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Abstract. The assertion that the number of p-Sylow subgroups in a finite group is ≡ 1 mod p, begs

the natural question whether one may obtain the power ap−1 (for any (a, p) = 1) as the number of

p-Sylow subgroups in some group naturally. Indeed, it turns out to be so as we show below. The

construction involves wreath products of groups. Using wreath products, a different generalization of

Euler’s congruence (and, a fortiori, of Fermat’s little theorem) was obtained in [1].
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1. Result

Given two groups A and B, recall the restricted wreath product of A by B (written A ≀ B).

This is the semidirect product group B ∝ Ã where Ã = ⊕b∈BAb with each Ab = A and B

acts on the indexing set B of Ã by right multiplication. We write any element of A ≀ B in

a canonical form as σa1
(b1) · · ·σar

(br)τ(b) where ai ∈ A; bi, b ∈ B. Thus, two elements

σa1
(b1) and σa2

(b2) commute if b1 6= b2. Also, the product σa1
(b)σa2

(b) = σa1a2
(b). Finally,

τ(b)σa(c)τ(b)
−1 = σa(cb). We prove:

Theorem 1. Let |B| = p, a prime and, (|A|, p) = 1. Then, the number of p-Sylow subgroups in

the wreath product A ≀ B is |A|p−1. Thus, |A|p−1 ≡ 1 mod p.

To prove the theorem, we shall use a lemma on the wreath product A ≀ B of two arbitrary

finite groups. Let us denote by C the subgroup

C = {σa(b1) · · ·σa(bn) : a ∈ A}

where B = {b1, · · · , bn}. Note that all the elements τ(b) for b ∈ B commute element-wise

with this subgroup.
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Lemma 1. Let A, B be finite groups. Then, the normalizer of the subgroup B in A≀B equals C⊕B.

Proof. Indeed, if σa1
(b1) · · ·σar

(br)τ(b0) is in the normalizer of B, we have for each b ∈ B,

some b′ ∈ B so that

σa1
(b1) · · ·σar

(br)τ(b0)τ(b) = τ(b
′)σa1

(b1) · · ·σar
(br)τ(b0)

= σa1
(b1 b′) · · ·σar

(br b′)τ(b′b0).

So b0 bb−1
0
= b′ and

σa1
(b1) · · ·σar

(br) = σa1
(b1 b′) · · ·σar

(br b′) = σa1
(b1 b0 bb−1

0 ) · · ·σar
(br b0 bb−1

0 ).

As b can take any value in B, and bi(b0 b−1
0 ); i ≤ r are distinct elements, we must have

B = {b1, · · · , br}. Moreover, looking at a b such that bi(b0 b−1
0 ) = b j, we must have ai = a j.

Thus, σa1
(b1) · · ·σar

(br) ∈ C . This proves the lemma.

Proof. [Theorem 1] Here, since p is the highest power of p dividing the order of A ≀ B, the

subgroup B is a p-Sylow subgroup. By lemma 1, the normalizer N(B) of B has order equal to

p|A|. Since |A ≀ B| = p|A|p, we have [A ≀ B : N(B)] = |A|p−1. By the second Sylow theorem, the

number of p-Sylow subgroups equals the index of the normalizer. By the third Sylow theorem,

this number is congruent to 1 mod p.

Lemma 2. Let A, B be finite solvable groups of orders a, b with (a, b) = 1. Then, the subgroups

of order b in A ≀ B are conjugate and, are ab−1 in number.

Proof. If G is a solvable group of order mn, with (m, n) = 1, then it is well-known that G

has subgroups of order m which are pairwise conjugate. Now A≀B has Ã as a normal subgroup

and the quotient is isomorphic to B. As A is solvable, so is the group Ã. Hence, A≀B is solvable

as both Ã and B are solvable. Thus, the subgroups of order b in it are pairwise conjugate and

are, thus, [A ≀ B : N(B)] in number. This index is ab b/ab = ab−1.

2. Remarks

The wreath product of finite groups was considered in [1] also, where a different gener-

alization of Euler’s congruence dropped out as a byproduct. A particular case is :

Let A, B be finite abelian groups of orders a, b respectively. Then, the number of conjugacy

classes in the wreath product A≀B is 1

b

∑
s,t∈B a[B:<s,t>]. In particular, when B is cyclic, this num-

ber is 1

b

∑b
s,t=1 a(b,s,t).

From this, one can easily deduce Euler’s congruence aφ(n) ≡ 1 mod n for (a, n) = 1. In

fact, the expression in the lemma can be re-written as

1

n

n∑

s,t=1

a(n,s,t) =
∑

d|n

φ(n/d)

∑
l |d alφ(d/l)

d
.
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