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1. Introduction

Harmonic maps between Riemannian manifolds have been discussed for last decades,
initiated with the paper of J. Eells and J.H. Sampson [7]. Since harmonic maps have both
properties analytic and geometric, they have become an important and interesting re-
search field. The study of harmonic maps on Riemannian manifolds with some structures
started from the paper of Lichnerowicz [13]. After that, Rawnsley [14] studied structure
preserving harmonic maps between f-manifolds. Later on many authors studied harmonic

maps (see [6] [10], [11], [12], [15] [16]).

The biharmonic maps theory is an old and attractive subject. They have been studied
since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The
Euler-Lagrange equation for bienergy functional was first derived by Jiange in 1986 [8].
After this biharmonic maps were studied by many authors see [2], [3], [5]. In [5], authors
have studied the biharmonic submanifolds in complex space form. The objective of this
paper is to find condition on second fundamental form for biharmonicity of a map from
submanifolds of S-space form to S-space forms. After we recall some well known facts
about biharmonic maps and S-manifolds , we prove the main results in third section.
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2. Preliminaries

In this section, we recall some well known facts concerning harmonic maps, biharmonic
maps and S-manifolds.
Let F': (M, g) — (N, h) be a smooth map between two Riemannian manifolds of dimen-
sions m and n respectively. The energy density of F' is a smooth function e(F') : M —
[0, 00) given by [7],

m

1 . 1
e(F)p = §TT9(F h)(p) = 5 Zh(F*puiaF*pui)v
i=1

for any p € M and any orthonormal basis {ui,...,uy} of T,M. If M is a compact
Riemannian manifold, the energy E(F') of F is the integral of its energy density:

E(F) = /M e(F)v,,

where v is the volume measure associated with the metric g on M. A map F' € C*°(M, N)
is said to be harmonic if it is a cricital point of the energy functional E on the set of all
maps between (M, g) and (N, h). Now, let (M, g) be a compact Riemannian manifold.
If we look at the Euler-Lagrange equations for the corresponding variational problem, a
map F': M — N is harmonic if and only if 7(F') = 0, where 7(F) is the tension field
which is defined by

7(F) = TryVdF,

where V is the connection induced by the Levi-Civita connection on M and the F-pullback
connection of the Levi Civita connection on N.
We take now a smooth variation Fy; with two parameters s,t € (—e¢,¢€) such that
Fy,0 = F. The corresponding variation vector fields are denoted by V and W.
The second variation formula of E is:
82
(VW) = 5 (B rony = [ IRV W),

where Jp is a second order self-adjoint elliptic operator acting on the space of variation
vector fields along F (which can be identified with T'(F~1(TN))) and is defined by

m

Tr(V) == (Vu,Vu, = Vo, u)V = > BRN(V,dF (u;))dF (u;), (1)
i=1 =1

for any V € I'(F~1(T'N)) and any local orthonormal frame {uy, ..., u;} on M. Here R
is the curvature tensor of (N, h) (see [9] for more details on harmonic maps).
J. Eells and L. Lemaire [9] proposed polyharmonic (k-harmonic) maps, and Jiang [§]
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studied the first and second variation formulas of biharmonic maps. Let us consider the
bienergy functional defined by:

BoF) =5 [ 17(F) P, )

where | V |?= W(V,V), V € T(F~'TN).
Then, the first variation formula of the bienergy functional is given by:

% o BalF) = = [ hn(P), V), )
here
n(F) i= J(r(F)) = A(r(F)) - R(r(F), )

which is called the bitension field of F and J is given by (1).
A smooth map F of (M, g) into (N, h) is said to be biharmonic if 7(F') = 0.

As a generalization of both almost complex (in even dimension) and almost contact (in
odd dimension) structures, Yano introduced in [17] the notion of f-structure on a smooth
manifold of dimension 2n + s, i.e. a tensor field of type (1,1) and rank 2n satisfying
f2+4 f = 0. The existence of such a structure is equivalent to a reduction of the structural
group of the tangent bundle to U(n) x O(s). Let N be a (2n + s)-dimensional manifold
with an f-structure of rank 2n. If there exist s global vector fields &1, &2, ...,&s on IV such
that:

J€a =0, nao f =0, f2:_I+Z§a®77a7 (5)

where 7, are the dual 1-forms of &,, we say that the f-structure has complemented frames.
For such a manifold there exists a Riemannian metric g such that

9(X,Y) = g(fX, fY) + > na(X)na(Y)

for any vector fields X and Y on N. See [1].
An f-structure f is normal, if it has complemented frames and

£, 142D €a®dna =0,

where [f, f] is Nijenhuis torsion of f.

