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Littlewood-Paley g-function and Radon transform on
the Heisenberg group
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China

Abstract. In this paper, we consider Radon transform on the Heisenberg group Hn, and obtain
new inversion formulas via dual Radon transforms and Poisson integrals. We prove that the Radon
transform is a unitary operator from Sobelov space W into L2(Hn). Moreover, we use the Radon
transform to define the Littlewood-Paley g-function on a hyperplane and obtain the Littlewood-
Paley theory.
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1. Introduction

We identify any point (x, y) in R2n with the point z = x + iy in Cn and denote
the symplectic form [·, ·] on Cn by [z, w] = 1

2 Im〈z, w〉 for z, w ∈ Cn. We define the
multiplication on Cn × R by

(z, t)(z′, t′) =

(
z + z′, t+ t′ +

1

2
Im〈z, z′〉

)
(1)

for all (z, t) and (z′, t′) in Cn × R. The group Cn × R with respect to the multiplication
defined by (1) is denoted by Hn and is called the Heisenberg group. It is well known
that the Heisenberg group plays an important role in several branches of mathematics.
There are, therefore, several ways of realising the group due to the widely application of
the Heisenberg group (see [2, 17]). In 1917, Radon proved that a smooth function in R3

is completely determined by its integrals over all the planes. This leads in a more general
setting to the consideration of the Radon transform. The research of Radon transform
has made important influence due to its wide applications to partial differential equations,
X-ray technology, radio astronomy and so on. The basic theory and some new results
can be found in [9]. Geller-Stein [5] and Strichartz [16] introduced the Heisenberg-Radon
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transform on Hn. He-Liu considered inversion formulas of the Radon transform on Hn

and Siegel type Lie group in [6, 7, 8] by using the continuous wavelet transforms. The
combination of Radon transform and wavelet transform has proved to be very useful both
in pure mathematics and applied science. Therefore, it is very meaningful to give the
inversion formula the Radon transform by using various ways. In addition, because of
great application of the Heisenberg group, many scholars have studied Littlewood-Paley
theory on the Heisenberg group in recent years. Thangavelu [17] studied the g-function
connected with the semigroup generated by the sub-Laplacian. Liu-Ma [12] investigated
the g-function related to a class of radial functions in which the characterization of the
Lp(Hn)-norm of a function on Hn was obtained.

This paper is organized as follows. In section 2, we recall some notations, definitions
and preliminary fact. Motivated by [5, 9, 10], we mainly introduce singular convolution
operators on Hn and obtain inverse formulas of Radon transform in section 3. Section 4
is to define Littlewood-Paley g-function in some hyperplanes and establishes Littlewood-
Paley theory, which generalizes the results in [12]. At last, in section 5 we show that the
Radon transform and the Poisson integral for the Šliov boundary are equivalent, and the
inverse formula is given by the classical Schwarz theorem.

2. Preliminaries

We denote by O the space all holomorphic functions on Cn, the Fock space with
λ ∈ (0, ∞) is defined by

Hλ :=

{
f ∈ O : ‖f‖2 :=

∫
Cn

|f(w)|2e−πλ|w|2λndw <∞
}
,

and H−λ := {f : f ∈Hλ}. The scalar product is given by

〈f, g〉 :=

∫
Cn

f(w)g(w)e−πλ|w|
2
λndw.

Now, an arbitrary complete orthonormal system of functions ψλ,α ∈ Hλ on Cn is repre-
sented by

ψλ,α(w) =
λ|α|/2wα

(2|α|α!)1/2
=

wα1
1

((2/λ)α1α1!)1/2
· · · wαn

n

((2/λ)αnαn!)1/2
(2)

which satisfies
〈ψλ,α, ψλ,β〉 = δαβ,

where δαβ denotes the Kronecker symbol and α = (α1, ..., αn) ∈ Nn. It is natural that
f ∈Hλ is represented by a series

f(w) =
∑
α∈Nn

〈f, ψλ,α〉ψλ,α.
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We define the Bargmann-Fock representation πλ from Hn into the group G of all
unitary operators on Hλ by, for any ψ ∈H±λ and any (z, t) ∈ Hn,

πλ(z, t)ψ(w) = e−2πiλt+πλ〈w,z〉−πλ|z|
2/2ψ(w − z),

and

π−λ(z, t)ψ(w) = e2πiλt+πλ〈z,w〉−πλ|z|
2/2ψ(w − z),

for any λ ∈ R∗ := R \ {0}. It is easy to see that πλ : Hn → G is a group homomorphism
and πλ(z, t)ψ → ψ in Hλ as (z, t)→ (0, 0). Then the unitary representation πλ of Hn on
Hλ is irreducible in the sense that the only closed subspaces of Hλ that are invariant under
all the operators πλ(z, t), (z, t) ∈ Hn, are {0} and Hλ . Two unitary representations πλ
and πµ of Hn are unitarily equivalent if and only if λ = µ. Now, we are able to introduce
the following notion of the group Fourier transform on Hn. Let f ∈ L1(Hn). Then the
group Fourier transform πλ on f is defined by

πλ(f) =

∫
Hn

f(z, t)πλ(z, t)dzdt. (3)

Thus, the Plancherel theorem states as follows.

