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Abstract. In this paper, we present the results of a preliminary analytical and numerical study
of new derived system of single and double coupled self-exciting Faraday disk homopolar dynamos
by Hide et al [3, 7]. Also, well-known systems including, Rikitake and Bullard systems have been
reached by using Tikhonov theorem [6, 10] and eliminating method.
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1. Introduction

Hide et al [3] have studied the novel autonomous sets of dimensionless nonlinear ordi-
nary differential equations (ODEs)

ẋ = x(y − 1)− βz,
ẏ = α(1− x2)− κy,
ż = x− λz, where ẋ = dx/dτ, etc.

(1)

These equations govern the behaviour of self-exciting homopolar dynamo system. The
independent variable τ denotes time t. The dependent variables are x(τ), y(τ) and z(τ)
such that x(τ) is the rescaled electric current in the dynamo, y(τ) is the angular rotation
rate of the disk and z(τ) measures the angular speed of rotation of the motor. Also, we have
four parameters (α, β, κ, λ) which are the system dependents on. These four parameters
must be positive because they are physically unrealistic otherwise. Parameters represent
where α measures the applied couple; β measures the inverse moment of inertia of the
armature; κ measures the mechanical friction in the disk and λ measures the mechanical
friction in the motor.

Hide [7] has introduced a system of N self-exciting Faraday disk homopolar dynamos,
symmetrically coupled, arranged in a ring. Each unit has an electric motor and is con-
nected in series with a coil and a disk, being driven into motion by the dynamo. The
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system (1) study the case when N = 1 (one coupled dynamo). Hide [2] has extended the
above study and consider the N = 2 case (two coupled dynamos) with their six dependent
variables and thirteen dimensionless parameters in general. The system where N = 2 is
given by the following set of nonlinear ordinary differential equations [7]:

ẋ1 = mx2y1 − x1 − βz1,
ẏ1 = α(1−mx2x1)− κy1,
ż1 = x1 − λz1.
ẋ2 = l−1[x1y2 − rx2 − hβz2],
ẏ2 = a−1[α(g − x2x1)− kκy2],
ż2 = b−1[hx2 − dλz2].

(2)

In this paper, we derive new systems from N = 2 coupled dynamo models by applying
some restrictions in the parameters. These restrictions allow us to simplify the system (2)
and derive new reduced systems, which may find interested systems or lead to one of the
well-known systems. We set all addition parameters to unity unless a, b and l. In other
words, we consider some constraints that being used

k = r = m = h = d = g = 1. (3)

Note that when a = b = l = 1, we turn to Hide’s single-disk homopolar dynamo (1).

Also, we apply an important theorem in perturbation theory that so-called Tikhonovs
Theorem which reduces the dimension of system. The idea of the theorem is based on
singular perturbation problem [8]. Consider a system of differential equations of the form

ẋ = f(x, z, t),
µż = g(x, z, t), 0 < µ� 1

(4)

where f and g are sufficiently differentiable. The functions f, g and the initial values
x(0), z(0) may depend smoothly on µ. For simplicity of notation we suppress this depen-
dence. The corresponding equation for µ = 0,

ẋ = f(x, z, t),
0 = g(x, z, t),

(5)

is the reduced problem. The function f is supposed to possess an isolated solution z =
ξ(x, t). The substituting of z into the first equation yields to

ẋ = f(x, ξ(x, t), t), x(0) = x0. (6)

The paper is structured as follows. In the section 2, we provide an overview of Single-
Disk homopolar dynamo that was given by Hide et al [3]. We also present The Double-
Disk homopolar dynamo and study. In Double-Disk homopolar dynamo [7], we have
case of study, when κ = 0 in section 3. Throughout this case, we attempt to reduce
the dimension of system which make it simple and comparable with well-known system.
Numerical analysis including numerical integration, bifurcations study and linear stability
are included. We draw the conclusion in section 4.
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2. Theory

2.1. Single-Disk homopolar dynamo: Theory

Hide et al. [3] proposed a model for self-exciting dynamo action in which a Faraday
disk and coil are arranged in series with either a capacitor or a motor. The system (1)
contains a steady equilibrium solution either

(x, y, z) = (0, α/κ, 0) or (x, y, z) = (±
√

1− κ/α(β/λ+ 1), β/λ+ 1, x/λ).

