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Abstract. This paper presents an efficient approximate method to obtain a numerical solu-

tion, which is bounded at the end point x = −1, for Cauchy type singular integral equations of

the first kind on the interval [−1,1]. The solution is derived by approximating the unknown

density function using the weighted Chebyshev polynomials of the third kind, and then com-

puting the Cauchy singular integral which is obtained analytically. The known force function

is interpolated using the Chebyshev polynomials of the fourth kind. The exactness of this

approximate method is shown for characteristic equation when the force function is a cubic.

Particular result is also given to show the exactness of this method.
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1. Introduction

Let us consider the Cauchy type singular integral equations of the first kind

∫ 1

−1

ϕ(t)

t − x
d t +

∫ 1

−1

K(x , t)ϕ(t) d t = f (x), −1< x < 1, (1.1)

where K and f are assumed to be real-valued functions belong to the class of Hölder

continues functions on the sets [−1, 1]× [−1, 1] and [−1, 1], respectively. ϕ is un-

known function to be determined. The singular integral equations have been widely

used [1–4] in solving problems associated with aerodynamic, hydrodynamic and elas-

ticity.

The characteristic singular integral equation of equation (1.1) is of the form

∫ 1

−1

ϕ(t)

t − x
d t = f (x), −1< x < 1. (1.2)

Eshkovatov et al. [5] discussed the efficient approximate method to solve charac-

teristic equation (1.2) using Chebyshev polynomial approximations of the first, sec-

ond, third, and fourth kinds with corresponding weight functions for four cases. The

collocation points are chosen to be the zeros of Chebyshev polynomials. They showed

that, the approximate method gives exact solution when the force function f is a

linear.

Abdulkawi et al. [6] presented a numerical solution of equation (1.1), which is

bounded at the end points x ± 1. They used Chebyshev polynomials of the second

kind with the corresponding weight function to approximate the density function and

the Chebyshev polynomials of the first kind to approximate the force function. They

showed that the numerical solution of characteristic equation is identical to the exact

solution when the force function is a cubic.

It is well known that the analytical solution of characteristic equation (1.2), which



M. Abdulkawi, Z. Eshkuvatov, and N. Nik Long / Eur. J. Pure Appl. Math, 2 (2009), (462-472) 464

is bounded at the end point x =−1, is given by the following formula

ϕ(x) = −
1

π2

r

1+ x

1− x

∫ 1

−1

r

1− t

1+ t

f (t)

t − x
d t . (1.3)

By solving equation (1.1) with respect to its characteristic part, we will find that

it is equivalent to the Fredholm equation type of the second kind [7]

ϕ(t)+

∫ 1

−1

N(t ,τ)ϕ(τ) dτ = F(t),

N(t ,τ) = −
1

π2

r

1+ t

1− t

∫ 1

−1

r

1− x

1+ x

K(x ,τ)

x − t
d x ,

F(t) =−
1

π2

r

1+ t

1− t

∫ 1

−1

r

1− x

1+ x

f (x)

x − t
d x .































(1.4)

in the sense of obtaining the solution which one can apply the Fredholm’s theorems.

In this paper, we present an approximate solution for equation (1.1) which is

bounded at the end point x = −1.

2. Approximate Solution of Equation (1.1)

Guiding by the analytic solutions of characteristic equation given by (1.3), using

the Chebyshev interpolation polynomials of third kind Vi and fourth kind Wi with

corresponding weight functions ω1 and ω2 [8];

Vi(x) =

cos

�

2i + 1

2
cos−1 x

�

cos
�

1

2
cos−1 x
� , ω1(x) =

r

1+ x

1− x
,

Wi(x) =

sin

�

2i + 1

2
cos−1 x

�

sin
�

1

2
cos−1 x
� , ω2(x) =

r

1− x

1+ x
.































, (2.1)

and helping of the following important formula for singular integrals with the Cauchy

kernel
∫ 1

−1

r

1+ t

1− t

Vi(t)

t − x
d t = πWi(x), −1< x < 1, i = 0, 1, ..., n, (2.2)
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the approximate solution, which is bounded at the end point x = −1, of equation

(1.1) is obtained.

We will interpolate the known function f (x) by using the Chebyshev orthogonal

polynomial of the fourth kind fn(x) of degree n as

f (x)≈ fn(x) =

n
∑

k=0

fk Wk(x) (2.3)

where

fk =
1

π

∫ 1

−1

r

1− t

1+ t
f (t)Wk(t) d t . (2.4)

Approximating the unknown function ϕ by ϕn which is defined as

ϕn(x) =

r

1+ x

1− x

n
∑

j=0

a j Vj(x) (2.5)

where the unknown coefficients
¦

a j

©n

0
are to be determined.