Lemma 1. Let f ∈ L2(Hn). Then

‖f‖2L2(Hn) =

∫
R∗
‖πλ(f)‖2HS |λ|ndλ.

And the inversion formula is valid:

f(z, t) =

∫
R∗

tr(π∗λ(f)πλ(z, t))|λ|ndλ.

3. The inverse formulas of Radon transforms

In this section, our purpose is to get the inverse formulas of Radon transforms. In
order to do this we first recall the Abel Fourier transform.

The Fourier transform for t and z-variable, respectively, are given by

F2f(z, t) =

∫
R
f(z, t′)e−2πit

′tdt′, (4)

and

F1f(z, t) =

∫
Cn

f(z′, t)e−2πiRe〈z,z′〉dz′.

The symplectic Fourier transform on Cn is defined by, for any g ∈ L2(Cn),

Fsg(z) =

∫
Cn

g(z′)eπiIm〈z,z
′〉dz′, (5)
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and then we also obtain

Fsg(z) = F1g (iz/2) . (6)

Let πλ(f) be as in (3) and πλ(z, 0) := πλ(z). Then we define

πλ(f) =

∫
Cn

F2f(z, λ)πλ(z)dz.

Therefore, the integral operator wλ for g is defined by

wλ(g) =

∫
Cn

g(z)πλ(z)dz, (7)

and Plancherel formula is given by

‖wλ(g)‖2HS = λ−n
∫
Cn

|g(z)|2dz. (8)

Next, to introduce the notion of the singular convolution operator on Hn, we need the
following notation. Let Tn =

(
∂
∂t

)n
. We consider hyperplanes

E(z,t) :=

{(
z, t+

1

2
Im〈z, z′〉

)
for any z′ ∈ Cn

}
and

E ∗(z′,t′) :=

{(
z′, t′ − 1

2
Im〈z, z′〉

)
for any z ∈ Cn

}
.

As we know, Tn is studied in fractional differential equations due to its wide applications
(see [1, 14, 15]). In this paper, Combining with these hyperplanes and Tn we have the
following definition.

Definition 1. The singular convolution operator Rn and the dual singular convolution
operator Rtn for function f, φ, respectively, are defined by

Rn(f)(z, t) =

∫
Cn

Tnf

(
z′, t+

1

2
Im〈z, z′〉

)
dz′ (9)

and

Rtnφ(z′, t′) =

∫
Cn

Tnφ

(
z, t′ − 1

2
Im〈z, z′〉

)
dz. (10)

In particular, R0 is the Heisenberg Radon transform when n = 0 (see [16]). It is easy to
see that Rtnφ = Rnφ (also see [4]). We denote by S (Hn) the space all Schwartz functions
on Hn. Using (9) and (10), we have the following identity∫

Hn
f(z, t)Rtnφ(z, t)dzdt =

∫
Hn

Rnf(z, t)φ(z, t)dzdt

for any f, φ ∈ S (Hn).
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Proposition 1. Let f ∈ S (Hn). Then, for any λ ∈ R∗, we have

πλ(Rnf(z, t)) = (2πiλ)nwλ(Ff(iλz/2, λ)).

Proof. Let ϕλ,α be as in (2) and differential operator Tn. As we know,

F2(T
nf)(λ) = (2πiλ)nF2(f)(λ). (11)

According to the (7), (11), together with (4) and (5), we have

[πλ(Rnf)ϕλ,α] = [wλF2(Rnf(z, λ))ϕλ,α(w)]

=

∫
Cn

F2(Rnf(z, λ))[πλ(z)ϕλ,α(w)]dz

=

∫
Cn

∫
R
Rnf(z, t)e−2πiλt[πλ(z)ϕλ,α(w)]dzdt

= (2πiλ)n
∫
Cn

∫
R

∫
Cn

f(z′, t)e−2πiλteπiλIm〈z,z
′〉[πλ(z)ϕλ,α]dz′dzdt

= (2πiλ)n
∫
Cn

∫
Cn

F2f(z′, λ)eπiλIm〈z,z
′〉[πλ(z)ϕλ,α(w)]dz′dz

= (2πiλ)n
∫
Cn

F2Fsf(λz, λ)[πλ(z)ϕλ,α(w)]dz.

