

This completes the proof of the theorem.

4. Better Estimates

It is well known that the classical Bernstein polynomial preserve constant as well as
linear functions. To make the convergence faster, King [18] proposed an approach to
modify the Bernstein polynomial, so that the sequence preserve test functions e0 and e2,

where ei(t) = ti, i = 0, 1, 2. As the operator G
∗(α,β)
n,c (f ;x) defined in (4) preserve only the

constant functions so further modification of these operators is proposed to be made so
that the modified operators preserve the constant as well as linear functions.
For this purpose the modification of (4) is defined as

G
∗(α,β)
n,c (f ;x) = n

∞∑
k=1

pn,k(rn(x), c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t+ α

n+ β

)
dt

+pn,0(rn(x), c)f

(
α

n+ β

)
, (18)

where rn(x) = (n+β)x−α
n for x ∈ In = [ α

n+β ,∞) and n > 2c.

Lemma 13. For each x ∈ In, by simple computations, we have

(i) G
∗(α,β)
n,c (1;x) = 1;

(ii) G
∗(α,β)
n,c (t;x) = x;
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(iii) G
∗(α,β)
n,c (t2;x) =

(n2 − c2)
n(n− 2c)

x2+
2n(n− c)− 2αc(2n− c)

n(n− 2c)(n+ β)
x+

α2c(2n− c)− 2αn(n− c)
n(n− 2c)(n+ β)2

.

Consequently, for each x ∈ In , we have the following equalities

G
∗(α,β)
n,c (t− x;x) = 0

G
∗(α,β)
n,c ((t− x)2;x) =

c(2n− c)
n(n− 2c)

x2 +
2n(n− c)− 2cα(2n− c)

n(n− 2c)(n+ β)
x

+
α2c(2n− c)− 2αn(n− c)

n(n− 2c)(n+ β)2

= ζ(α,β)n,c (x), (say). (19)

Theorem 14. Let f ∈ CB(In) and x ∈ In. Then for n > 2c, there exists a positive
constant C ′ such that

|G∗(α,β)n,c (f ;x)− f(x)| ≤ C ′ω2

(
f,

√
ζ
(α,β)
n,c (x)

)
,

where ζ
(α,β)
n,c (x) is given by (19).

Proof. Let g ∈W 2 and x, t ∈ In. Using the Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x
(t− v)g′′(v)dv.

Applying G
∗(α,β)
n,c on both sides and using Lemma 13, we get

G
∗(α,β)
n,c (g;x)− g(x) = G

∗(α,β)
n,c

(∫ t

x
(t− v)g′′(v)dv;x

)
.

Obviously, we have

∣∣∣∣∫ t

x
(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2‖g′′‖. Therefore

| G∗(α,β)n,c (g;x)− g(x) |≤ G∗(α,β)n,c ((t− x)2;x) ‖ g′′ ‖= ζ(α,β)n,c (x) ‖ g′′ ‖ .

Since | G∗(α,β)n,c (f ;x) |≤ ‖f‖, we get

| G∗(α,β)n,c (f ;x)− f(x) | ≤ | G∗(α,β)n,c (f − g;x) | + | (f − g)(x) | + | G∗(α,β)n,c (g;x)− g(x) |

≤ 2‖f − g‖+ ζ(α,β)n,c (x)‖g′′‖.

Finally, taking the infimum over all g ∈W 2 and using (11) we obtain

| G∗(α,β)n,c (f ;x)− f(x) |≤ C ′ω2

(
f,

√
ζ
(α,β)
n,c (x)

)
,

which proves the theorem.
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Theorem 15. Let f ∈ CB(In). If f ′, f ′′ exists at a fixed point x ∈ In, then we have

lim
n→∞

n
(
G
∗(α,β)
n,c (f ;x)− f(x)

)
= x(1 + cx)f ′′(x).

The proof follows along the lines of Theorem 4.
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