Let © be the fundamental 2-form defined by Q(X,Y) = ¢(X, fY), X, Y € T(N). A
normal f-structure for which the fundamental form  is closed, m A+ - -AnsA(dny)™ # 0 for
any «, and dn; = - -- = dns = (2 is called to be an S-structure. A smooth manifold endowed
with an S-structure will be called an S-manifold. These manifolds were introduced by Blair
in [1].
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We have to remark that if we take s = 1, S-manifolds are natural generalizations of
Sasakian manifolds. In the case s > 2 some interesting examples are given in [1].
If Nis an S-manifold, then the following formulas are true (see [1]):

Vxéa=—fX, XeT(N), a=1,...,s, (6)
(VxHY =D {g(fX, fY)ea +na(Y)f2X}, XY € T(N), (7)

where V is the Riemannian connection of g. Let L be the distribution determined by the
projection tensor — f2 and let K be the complementary distribution which is determined
by f2 + I and spanned by &, ...,&. It is clear that if X € L then 7,(X) = 0 for any «,
and if X € K, then fX = 0. A plane section 7 on N is called an invariant f-section if
it is determined by a vector X € L(x), € N, such that {X, fX} is an orthonormal pair
spanning the section. The sectional curvature of 7 is called the f-sectional curvature. If
N is an S-manifold of constant f-sectional curvature k, then its curvature tensor has the
form [1]

R(S,T,V,W) =Y {g(fS, fW)na(T)ns(V) = g(fS, fV)1a(T)(W) +
a,B
+9(fT, fV)na(Sng(W) — g(fT, fW)na(S)ns(V)} +
+§<k +35){g(1S, FW)g(fT, fV) = g(£S, [V)g(IT, FW)} +
+i(k — ){QUS, WQUT, V) = Q(S,VQUT, W) —2Q(S, T)QV, W)}, (8)

S, T, V, W e T(N). Qis fundamental 2-form. Such a manifold N(k) will be called an
S-space form. The Euclidean space E?"** and the hyperbolic space H*"*+* are examples
of S-space forms.

Let M be an m-dimensional submanifold immersed in N. Then M is an invariant subm-
naifold if £, € T'M for any o and fV € TM for any V € TM. It is said to be anti-invariant
submanifold if fV € TM* for any V € TM. For a vector field X € TM=, it can be writ-
ten as fX =tX 4+ nX, where tX is tangent component of fX, nX is normal component
of f X. If n does not vanishes, then its an f-structure [4].

Consider the structure vector fields &1, &, ..., & are tangent to M, dim(M) > s. Then
M is CR-submaifold of N if there are two differentiable distributions D and D+ on M,
TM = D + D" such that

e D and D' are mutually orthogonal to each other.
e The distribution D is invariant under f, i.e. fD, = D,, for any p € M
e The distribution D+ is anti invariant under f, i.e. fDIJ; C TpML for any p € M.

It can be proved that each hypersurface of N which is tangent to £1,&o,...,&s, has the
structure of CR-submnaifold of N, for detail see [4].
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3. Biharmonic Maps into S-space form
Before the main results recall the following results by Jiang:

Lemma 1. [8] Let f: (M™,g) — (N", h) be an isometric immersion whose mean curva-
ture vector field H = %T(f) is parallel; VEH = 0, where V= is the induced connection of
the normal bundle T*M by f. Then,

m m

AT(f) =Y h(Br(f),df (e)df (er) = D h(Ve,m(£), df () (Ve,df ) (e;),

i=1 ij=1
where {e;} is a locally defined orthonormal frame field of (M, g).

Lemma 2. [8] Let f: (M™,g) — (N", h) be an isometric immersion whose mean curva-
ture vector field H = %T(f) is parallel; V-H = 0, where V- is the induced connection of
the normal bundle T+M by f. Then,

m

Ar(f) ==Y h(r(f), RV (df (e;), df (ex))df (e;)df (ex) —

jk=1

=S R, (Verdf)(€)(Verdf) (e5),

ij=1
where {e;} is a locally defined orthonormal frame field of (M, g).