In addition, we need the full Euclidean Fourier transform

Ff(z, t) =

∫
R

∫
Cn

f(z′, t′)e−2πitt
′
e−2πiRe〈z,z′〉dz′dt′.

By this and (5), we find that

[πλ(Rnf)ϕλ,α(w)] = (2πiλ)n
∫
Cn

Ff (iλz/2, λ) [πλ(z)ϕλ,α(w)]dz

= (2πiλ)n [wλ (Ff (iλz/2, λ))ϕλ,α(w)] .

The proof is completed.

Proposition 2. Let φ ∈ S (Hn). Then

(8π)n(iλ)−nF2φ (z/λ, λ) = FsF2[R
t
nφ(z, λ)] = F [Rtnφ(iz/2, λ)].

Proof. Let φ ∈ S (Hn), By (10), (11) and (6), we deduce that

FsF2[R
t
nφ(z, λ)] = (2πiλ)n

∫
Cn

∫
R

∫
Cn

φ

(
w, t− 1

2
Im〈w, z′〉

)
e−2πiλteπiIm〈z,z

′〉dwdz′dt

= (2πiλ)n
∫
Cn

∫
Cn

F2φ(w, λ)eπiIm〈z,z
′〉e−πλiIm〈w,z

′〉dwdz′
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= (2πiλ)n
∫
Cn

∫
Cn

F2φ(w, λ)eπiIm〈z,z
′〉eπλiIm〈z

′,w〉dwdz′

= (2πiλ)n
∫
Cn

F2Fsφ(λz′, λ)eπiIm〈z,z
′〉dz′

= (2πiλ)n
∫
Cn

F1F2φ(iλz′/2, t)eπiIm〈z,z
′〉dz′

= (2πiλ)n
∫
Cn

F1F2φ(iλz′/2, λ)e2πiRe〈z/λ,iλz′/2〉dz′

= (8π)n(iλ)−nF2φ (z/λ, λ) .

This finishes the proof of Proposition 2.

Theorem 1. Let f ∈ S (Hn)∩L2(Hn) and φ(z, t) := Rnf(z, t) ∈ S (Hn). Then f(z, t) =
(4π)−2nRtnφ(z, t) holds in L2(Hn).

Proof. According to the inversion formula in Lemma 1 and (8), we obtain∫
Hn
|Rnf(z, t)|2dzdt =

∫
R∗
‖πλ(Rnf)‖2HS |λ|ndλ

=

∫
R∗
‖(2πiλ)nwλ(Ff(iλz/2, λ))‖2HS |λ|ndλ

=

∫
R∗

∫
Cn

(4π)2n(λ)−n|Ff(z, λ)|2dz|λ|n|dλ

=

∫
R∗

(4π)2n‖wλ(Ff(z, λ))‖2HS |λ|ndλ

=

∫
R∗

(4π)2n‖πλF1f(·, λ)‖2HS |λ|ndλ

=

∫
Hn

(4π)2n|F1f(z, t)|2dzdt,

which implies that,

(4π)nF1f(z, t) =

∫
R∗

tr(π∗λ(Rnf)πλ(z, t))|λ|ndλ = Rnf(z, t)

and hence

f(z, t) = (4π)−nF−11 Rnf(z, t). (12)

From (6), it follows that∫
Hn
|F1F2R

t
nφ(iz/2, λ)|2dzdλ = 4n

∫
Hn
|F1F2R

t
nφ(z, λ)|2dzdλ.

By Proposition 2, we find that

4n
∫
Hn
|F1F2R

t
nφ(z, λ)|2dzdλ = (8π)2n(iλ)−2n

∫
Hn
|F2φ (z/λ, λ) |2dzdλ
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= (8π)2n
∫
Hn
|F2φ(z, λ)|2dzdλ,

which implies that,

F1F2R
t
nφ(z, λ) = (4π)nF2φ(z, λ) = (4π)nF2Rnf(z, λ) (13)

holds in L2(Hn). Combining with (12) and (13), we have

f(z, t) = (4π)−2nRtnφ(z, t).

We complete the proof of Theorem 1.

The Sobolev space W on Hn is defined by

W :=

{
f ∈ L2(Hn) :

∫
Hn
|Tnf(z, t)|2dzdt <∞

}
.

Theorem 2. Let f ∈ W . Then there exists a constant Cn such that TnRt0T
nR0f = Cnf

holds in L2(Hn).