A linear stability analysis of (1) about the steady equilibrium solution shows that the
eigenvalues of Jacobian matrix are

−κ, 1/2{α/κ− 1− λ±
√

(α/κ− 1 + λ)2 − 4β}

Steady bifurcations occur along the line

α/κ = β/λ+ 1,

where symmetry breaking bifurcation occur and two lines of Hopf bifurcations along

α/κ = λ+ 1,

provided β ≥ λ2 and

α/κ = [(2β − κλ− λ2)/2(κ− β/λ) + 3β/2λ+ 1].

In bifurcation diagram ( see Fig.5 in [3]), there is a Taken-Bogdanov (double zero eigen-
value type) bifurcations occur at the point P where

P = (α/κ, β) = (λ+ 1, λ2),

Note that, all lines of steady bifurcations and two lines of Hopf bifurcations meet in
at point P with reflection symmetry. There is a global bifurcation occurs and it emerges
from the Taken-Bogdanov point, label it P in bifurcation diagram. In addition Hide
et al. [3] have shown that dynamo action occurs when the steady equilibrium solution
(x, y, z) = (0, α/λ, 0) is unstable, namely when α/κ > min(1 + β/λ, 1 + λ), but not
otherwise.

2.2. Double-disk homopolar dynamo: Theory

The set of equations for general coupled dynamo (2) is reduced by a constrains (3) to:

ẋ1 = x2y1 − x1 − βz1,
ẏ1 = α(1− x2x1)− κy1,
ż1 = x1 − λz1.
ẋ2 = l−1[x1y2 − x2 − βz2],
ẏ2 = a−1[α(1− x2x1)− κy2],
ż2 = b−1[x2 − λz2].

(7)
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Similar to the single homopolar dynamo, the equations (7) have a reflection symmetry:
they are unchanged and invariant under the transformation

(x1, y1, z1, x2, y2, z2)→ (−x1, y1,−z1,−x2, y2,−z2).
In other word, the y1, y2 are invariant. The equilibrium states can be found in Ref. [4].

3. Case Study

The case is when we have nonzero λ and zero κ. The models reduction here are
based on two kind of reduction methods. First of all, eliminating the differential equation.
Second of all, we use an important theorem in perturbation theory [6, 8, 10] that so-called
Tikhonov’sTheorem. We start the problem in the system (7)with κ = 0, and hence

ẋ1 = x2y1 − x1 − βz1,
ẏ1 = α(1− x2x1),
ż1 = x1 − λz1.
ẋ2 = l−1[x1y2 − x2 − βz2],
ẏ2 = a−1[α(1− x2x1)],
ż2 = b−1[x2 − λz2].

(8)

First of all, we reduce the six dimensions of system (8) to five dimensions by eliminating
the equation of ẏ2 with ẏ1. Suppose

ẏ1 = f(x1, x2),

and so,
ẏ2 = a−1f(x1, x2).

Let
v̇ = f(x1, x2),

and hence
ẏ2 = a−1v̇,
y2 = a−1v + c,

Thus, the relation between y1 and y2 is

y2 = a−1y1 + c. (9)

From the equation (9), we can find the simple conditions on parameters such that ay2(t)→
y1(t) as t → ∞, if κ = 0 and the new variable c = 0. It is clear that if we differentiate
the equation (9), we get ċ = 0. In other word, if the solution of y2 in six dimensional
system is stable (unstable), then the solution of y1 in five dimensional system is also
stable (unstable), respectively. Thus the system (8) becomes

ẋ1 = x2y1 − x1 − βz1,
ẏ1 = α(1− x2x1),
ż1 = x1 − λz1.
ẋ2 = l−1[x1(a

−1y1 + c)− x2 − βz2],
ż2 = b−1[x2 − λz2].

(10)
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This system can be reduced further. We have five dimensional system (10), and by
rescaling x1 to be x1 = λX1, the ż1 equation as result becomes

ż1 = λX1 − λz1.

Divide it by λ
ż1/λ = X1 − z1.

Now we apply Tikhonov Theorem by choosing λ large, and hence

X1 = z1. (11)

Similarly in ż2, we rescale x2 as x2 = λX2 and then divide the equation by λ, we get

b/λż2 = X2 − z2.

