#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 1, 2018, 160-168 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global



# The influence of C- 3-permutable subgroups on the structure of finite groups

M. M. Al-Shomrani<sup>1,\*</sup>, A. A. Heliel<sup>2</sup>

 <sup>1</sup> Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia
<sup>2</sup> Department of Mathematics, Faculty of Science 62511, Beni-Suef University, Beni-Suef, Equpt

**Abstract.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a finite group G, that is, for each prime p dividing the order of G,  $\mathfrak{Z}$  contains exactly one and only one Sylow p-subgroup of G, say  $G_p$ . Let C be a nonempty subset of G. A subgroup H of G is said to be C- $\mathfrak{Z}$ -permutable (conjugate- $\mathfrak{Z}$ -permutable) subgroup of G if there exists some  $x \in C$  such that  $H^x G_p = G_p H^x$ , for all  $G_p \in \mathfrak{Z}$ . We investigate the structure of the finite group G under the assumption that certain subgroups of prime power orders of G are C- $\mathfrak{Z}$ -permutable subgroups of G.

2010 Mathematics Subject Classifications: 20D10, 20D15, 20D20, 20F16.

**Key Words and Phrases**: Sylow subgroup, 3-permutable subgroup, *C*-3-permutable subgroup, *p*-nilpotent group, supersolvable group, Fitting subgroup, generalized Fitting subgroup, saturated formation.

## 1. Introduction

Throughout this article only finite groups are considered. We use conventional notions and notation, as in Doerk and Hawkes [2]. In addition,  $\pi(G)$  denotes the set of distinct primes dividing |G| and  $G_p$  is a Sylow *p*-subgroup of the group *G* for some prime  $p \in \pi(G)$ . Two subgroups *H* and *K* of a group *G* are said to be permutable if HK = KH, that is, *HK* is a subgroup of *G*. Recall that a subgroup *H* of a group *G* is *S*-permutable (or *S*-quasinormal) in *G* if *H* permutes with every Sylow subgroup of *G*. This concept was introduced by Kegel [7] in 1962.

Recently, in 2003, Asaad and Heliel [1] introduced the concept of  $\mathfrak{Z}$ -permutability which generalizes S-permutability as follows: Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G. A subgroup H of G is said to be  $\mathfrak{Z}$ -permutable in G if H permutes with every

Email addresses: malshomrani@hotmail.com (M. M. Al-Shomrani), heliel9@yahoo.com (A. A. Heliel)

http://www.ejpam.com

© 2018 EJPAM All rights reserved.

<sup>\*</sup>Corresponding author.

member in  $\mathfrak{Z}$ .

More recently, in 2013, Heliel and Al-Gafri [4] generalized the concept of  $\mathfrak{Z}$ -permutability by introducing a new subgroup embedding property, namely, the conjugate- $\mathfrak{Z}$ -permutability. Let C be a nonempty subset of a group G and  $\mathfrak{Z}$  be a complete set of Sylow subgroups of G. A subgroup H of G is said to be C- $\mathfrak{Z}$ -permutable subgroup of G if there exists some  $x \in C$  such that  $H^x G_p = G_p H^x$ , for all  $G_p \in \mathfrak{Z}$ . Remark 1.2 and Examples 1.3 and 1.4 in [4] show that C- $\mathfrak{Z}$ -permutability is a nontrivial generalization of  $\mathfrak{Z}$ -permutability.

This article may be viewed as a continuation of Heliel and Al-Gafri [4]. In fact, we extend and improve the following theorem:

**Theorem 1.1.** [[4], Theorem 3.11] Let  $\mathfrak{F}$  be a saturated formation containing the class of supersolvable groups  $\mathfrak{U}$  and let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G. Then the following two statements are equivalent:

- (a)  $G \in \mathfrak{F}$ .
- (b) There is a normal subgroup H in G and a solvable normal subgroup C of F\*(H) such that G/H ∈ ℑ, and the maximal subgroups of G<sub>p</sub> ∩ F\*(H) are C-ℑ-permutable subgroups of G, for all G<sub>p</sub> ∈ ℑ, where F\*(H) is the generalized Fitting subgroup of H.