Lemma 3. [§] Let f : (M™,g) — (N™F1 h) be an isometric immersion which is not
harmonic. Then, the condition that || T7(f) || is constant is equivalent to the one that

Vx7(f) €T(f,TM), for all X eTM,

that is the mean curvature tensor is parallel with respect to 7+.

For details and proof of these Lemmas, see [5], [8]. Now the main result of this article;

3.1. Main results

Theorem 1. Let (M, g) be a 2m+s-dimensional submanifold of S-space form N of dimen-
sion (2n+s), and ® : (M, g) — (N, h) be an isometric immersion with non zero constant
parallel mean curvature with respect to connection on normal bundle, then necessary and
sufficient conditions for ® to be biharmonic is

o | B(®) |I?= %(Zn —1+s)+ 3(]6475), for M?™%$ to be a hypersurface, 2m=2n-1

o || B(®) ||?= E32(2m + s), for M?™+S to be an inavriant submanifold, m < n
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Proof. Consider an s-manifold with constant f-sectional curvature k. Let {v;}2™," be
orthonormal basis on M. Then from equation (8) we have

RN (d®(v)), d®(vy,))d®(vy,) = Z {ff2d<I>(vj)17a(d@vk)nﬂ(dévk) — h(fd®v;, dPvy).
a,B
Na(dPvk)Ep + h(fdP(vk), fd¢(vk))na(d‘bvj)€ﬁ+

+ £2d® (vg ) 1a (dDv; )0 (dDy,) }+ (k + 3s) {—f2d®(v;).
h(fdPvg, fdPvg) + h(fdPv;, quwk) f2dd(vg)}

—I—i(k — 5) {—fd®(vj)h(dPvy, dDvy) + fdP(v)

h(dPvj, fdPuy) + 2fdP(vg)h(dPvj, fdPuy)},

and
RN (d®(vj), dD(vy,))dd(vy) = %(k + 35) {d®(v;) + 6,5 (—dPuy)}
+ Z(k} - s)h(dtbvj, fd@vk)fd@(vk).

Then we have

m

> W(r(®), RN (dF (v)), dF (vy,))dF (v,))dF (v;)
Gk=1

B %(k + 3s) {h(7(®P), d®(v;)) — dKh(T(P), dPuvy)}
+ z(k — S) {h(d@vj, fd@vk)h(T, fd‘I)(ek))} : (9)

Let 7(®) € TM*, then

m

> h(7(@), RN (d(v;), d®(vr)) d(v) )d(v;) = 0.
4, k=1

Let M?™+5 be a hyperspace of s-manifold N. Each hypersurface of s-manifolds has the
structure of CR-submanifold. For 7(®) € TM*, we can take f7(®) € I'TM. Now
dim(M) = 2m + s = 2n — 1 + 5. For orthonormal basis {d®(v;)};r, of d®(T,M) at all
points on M, we can write

2n—1+s

Z h(f7(®),dD(vg))d® (vy).

By Lemma 2,

2n—1+s

= Y (). (Vi d®)(1)) (Vod®) (1))

i,7=1
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Furthermore, we have

2n—1+s
R(r(®) = > RN(7(®),d®(e;))d® = i 235(271 —1+5)7(®) + 3(’“4_ %) 7(@). (10)
k=1

Now the necessary and sufficient conditions F' to be biharmonic is that

o(F) = AT(F) = R(r(F)) = 0, -
this becomes

2ni+sh( (F), V. dF( >)% dF (vy) — [H&S(? ~ 1 spr@) + 22| <o)
irj=1 T(F), Vo, dE (vg) | Vo, dE(vy, n T i -
Now let

B(®)(ej, ex) = (Vo,d®)vy, = h(d®(v;),d®(vy,))V = hyU,

where U is the unit normal vector along F'(M). then

2n—1+s " 2n—1+s
T(F)= Y (VodF)(v)= > hU,
r=1 r=1

where U is the unit normal vector along F'(M). Thus, the left hand side of (15) becomes
as:

2n—1+s

N;I {hrrhjkhij - [k ZgS(Zn — 14 8)7(®) + 3(k — S)T((I)):| } L

2n—1+s m
k+3 3(k —
(Z hm) zhjkhjku_[ L %] _o,
r=1 J,k=1

o) {1 8@ 10 - [ en - 14 g+ 2 20] L <o

since 7(®) # 0, by assumption, then we have

k+ 3s
4

| B(®) H?—{ (2n—1+8)+3(k_8)]20,

and

(13)
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Next let M2™+5 be an invariant submanifold of s-manifold N. Then for 7(®) € TTM*,
fr(®) € TTM*. For orthonormal basis {d®(v;)}{, of d®(T, M) at all points x € M, we
have h(f7(®),d®(vr)) = 0, then in this case