Set b = c1λ. The equation becomes c1ż2 = X2 − z2, then apply Tikhonov Theorem by
choosing c1 to be small (c1 � 1). Thus

X2 = z2. (12)

However, this is not always true, it can be work in term of perturbation theory. From
(11), (12) and already y2 has been eliminated with y1, the 5D system (10) reduces to 3D
system as follows

Ẋ1 = X2y1 − (1 + β/λ)X1,
ẏ1 = α(1− λ2X1X2),

Ẋ2 = l−1[X1(a
−1y1 + c)− (1 + β/λ)X2],

(13)

Assume that (1 + β/λ) = µ as a new parameter and rewrite the system(13) in x, y and z
coordinates

ẋ = zy − µx,
ẏ = α(1− λ2xz),
ż = l−1[x(a−1y + c)− µz],

(14)

One of the interesting point that Rikitake disc dynamo [9] is involved in the system (14)
by setting the limit of parameters as

c = −γ and l = a = α = λ = 1.

Hence we have the Rikitake system

ẋ = zy − µx,
ẏ = x(z − γ)− µy,
ż = 1− xy,

(15)
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At value of parameters µ = 1.1 and γ = 7, we have found that system has chaotic
oscillations as shown in figures 1.

In more details, Cook and Roberts [1] found the fixed points of the Rikitake system
which are N and R, (±K,±K−1, µK2) where K is given by

γ = µ(K2 −K−2),

or

K =

√
γ ±

√
γ2 + 4µ2

2µ
.

There are a stable and centre manifold through each of the fixed points [5]. Thus the
dynamics take place on centre manifold, on which the fixed points are both unstable. The
stability of the fixed points R,N can be determined by the method of the eigenvalues. In
the following presentation we will consider the fixed point R that has positive sign but the
same computation may be applied to N . If we compute the Jacobian of the system (15)
and evaluate it at R, we get the matrix

J(R) =

 −µ µK2 K−1

µK2 − γ −µ K
−K−1 −K 0


Compute the eigenvalues of the this matrix results in characteristic equation of the form

(σ2 +K2 +K−2)(σ + 2µ) = 0,

which has roots
σ0 = −2µ, σ1,2 = ±(K2 +K−2)i.

Since the system (15) has two purely imaginary roots then the eigenvalues method fails.
There are two options available to study. Firstly, take the higher order Taylor approxima-
tion of system

ξ̇(t) = fµ(ξ(t) + u∗)

for system u̇ = fµ(u) where µ parameter and u∗ state-solution. Moreover, ξ(t) is the
function represent the distance between the state solution and some other solution as

ξ(t) = u(t)− u∗ with u(0)− u∗ = ξ0,

Note that the system that results from such a truncation is no longer linear. Thus it
fails too. The other option, we can use the Lyapounov function. This approach is more
applicable, to show that points R and N are both unstable for any value of parameters
and K saves when K = 1 or µ = 0.
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In general, the Rikitake system does not possess closed form solution. For certain
parameter values the analytical solutions are known. So if we choose the values as K = 1
and µ = 0 for the system (15), then we have the following system

ẋ = zy,
ẏ = 1− xz,
ż = xy,

If we consider those solution for which x = z and perform the substitution u = x = z,
then we get the following system

u̇ = zu,
ẏ = 1− u2, (16)

These equations are well-known which are called the Bullard model dynamo [2]. Thus, two
well-known systems (Rikitake [9] and Bullard [2]) have been derived from original system
(2).

Back to the five dimensional system (10) to study the linear stability around it fixed
points. By setting all differential equations in (10) equal to zero, we get the fixed point.
Firstly, from third and fifth equation, it is easy to see that z1 = 1

λx1 and z2 = 1
λx2,

respectively. Also in the second equation we find

x1x2 = 1. (17)

Secondly, the first and fourth equations can be studied as follows, in the first equation, we
have

x2y1 − (1 + β/λ)x1 = 0

x1 =
x2y1
µ

where µ = 1 + β/λ. (18)

Also in the fourth equation, we have

x2 =
1

µ
(a−1x1y1 + cx1)

Substitute (18) in x2 we get

x2 =
1

µ
((aµ)−1x2y

2
1 +

c

µ
x2y1)

Ay21 +By1 − 1 = 0

where A = 1
aµ2

and B = c
µ . Hence

y1 =
−B ±

√
B2 − 4A

2A
⇒ y1 =

−c
µ ±

√
c2

µ2
− 4

aµ2

2
aµ2
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Rearrange the fraction of y1

y1 =
−c±

√
c2 − 4

a

2/aµ
.

However, if we multiply (18) by x1 and use the relation in (17), then it simplifies to become
y1 = µx21 which means that y1 is always positive. Hence we neglect the negative sign of
the value of y1. Now plug that in the equation (17), so we have

x1 = (
−c±

√
c2 − 4

a

2/aµ︸ ︷︷ ︸
H

)x2,

then substitute it in (17)

Hx22 = 1 ⇒ x2 = ± 1√
H
.