More precisely, we prove the following theorem:

**Theorem 1.2.** Let  $\mathfrak{F}$  be a saturated formation containing the class of supersolvable groups  $\mathfrak{U}$ . Let  $\mathfrak{F}$  be a complete set of Sylow subgroups of a group G and let C be a solvable normal subgroup of G. Then the following two statements are equivalent:

- (a)  $G \in \mathfrak{F}$ .
- (b) There is a normal subgroup H in G such that  $G/H \in \mathfrak{F}$  and the maximal subgroups of  $G_p \cap F^*(H)$  are C- $\mathfrak{Z}$ -permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ .

**Remark 1.3.** Let  $S(F^*(H))$  denotes the solvable radical of  $F^*(H)$ , that is,  $S(F^*(H))$  is the unique largest solvable normal subgroup of  $F^*(H)$ . In Theorem 1.1, C is a solvable normal subgroup of  $F^*(H)$ . Therefore, C is contained in  $S(F^*(H))$ . Since  $S(F^*(H))$  is characteristic in  $F^*(H)$  and  $F^*(H)$  is normal in G, we have that  $S(F^*(H))$  is normal in G. So, the maximal subgroups of  $G_p \cap F^*(H)$  are  $S(F^*(H))$ -3-permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ , where  $S(F^*(H))$  is a solvable normal subgroup of G. Thus, Theorem 1.1 can be seen as an immediate consequence of Theorem 1.2.

## 2. Basic definitions and preliminaries

In this section, we list some definitions and known results from the literature that will be used in the sequel. Let  $\mathfrak{F}$  be a saturated formation. Then the  $\mathfrak{F}$ -residual, denoted by  $G^{\mathfrak{F}}$ , is the unique smallest normal subgroup of G such that  $G/G^{\mathfrak{F}} \in \mathfrak{F}$ . Throughout,  $\mathfrak{U}$  denotes the class of supersolvable groups which is a saturated formations, see [[5], Satz 8.6, p. 713].

A normal subgroup N of a group G is an  $\mathfrak{F}$ -hypercentral subgroup of G provided N possesses a chain of subgroups  $1 = N_0 \leq N_1 \leq ... \leq N_s = N$  such that  $N_{i+1}/N_i$  is an  $\mathfrak{F}$ -central chief factor of G, see [[2], p. 387]. The product of all  $\mathfrak{F}$ -hypercentral subgroups of G is again an  $\mathfrak{F}$ -hypercentral subgroup, denoted by  $Z_{\mathfrak{F}}(G)$ , and called the  $\mathfrak{F}$ -hypercenter of G, see [[2], IV, 6.8]. For the formation  $\mathfrak{U}$ , the  $\mathfrak{U}$ -hypercenter of a group G, denoted by  $Z_{\mathfrak{U}}(G)$ , is the product of all normal subgroups N of G such that each chief factor of G below N has prime order. For more details about saturated formations, see [[2], IV].

For any group G, the generalized Fitting subgroup  $F^*(G)$  is the unique maximal normal quasinilpotent subgroup of G. In fact,  $F^*(G)$  is an important characteristic subgroup of G and it is a natural generalization of F(G). The basic properties of  $F^*(G)$  can be found in [[6], X 13]. We define  $F_1^*(G) = F^*(G)$  and  $F_i^*(G)/F_{i-1}^*(G) = F^*(G/F_{i-1}^*(G))$  for i > 1. Since  $F^*(G) \neq 1$  when  $G \neq 1$ , there exists an integer n such that  $F_n^*(G) = G$ .

Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and let N be a normal subgroup of G. We denote the following families of subgroups of G, G/N and N, respectively:

$$\mathfrak{Z}N = \{G_pN : G_p \in \mathfrak{Z}\}, \mathfrak{Z}N/N = \{G_pN/N : G_p \in \mathfrak{Z}\}, \mathfrak{Z}\cap N = \{G_p \cap N : G_p \in \mathfrak{Z}\}.$$

The following lemmas will be used in the sequel.

**Lemma 2.1.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G, C be a nonempty subset of G and N be a normal subgroup of G. Then:

- (a)  $\mathfrak{Z} \cap N$  and  $\mathfrak{Z}N/N$  are complete sets of Sylow subgroups of N and G/N, respectively.
- (b) If U is C-3-permutable subgroup of G, then UN/N is CN/N-3N/N-permutable subgroup of G/N.
- (c) If  $U \leq N$ ,  $C \subseteq N$  and U is C-3-permutable subgroup of G, then U is C-3  $\cap N$ -permutable subgroup of N.
- (d) Suppose that  $N \leq U$ . Then U is C-3-permutable subgroup of G if and only if U/N is CN/N-3N/N-permutable subgroup of G/N.
- (e) If U is C-3-permutable subgroup of G, then  $U \cap N$  is C-3-permutable subgroup of G.

**Proof.** For (a), see [[1], Lemma 2.1(a)]. For (b), (c) and (d); see [[4], Lemma 2.1].

(e) Let  $G_p$  be any member of  $\mathfrak{Z}$ . By hypothesis, there exists some  $x \in C$  such that  $U^x G_p$  is a subgroup of G, that is,  $U^x G_p = G_p U^x$ . Let  $K = U^x$ . It is clear that  $G_p KN$  is a subgroup of G as N is normal in G. Since  $G_p \cap KN$  is a p-subgroup of KN and

$$\begin{split} |KN:G_p\cap KN| &= |G_pKN:G_p| \text{ is a } p'\text{-number as } G_p \text{ is a Sylow } p\text{-subgroup of } G_pKN, \text{ it follows that } G_p\cap KN \text{ is a Sylow } p\text{-subgroup of } KN. \text{ Also, } G_p\cap K \text{ is a } p\text{-subgroup of } K \text{ and } |K:G_p\cap K| &= |KG_p:G_p| \text{ is a } p'\text{-number. Consequently, } G_p\cap K \text{ is a Sylow } p\text{-subgroup of } K. \text{ Therefore, } G_p\cap K\cap N &= (G_p\cap K)\cap (K\cap N) \text{ is a Sylow } p\text{-subgroup of } K\cap N \text{ as } K\cap N \text{ is a normal subgroup of } K. \text{ If } M \text{ is a subgroup of } G, \text{ let } |M|_p \text{ denotes the largest power } of p \text{ dividing the order of } M. \text{ As } |KN| &= \frac{|K||N|}{|K\cap N|}, \text{ then } |KN|_p &= \frac{|K|_p|N|_p}{|K\cap N|_p}. \text{ Clearly, } (G_p\cap K) (G_p\cap K) (G_p\cap K) \leq G_p \text{ as } G_p\cap N \text{ is a normal subgroup of } G_p \text{ and so } (G_p\cap K)(G_p\cap N) \leq G_p\cap KN. \text{ Now } |(G_p\cap K)(G_p\cap N)| &= \frac{|G_p\cap K||G_p\cap N|}{|G_p\cap K\cap N|} = \frac{|K|_p|N|_p}{|K\cap N|_p} = |KN|_p = |G_p\cap KN| \text{ and hence } (G_p\cap K)(G_p\cap N) = G_p\cap KN. \text{ By } [[2], \text{ Lemma 1.2, p. 2], } G_p(K\cap N) = G_pK\cap G_pN \text{ which is a subgroup of } G \text{ as } G_pK \text{ and } G_pN \text{ are subgroup of } G. \text{ so, we have } x \in C \text{ such that } G_p(U\cap N)^x = G_p(U^x\cap N) = G_p(K\cap N) \text{ is a subgroup of } G. \text{ so, for all } G_p \in \mathfrak{Z}. \text{ Thus, } U\cap N \text{ is } C-\mathfrak{Z}\text{-permutable subgroup of } G. \end{split}$$