Substituting (2.5) into (1.1) we obtain

n
∑

j=0

a j

∫ 1

−1

r

1+ t

1− t

Vj(t)

t − x
d t +

n
∑

j=0

a j

∫ 1

−1

r

1+ t

1− t
K(x , t)Vj(t) d t = f (x). (2.6)

Using (2.2) into (2.6) we obtain

π

n
∑

j=0

a j Wj(x) +

n
∑

j=0

a j ζ j(x) = f (x) (2.7)

where

ζ j(x) =

∫ 1

−1

r

1+ t

1− t
K(x , t)Vj (t) d t . (2.8)

Interpolating the function ζ j(x) by using the Chebyshev orthogonal polynomial of the

fourth kind as follows

ζ j(x)≈
n
∑

k=0

µ j,k Wk(x) (2.9)

where

µ j,k =
1

π

∫ 1

−1

r

1− x

1+ x

∫ 1

−1

r

1+ t

1− t
K(x , t)Vj(t)Wk(x) d t d x . (2.10)
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Due to (2.3-2.4) and (2.9-2.10), equation (2.7) becomes

n
∑

j=0

a j Wj(x) +
1

π

n
∑

k=0

n
∑

j=0

a j µ j,k Wk(x) =
1

π

n
∑

k=0

fk Wk(x). (2.11)

The unknown coefficients
¦

a j

©n

0
are determined by solving the system of linear

equations obtained by comparing the coefficients of Wj, j = 0, 1, 2, ..., n in both sides

of equation (2.11) which is

a0+
1

π

n
∑

j=0

a j µ j, 0 =
1

π
f0,

a1+
1

π

n
∑

j=0

a j µ j, 1 =
1

π
f1,

. . . . . . . . .
...

...
...

. . . . . . . . .

an+
1

π

n
∑

j=0

a j µ j, n =
1

π
fn.



































































(2.12)

where the coefficients
�

fk

	

and
¦

µ j, k

©

are given by (2.4) and (2.10), respectively.

3. Approximate Solution of the Characteristic Equation (1.2)

Theorem 3.1. If f (x) in characteristic equation (1.2) is a cubic function, then the

approximate solution (2.5) is identical to the exact solution.

Proof. Let us consider the characteristic singular integral equation

∫ 1

−1

ϕ(t)

t − x
d t = f (x), −1< x < 1. (3.1)

Let f (x) in (3.1) be a cubic function i.e

f (x) = c0+ c1 x + c2 x2+ c3 x3, −1 < x < 1. (3.2)
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Substituting (3.2) into (2.4) yields

fk =
1

π

∫ 1

−1

r

1− t

1+ t

�

c0+ c1 t + c2 t2+ c3 t3
�

Wk(t) d t . (3.3)

Using the following Chebyshev recurrence relations of the third and fourth kinds,

respectively,

V0(x) = 1, V1(x) = 2x − 1,

Vn(x) = 2x Vn−1(x)− Vn−2(x), n ≥ 2.







, (3.4)

W0(x) = 1, W1(x) = 2x + 1,

Wn(x) = 2x Wn−1(x)−Wn−2(x), n ≥ 2.







. (3.5)

we have

t3 = 1

8

�

V3 (t) + V2 (t) + 3 (V1 (t) + V0 (t))
�

= 1

8

�

W3 (t)−W2 (t) + 3 (W1 (t)−W0 (t))
�

,

t2 = 1

4

�

V2 (t) + V1 (t) + 2 V0 (t)
�

= 1

4

�

W2 (t)− W1 (t) + 2W0 (t)
�

,

t = 1

2

�

V1 (t) + V0 (t)
�

= 1

2

�

W1 (t)−W0 (t)
�

.



























































(3.6)

It is known that [8]

∫ 1

−1

r

1+ t

1− t
Vm(t)Vn (t) d t =







0, n 6= m,

π, n = m.

(3.7)

and

∫ 1

−1

r

1− t

1+ t
Wm(t)Wn (t) d t =







0, n 6= m,

π, n= m.

(3.8)
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Due to (3.3), (3.6) and (3.8), we obtain

f0 = c0 −
c1− c2

2
−

3 c3

8
,

f1 =
2 c1 − c2

4
+

3 c3

8
,

f2 =
2 c2 − c3

8
,

f3 =
c3

8
.



































(3.9)

From (2.12) when K(x , t) = 0, yields

a j =
1

π
f j, j = 0, ..., n. (3.10)

The approximate solution (2.5) with n= 3 becomes

ϕn(x) =
1

π

r

1+ x

1− x

�

f0 + f1V1(x) + f2V2 (x) + f3V3 (x)
�

. (3.11)

Substituting (3.9) and (3.10) into (3.11), we obtain the approximate solutions of

characteristic equation (3.1) which is

ϕn(x) =
1

π

r

1+ x

1− x
p (x),

p(x) = c0− c1 +
1

2
(c2 − c3) + (c1 − c2+

1

2
c3)x + (c2− c3)x

2+ c3 x3.