Similarly
x1 = ±

√
H.

As a result the fixed point states are given by:

x1 = ±
√
H, x2 = ± 1√

H
, y1 = µH, z1 =

√
H

λ
z2 =

1

λ
√
H
, (19)

where H = (
−c±

√
c2− 4

a

2/aµ ) and µ = 1 + β/λ.

To study the stability of (10) we need to compute the Jacobian matrix of the system
(10). Thus, we get

J =


−1 x2 −β y1 0
−αx2 0 0 −αx1 0

1 0 −λ 0 0
l−1(a−1y1 + c) x1(al)

−1 0 −l−1 −l−1β
0 0 0 b−1 −b−1λ

 (20)

Since we have seen a good result in Rikitake equations in figure 1 when µ = 1.1 and γ = 7,
we are going to apply the same values of parameters to find the relationship between the
system (10) and Rikitake systems. However the limit of these parameters values come
form [7] where assumed K = 2 and a value of µ between 1 and 2 which Rikitake model
would the observed reversals are most faithfully. The relation occurs when c = −γ and
l = a = α = λ = 1 and keep the value of b as small value, to be 0.001. Since µ = 1.1 and
µ = 1 + β/λ, then β = 0.1. Before substituting fixed points in the Jacobian matrix, we
need to calculate the value of x1, x2, y1 which are ±2.55,±0.39 and 7.16, respectively. So
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the Jacobian matrix at the fixed points is

J(fp) =


−1 ±0.39 −0.1 7.16 0
∓0.39 0 0 ∓2.55 0

1 0 −1 0 0
0.16 ±2.55 0 −1 −0.1

0 0 0 1000 −1000

 (21)

Thus the eigenvalues are as follows

-9.998998904039592e+002

5.863307789355593e-003 +2.578916992181417e+000i

5.863307789355593e-003 -2.578916992181417e+000i

-2.030767974296189e+000

-1.081068237323492e+000

Since we have three negative eigenvalues and a pair of complex conjugate eigenvalues with
positive real part, this gives an indication of having unstable centre (foci) equilibrium [5]
as in Rikitake equilibrium points.

The parameters values as those in Rikitake Γ = µ = 1.1 , c = −γ = −7 and l = a =
α = 1 and keep the value of b as small value, to be 0.001 to show the phase portrait in
system (10). It would be shown in figures 2 and 3, respectively.

It shows that the solution of x2 and z2 is clearly having same behaviour. It also shows
that phase portrait in the (x2, z2), (x1, x2), (z1, z2), (z1, z2). (x2, y1), (x1, z2) and (x2, z1)
are indicated of chaos behaviour. The behaviours of (x1, y1) are similar to the behaviours
of (x, y) in Rikitike system. Also, the behaviours of (x2, y1) or (z2, y1) are similar to the
behaviours of (z, y) in Rikitike system. Moreover, the behaviours of (x1, x2) and (x1, z2)
are similar. The behaviours of (z1, x2) and (z1, z2) are similar. Also, the behaviours of
(y1, z2) and (y1, x2) are similar.

4. Conclusion

The system of a double disk dynamo with motors is valuable and many cases can
be studied to see the beauty of the dynamical system including, Chaos, Bifurcations and
periodic orbits. In our case, we show how well-known system can derived from the original
system using the reduction method provided.

A further cases can be studied be setting the parameters to investigate many possibility
in the dynamical system theory.
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Figure 1: Rikitake system with parameters choice as µ = 1.1 and � = 7.
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Figure 1: Rikitake system with parameters choice as µ = 1.1 and γ = 7.
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1, � = 0.0001, l = 1, c = �7,  = 0.60, � = 0.65, b = 0.1, a = 1, and µ = 1.1.
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Figure 2: Five dimensional system with parameters choice as γ = 7, α = 1, β = 0.0001, l = 1, c = −7, κ =
0.60, λ = 0.65, b = 0.1, a = 1, and µ = 1.1.
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It shows that the solution of x2 and z2 is clearly having same behaviour.
It also shows that phase portrait in the (x2, z2), (x1, x2), (z1, z2), (z1, z2).
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Figure 3: Continued five dimensional system with parameters choice as γ = 7, α = 1, β = 0.0001, l = 1, c =
−7, κ = 0.60, λ = 0.65, b = 0.1, a = 1, and µ = 1.1.