2n—1+s

R(r(®) = Y RY(r(®),dd(e;))dd = K Z3s(zm + 5)7(P). (14)
k=1
Then by equation (11),
2m-+s
3k (T(F), %dF(vk)) o dF (v) — "3 9m 4 s)r(@) = 0 (15)
ij=1

With similar computations as above we have

1@ 1 {i 5@ v~ [ e o]} -0

This implies
k+ 3s

I B(®) ||*= (2m +s)

Corollary 1. Let (M, g) be a 2n— 1-dimensional submanifold of complez space form N of
dimension 2n, and ® : (M, g) — (N, h) be an isometric immersion with non zero constant
parallel mean curvature with respect to connection on normal bundle, then necessary and
sufficient conditions for ® to be biharmonic is

| B@) [P= & (n+ 1)

Proof. In equation (13), for s=0 we get result.

Corollary 2. Let (M, g) be a (2n — 1) 4+ 1-dimensional submanifold of Sasakian space
form N of dimension 2n+1, and ® : (M, g) — (N, h) be an isometric immersion with non
zero constant parallel mean curvature with respect to connection on normal bundle, then
necessary and sufficient conditions for ® to be biharmonic is

| B(®) ||°= g (2n +3) + % (2n —1)

Proof. In equation (13), for s=1 we get result.

Acknowledgements

First Author is supported by NRPU research project of HEC , Pakistan.



REFERENCES 158

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

D.E. Blair, Geometry of manifolds with structural group U(n) x O(s), J. Differential
Geom. 4 (1970). 155-167.

A. Balmus, Biharmonic properties and conformal changes., An. Stiint. Univ. ALIL
Cuza Iasi Mat. (N.S.) 50 (2004), 361372.

A. Balmus, C. Oniciuc, Some remarks on the biharmonic submanifolds of S8 and their
stability, An. Stiint. Univ. ALL Cuza lasi, Mat. (N.S), 51 (2005), 171190.

Jose L. Cabrerizo, Luis M. Fernandez, Manuel Fernandez (Sevilla), On normal CR-
submanifolds of S-manifolds, Colloquim Mathematicum, Vol. LXIV, (1993), FASC.
2.

Toshiyuki Ichiyama, Jun-ichi Inoguchi, Hajim Urakawa Bi-harmonic maps and bi-
Yang-Mills fields, Note di Matematica, Note Mat. 1(2008), suppl. n. 1, 233-275.

J. Davidov, A. G. Sergeev, Twistor spaces and harmonic maps, Uspekhi Mat. Nauk,
1993, Volume 48, Issue 3(291), 396.

J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.
Math. 86 (1964), 109-160

G. Y. Jiang 2-harmonic maps and their first and second variational formulas,Chinese

Ann. Math. Ser. A7(4) (1986), 389-402.

J. Eells and L. Lemaire, Report on harmonic maps, Bull, London Math. Soc. 20
(1988), 385-524.

C. Gherghe, Harmonicity on cosymplectic manifolds, Rocky Mountain J.Math. 40,
No.6,(2010), 247-254.

C. Gherghe, S. Ianus, A. M. Pastore, CR-manifolds, harmonic maps and and stability,
J.Geom. 71(2001), 42-53.

C. Gherghe, K.Kenmotsu, Energy minimizer maps on C-manifolds, Diff. Geom. Appl.
21(2004), 55-63.

A. Lichnerowicz, Applications harmoniques et varietes khleriennes, Sympos. Math. 3
(1970) 341402.

J. Rawnsley, f -structures, f -twistor spaces and harmonic maps, Lecture Notes in
Math., vol. 1164, Springer-Verlag, 1984, pp. 85159.

N.A. Rehman Harmonic Maps on S-Manifolds, An. St. Univ. Ovidius Constanta, Vol
21(3), 2013, 197-208.

Hajime Urakawa, Harmonic and Biharmonic Maps, Symmetry 2015, 7, 651-674.



REFERENCES 159

[17] K. Yano and M. Kon, Structures on manifolds, vol. 3, Series in pure Math., World
Scientific, Singapore, 1984.