Proof. Let f ∈W ∩ L2(Hn), it is easy to verify that

R0(T
n(f)) = Tn(R0(f)). (14)

By Lemma 1 and the proof of Theorem 1, we find that∫
Cn

|R0T
nf(z, t)|2dzdt =

∫
R∗
‖πλ(Rn(f))‖2HS |λ|ndλ = (4π)2n‖f‖2L2(Hn).

Together with the density argument, we obtain that (14) holds in W ∩S (Hn).
Similarly, we also have

Rt0T
nφ = TnRt0φ. (15)

Obviously, CnR0T
n(f) = φ ∈W is well defined. According to (15) and (14), we see that

Rt0T
nφ = TnRt0φ = CnT

nRt0T
nR0f = CnR̃

t
0R0f = Cnf.

We remark that the inverse formula of Radon transform is obtained via Propositions
1, 2 and Theorems 1, 2.

4. Littlewood-Paley g-function

Let Xj = ∂
∂xj

+ 1
2yj

∂
∂t , Yj = ∂

∂yj
− 1

2xj
∂
∂t , j = 1, . . . , n. Xj , Yj be left invariant vector

fields on Hn. The gradient operator on Hn is given by

∇ = (X1, . . . , Xn, Y1, . . . , Yn).
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The sub-Laplacian operator of Hn is defined by

L =
n∑
j=1

(
X2
j + Y 2

j

)
.

It is known that
πλ(L f)(λ) = πλ(f)

∑
α∈Nn

(2|α|+ n)|λ|φλ, α.

L is a positive self-adjoint operator. For a suitable function ψ defined on (0, ∞), the
operator ψ(L ) can be defined in terms of the spectral expansion of L . Then

πλ(ψ(L )f)(λ) = πλ(f)
∑
α∈Nn

ψ(2|α|+ n)|λ|φλ, α.

Let φ denote the kernel function of ψ(L ). Then

φ(λ) =
∑
α∈Nn

ψ(2|α|+ n)|λ|φλ, α.

We denote by R(Hn) the set of all these functions φ.
Let φ ∈ R(Hn), the Littlewood-Paley g-function on Hn is defined by

g(Rnf, u) =

[∫ ∞
0
|Rnf ∗ φρ(u)|2 dρ

ρ

]1/2
,

where Rnf is as in (9) and φρ(u) = ρ−n−1φ( u√
ρ) for all ρ > 0.

The homogeneous norm on the Heisenberg group is given by |u| = |(z, t)| = (|z|4 +
t2)1/4, which satisfies the trigonometric inequality |uv| ≤ |u|+ |v|.

Theorem 3. If φ ∈ R(Hn) is a nonzero function on Hn such that L − 2n+2
4 φ ∈ L2(Hn)

and |∇φ(u)| ≤ C(1 + |u|)−2n−3−ε, where constants C, ε > 0, then for p = 2n+2
2n+1 and

q = 2n+ 2, there exist constants Aq, Bp > 0, such that

Aq‖Rn(f)‖Lq(Hn) ≤ ‖g(Rnf)‖Lq(Hn) ≤ Bp‖f‖Lp(Hn)

for any f ∈ Lp(Hn).

To prove Theorem 3, we need the following several technique Lemmas.
Firstly, we consider the form of Fourier transform of |x|α−n, which is used to develop

the boundedness of the singular convolution operator from Lp(Hn) to Lq(Hn), where
0 < α < n. Now, we show the Fourier transform of a Guassian function. For ε > 0, denote
by gε the Gaussian function on Rn given by

gε(x) = exp[−π|x|2ε]

for x ∈ Rn. Then

ĝε(k) = ε−n/2 exp[−π|k|2/ε]. (16)

By (16), we obtain the following lemma.
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Lemma 2. Let cα := π−α/2Γ(α/2) (0 < α < n). Then, for any s ∈ Rn,

Γ(α/2)

∫
Rn

|s|−αe2πiλsds = πα/2cn−α|λ|α−n. (17)

Proof. Our starting point is the elementary formula

cα|s|−α =

∫ ∞
0

exp[−π|s|2ε]εα/2−1dε. (18)

By Fubini’s theorem, together with (18) and (16), we have,

Γ(α/2)

∫
R
|s|−αe2πiλsds = πα/2

∫ ∞
0

∫
R

exp[−π|s|2ε]εα/2−1e2πiλsdsdε

= πα/2
∫ ∞
0

εα/2−1
∫
R

exp[−π|s|2ε]e2πiλsdsdε

= πα/2
∫ ∞
0

ε−n/2εα/2−1 exp[−π|λ|2/ε]dε

= πα/2cn−α|λ|α−n.