**Lemma 2.2.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a nonempty subset of G. Assume that H is a normal subgroup of G such that the maximal subgroups of  $\mathfrak{Z} \cap H$  are C- $\mathfrak{Z}$ -permutable subgroups of G. Then for any nontrivial normal subgroup N of G, the maximal subgroups of  $(\mathfrak{Z}N/N) \cap (HN/N)$  are CN/N- $\mathfrak{Z}N/N$ -permutable subgroups of G/N.

**Proof**. See [[4], Lemma 2.2].

**Lemma 2.3.** Let G be a group. Then:

- (a)  $F^*(G) = F(G)E(G)$  and [F(G), E(G)] = 1, where E(G) is the layer subgroup of G.
- (b)  $F^*(F^*(G)) = F^*(G) \ge F(G)$ ; if  $F^*(G)$  is solvable, then  $F^*(G) = F(G)$ .
- (c)  $C_G(F^*(G)) \le F(G)$ .
- (d) Suppose that N is a normal subgroup of G contained in  $\Phi(G)$ , then  $F^*(G/N) = F^*(G)/N$ .

**Proof**. (a), (b) and (c) can be found in [[6], X 13]. For (d), see [[10], Lemma 2.3 (8)].

**Lemma 2.4.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a nonempty subset of G. Suppose that P is a normal p-subgroup of G, where p is a prime, and N is a minimal normal subgroup of G with  $N \leq P$ . If N is complemented in P and the maximal subgroups of P are C- $\mathfrak{Z}$ -permutable subgroups of G, then the order of N is p.

**Proof.** By hypothesis, there exists a subgroup H of P such that P = NH and  $N \cap H = 1$ . Obviously, we have that  $N \leq G_p \in \mathfrak{Z}$ . Let N/M be a chief factor of  $G_p$ . Then, the order of N/M is p. Clearly, MH is a subgroup of P as M is normal in P. Since  $M \cap H = M \cap (N \cap H) = 1$ , then |P:MH| = |NH:MH| = |N:M| = p and hence MH is a maximal subgroup of P. By hypothesis, MH is C-3-permutable subgroup of G by Lemma 2.1(e). So, there exists some  $x \in C$  such that  $M^x G_q$  is a subgroup of G, for all  $G_q \in \mathfrak{Z}$ . This implies that  $MG_q^{x^{-1}}$  is a subgroup of G, for all  $G_q \in \mathfrak{Z}$ . Assume that  $q \neq p$ . Since  $M = M(N \cap G_q^{x^{-1}}) = N \cap MG_q^{x^{-1}}$  and  $N \cap MG_q^{x^{-1}}$  is normal in  $MG_q^{x^{-1}}$ , it follows that  $G_q^{x^{-1}} \leq N_G(M)$ . If q = p, then M is normal in  $G_p$  and so  $G_p \leq N_G(M)$ . Therefore,  $N_G(M) = G$  and hence M is normal in G. But N is a minimal normal subgroup of G and M is a maximal subgroup of N, thus M = 1 and the order of N is p.

**Lemma 2.5.** Let G be a group. Then:

- (a) E(G), the layer subgroup of G, is a perfect quasinilpotent characteristic subgroup of G.
- (b) If M is a perfect quasinilpotent subnormal subgroup of G, then  $M \leq E(G)$ .
- (c) If M is a solvable subgroup of G and  $E(G) \leq N_G(M)$ , then [E(G), M] = 1.

**Proof.** For (a), see [[6], Definition 13.14, p. 128]. For (b) and (c), see [[6], Theorem 13.15(a), p. 128 and Lemma 13.16(b), p. 128–129], respectively.