(3.12)

In order to obtain the exact solution of equation (3.1), we substitute (3.2) into

(1.3) which gives

ϕ(x) = −
1

π2

r

1+ x

1− x

∫ 1

−1

r

1− t

1+ t

c0 + c1 t + c2 t2+ c3 t3

t − x
d t . (3.13)
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It is easy to see that

∫ 1

−1

r

1− t

1+ t

1

t − x
d t =−π,

∫ 1

−1

r

1− t

1+ t

t

t − x
d t =−π(x − 1),

∫ 1

−1

r

1− t

1+ t

t2

t − x
d t =−π(x2− x + 0.5),

∫ 1

−1

r

1− t

1+ t

t3

t − x
d t =−π(x3− x2+ 0.5 x − 0.5).



















































(3.14)

Using (3.14) into (3.13), we obtain the exact solution of equation (3.1) which is

identical to the approximate solutions (3.12).

4. Particular Result

Let us consider the integral equation
∫ 1

−1

ϕ(t)

t − x
d t +

∫ 1

−1

(x3+ t3)ϕ(t) d t = 3x3+ 2x2 + x , −1< x < 1 (4.1)

and we seek the solution of this equation which is bounded at x =−1.

From (2.4) and (3.6) yields

fk =
1

π

∫ 1

−1

r

1− x

1+ x

�

3t3+ 2t2+ t
�

Wk(t) d t

=
1

π

∫ 1

−1

r

1− x

1+ x

�

3

8
W3(t) +

1

8
W2(t)+

9

8
W1(t)−

5

8
W0(t)

�

Wk(t)d t .















(4.2)

Using (3.8) into (4.2), we have
�

f0 =−
5

8
, f1 =

9

8
, f2 =

1

8
, f3 =

3

8

�

. (4.3)

Due to (2.10) we get

µ j,k =
1

π

∫ 1

−1

r

1− x

1+ x

∫ 1

−1

r

1+ t

1− t

�

x3+ t3
�

Vj(t)Wk(x) d t d x . (4.4)
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Using orthogonal property (3.7) into (4.4) we obtain

µ0,k =
1

π

∫ 1

−1

r

1− x

1+ x



πx3+

∫ 1

−1

r

1+ t

1− t
t3 V0 d t



Wk(x) d x (4.5)

and

µ j,k =
1

π

∫ 1

−1

r

1− x

1+ x





∫ 1

−1

r

1+ t

1− t
t3 Vj d t



Wk(x) d x , j = 1, 2, ..., n. (4.6)

Due to (3.6-3.7), equation (4.5) becomes

µ0,k =

∫ 1

−1

r

1− x

1+ x

�

x3+
3

8

�

Wk(x) d x (4.7)

which gives

µ0,0 = 0, µ0,1 =
3π

8
, µ0,2 = −

π

8
, µ0,3 =

π

8
.

�

(4.8)

From (4.6) with help of (3.6-3.7), yields

µ1,k =
3

8

∫ 1

−1

r

1− x

1+ x
Wk(x) d x (4.9)

which gives

µ1,0 =
3π

8
, µ1,k = 0, k = 1, 2, 3.

�

(4.10)

Similarly, we obtain

µ2,0 = µ3,0 =
π

8
, µ2,k = µ3,k = 0, k = 1, 2, 3.

ª

(4.11)

Due to (2.12), (4.3) and (4.8, 4.10-4.11) we have the following system of linear

equations

ak +
1

π

3
∑

j=0

a j µ j,k =
1

π
fk, k = 0, 1, 2, 3. (4.12)

It is not difficult to see that the solution of the system (4.12) is

a0 = −
71

55π
, a1 =

177

110π
, a2 =−

2

55π
, a3 =

59

110π
.

�

(4.13)
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Substituting the values of the coefficients
¦

a j

©3

0
into (2.5) yields the approximate

solution of equation (4.1)

ϕn(x) =
1

55π

r

1+ x

1− x

�

236 x3 − 126 x2 + 63 x − 128
�

(4.14)

which is identical to the exact solution.

5. Conclusion

The Chebyshev orthogonal polynomials of the third and fourth kinds are used

to approximate the unknown density function which is bounded at the end point

x = −1, and the known force function, respectively, for solving the Cauchy type sin-

gular integral equation of the first kind. Theorem 3.1 shows the exactness of the

approximate method presented for characteristic equation when the force function is

a cubic. Particular result also shows that this approximate method does not only give

the exact solution for characteristic equation but also for other Cauchy type singular

integral equations of the first kind.
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