Lemma 3. The estimate ‖Rnf‖q ≤ c‖f‖p holds if and only if p = 2n+2
2n+1 and q = 2n+ 2.

Proof. To show that the estimate ‖Rnf‖q ≤ c‖f‖p holds we use an analytic families
interpolation argument. We let

Tα,nf(z, t) = Γ(α/2)

∫
Hn

Tnf

(
w, t+ s+

1

2
Im〈z, w〉

)
|s|−αdsdw,

where α is complex parameter in the strip 0 ≤ Reα ≤ 1. It is obvious that on the line
Reα = 0 the operator Tα,n is bounded from L1 to L∞, while on the line Reα = 1 a simple
computation with (17) shows

F2Tα,nf(z, λ) = πα/2c1−α|λ|α−1(2πiλ)nFf(iλz/2, λ),

and a modification of the proof of Theorem 1 shows that Tα,n is bounded from L2 to
L2. The various Γ-factors are innocuous, so the Stein interpolation theorem yields the
boundedness of Rn from Lp to Lq for exactly p = 2n+2

2n+1 , q = 2n+ 2.
The necessity of proof is similar to that of [16, p. 387], the details being omitted.

The following lemma is just [12].

Lemma 4. If φ ∈ S (Hn) is a nonzero function on Hn such that L − 2n+2
4 φ ∈ L2(Hn) and

|∇φ(u)| ≤ C(1 + |u|)−2n−3−ε, where constants C, ε > 0, there exist constants Ap, Bp > 0,
such that

Ap‖f‖Lp(Hn) ≤ ‖g(f)‖Lp(Hn) ≤ Bp‖f‖Lp(Hn)

for any f ∈ Lp(Hn).
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Proof. [Proof of Theorem 3] Let f ∈ Lp(Hn). For p = 2n+2
2n+1 and q = 2n+2, by Lemma

3, we know that ‖Rnf‖Lq(Hn) ≤ c‖f‖Lp(Hn). From Lemma 4, it follows that

Aq‖Rnf‖Lq(Hn) ≤ ‖g(Rnf)‖Lq(Hn) ≤ B̃q‖Rnf‖Lq(Hn) ≤ Bp‖f‖Lp(Hn).

The proof is completed.

5. The Poisson integral as a Radon transform on Šilov boundary ∂Un+1

Let Un+1 be the generalized upper half-plane in Cn+1,

Un+1 =
{

(z1, z̃) ∈ Cn+1 : Imz1 > |z̃|2
}
,

where z̃ = (z2, · · ·, zn+1) ∈ Cn, |z̃|2 =
n+1∑
j=2
|zj |2; see, for example, [13].

For any α = (α1, α̃), β = (β1, β̃) ∈ Un+1, we consider the almost analytic extension of

ρ(α, β) =
i

2
(β1 − α1)−

n+1∑
k=2

αkβk.

In particular, when α = β,

ρ(α, α) = ρ(α) = Imα1 − |α̃|2.

For f holomorphic on the Siegel upper half-space Un+1, we define

‖f‖H2 = sup
ρ>0

(∫ ∫
|f(z̃, z1 + i|z̃|2 + iρ)|2d|z̃|d|z1|

) 1
2

.

Then we set

H2(Un+1) = {f : f is holomorphic on Un+1, ‖f‖H2 <∞},

where ρ is introduced on Un+1.
For F ∈ H2(Un+1), we let

Fρ(α̃, t) = F
(
α̃, t+ i|α̃|2 + iρ

)
. (19)

Definition 2. The Poisson-Szegö kernel P is defined by

P (α, β) :=
|S(α, β)|2

S(α, α)
, (20)

where S(α, β) = (n+1)!
4πn+1 · 1

ρ(α,β)n+1 is Szegö kernel.
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Let the Poisson kernel P be as in (20). Then, for any f ∈ L2(∂Un+1), we have

F (α) =

∫
∂Un+1

f(β)P (α, β)dσ(β), (21)

where dσ is a measure element of ∂Un+1 (see [11]).
On the disk D : |z| < 1, Helgason [9] proved that the Poisson integral and Radon

transforms are equivalent. By [10, Proposition 2.5 and 2.6], we can obtain the following
proposition.

Proposition 3. Let Fρ be as in (19). We assume that the Radon transform is the classical
Poisson integral as in (21). Then the inverse formula is given by

f(z̃, t) = lim
ρ→0

Fρ(z̃, t),

where f(z̃, t) ∈ L2(∂Un+1).
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