**Lemma 2.6.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a solvable normal subgroup of G. If p is the smallest prime dividing the order of G and the maximal subgroups of  $G_p \in \mathfrak{Z}$  are C- $\mathfrak{Z}$ -permutable subgroups of G, then G is p-nilpotent.

**Proof**. See [[4], Theorem 3.1].

**Lemma 2.7.** Let  $\mathfrak{F}$  be a saturated formation containing the class of supersolvable groups  $\mathfrak{U}$ ,  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a solvable normal subgroup of G. Then the following two statements are equivalent:

- (a)  $G \in \mathfrak{F}$ .
- (b) There is a normal subgroup H in G such that  $G/H \in \mathfrak{F}$  and the maximal subgroups of  $G_p \cap H$  are C-3-permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ .

**Proof**. See [[4], Theorem 3.2].

**Lemma 2.8.** Suppose that G is a finite non-abelian simple group. Then there exists an odd prime  $r \in \pi(G)$  such that G has no Hall  $\{2, r\}$ -subgroup.

**Proof**. See [[8], Lemma 2.6].

### 3. Results

First, we prove the following lemma:

**Lemma 3.1.** Let  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a nonempty subset of G. Suppose that P is a normal p-subgroup of G. If the maximal subgroups of P are C- $\mathfrak{Z}$ -permutable subgroups of G, then  $P \leq Z_{\mathfrak{U}}(G)$ .

**Proof.** Assume that the result is false and let G be a counterexample of minimal order. If  $\Phi(P) \neq 1$ , then the maximal subgroups of  $P/\Phi(P)$  are  $C\Phi(P)/\Phi(P)$ - $\Im\Phi(P)/\Phi(P)$ permutable subgroups of  $G/\Phi(P)$  by Lemma 2.1(d). Then, by the minimal choice of G,  $P/\Phi(P) \leq Z_{\mathfrak{U}}(G/\Phi(P))$ . Hence, by [[11], Theorem 7.19, p. 39],  $P \leq Z_{\mathfrak{U}}(G)$ , a contradiction. Thus, we may assume that,  $\Phi(P) = 1$  and so P is elementary abelian p-group. Let N be a minimal normal subgroup of G contained in P. Since  $N \cap \Phi(P) = 1$  as  $\Phi(P) = 1$ , it follows, by [[2], Theorem 9.2(f), p. 30], that N is complemented in P. The hypothesis and Lemma 2.4 imply that the order of N is p. If N = P, then  $P \leq Z_{\mathfrak{U}}(G)$  by the definition of  $Z_{\mathfrak{U}}(G)$ , a contradiction. So, we may assume that  $N \neq P$ . It is easy to see that  $\Phi(P/N) = 1$ . Let M/N be a maximal subgroup of P/N. Then M is a maximal subgroup of P as |P:M| = |P/N:M/N| = p. By hypothesis and Lemma 2.1(b), M/N is CN/N- $\Im N/N$ -permutable subgroup of G/N. So, the maximal subgroups of P/N are CN/N- $\Im N/N$ -permutable subgroups of G/N. Therefore,  $P/N \leq Z_{\mathfrak{U}}(G/N)$  by the minimal choice of G. But  $Z_{\mathfrak{U}}(G/N) = Z_{\mathfrak{U}}(G)/N$  by [[11], Lemma 7.1(ii), p. 30], then  $P \leq Z_{\mathfrak{U}}(G)$ , a contradiction completing the proof of the lemma.

Now we can prove:

**Theorem 3.2.** Let  $\mathfrak{F}$  be a saturated formation containing the class of supersolvable groups  $\mathfrak{U}$ ,  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a solvable normal subgroup of G. Then the following two statements are equivalent:

- (a)  $G \in \mathfrak{F}$ .
- (b) There is a normal subgroup H in G such that  $G/H \in \mathfrak{F}$ ,  $F^*(H) = F(H)$  and the maximal subgroups of the Sylow subgroups of F(H) are C- $\mathfrak{Z}$ -permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ .

**Proof**. We need only to prove  $(b) \Rightarrow (a)$ .

Let P be any Sylow p-subgroup of F(H). Clearly, P is normal in G. The hypothesis and Lemma 3.1 imply that  $P \leq Z_{\mathfrak{U}}(G)$ . Since this is true for any Sylow p-subgroup of F(G), we have that  $F(H) \leq Z_{\mathfrak{U}}(G)$ . Note that  $[G^{\mathfrak{U}}, F(H)] \leq [G^{\mathfrak{U}}, Z_{\mathfrak{U}}(G)] = 1$  by [[2], Theorem 6.10, p. 390] and hence  $G^{\mathfrak{U}} \leq C_G(F(H))$ . Therefore,  $G/C_G(F(H))$  is an epimorphic image of  $G/G^{\mathfrak{U}} \in \mathfrak{U} \subseteq \mathfrak{F}$  and so  $G/C_G(F(H)) \in \mathfrak{U} \subseteq \mathfrak{F}$ . Consequently,  $G/C_H(F(H)) = G/(C_G(F(H)) \cap H) \in \mathfrak{F}$  as  $G/C_G(F(H)) \in \mathfrak{F}$  and  $G/H \in \mathfrak{F}$ . But  $C_H(F(H)) \leq F(H)$  holds by Lemma 2.3(c) and the fact that  $F^*(H) = F(H)$ , then G/F(H) is an epimorphic image of  $G/C_H(F(H))$ , thus  $G/F(H) \in \mathfrak{F}$ . Applying Lemma 2.7 yields  $G \in \mathfrak{F}$ . This comletes the proof of the theorem.

The following lemma is a criterion for the solvability of finite groups:

**Lemma 3.3.** Let G be a group. Then the following two statements are equivalent:

- (a) G is solvable.
- (b) G has a complete set  $\mathfrak{Z}$  of Sylow subgroups such that  $G_p \in \mathfrak{Z}$  is  $\mathfrak{Z}$ -permutable subgroup of G, where p is the smallest prime dividing the order of G.

**Proof.** (a)  $\Rightarrow$  (b). Since G is solvable, then G has a Sylow basis S by [9, Theorem 9.3.11, p. 229]. Let p be the smallest prime dividing the order of G and let  $G_p$  be the Sylow p-subgroup of G in S. By the definition of the Sylow basis S, we have that  $G_pG_q$  is a subgroup of G, for all  $G_q \in S$ , where q is a prime. Thus we can take  $\mathfrak{Z} = S$  and we have  $G_p$  is  $\mathfrak{Z}$ -permutable subgroup of G.

(b)  $\Rightarrow$  (a). Assume that the result is false and let G be a counterexample of minimal order. By Feit-Thompson Theorem [3], we may assume that p = 2. Since  $G_2 \in \mathfrak{Z}$  is  $\mathfrak{Z}$ -permutable subgroup of G, it follows that  $G_2G_q$  is a subgroup of G, for every odd prime q dividing the order of G, where  $G_q \in \mathfrak{Z}$ . Therefore, G is not simple by Lemma 2.8. Let N be a nontrivial proper normal subgroup of G. Clearly,  $G_2 \cap N$  and  $G_2N/N$  are Sylow 2-subgroups of N and G/N, respectively. By Lemma 2.1(e),  $G_2 \cap N$  is  $\mathfrak{Z}$ -permutable subgroup of G. Therefore,  $G_2 \cap N$  is  $\mathfrak{Z} \cap N$ -permutable subgroup of N by Lemma 2.1(c). Also,  $G_2N/N$  is  $\mathfrak{Z}N/N$ -permutable subgroup of G/N by Lemma 2.1(b). If 2 divides the order of N, then N is solvable by the minimal choice of G and if 2 does not divide the order of N, then N is solvable by Feit-Thompson Theorem [3]. The same argument holds for G/N, thus G/N is solvable. Since N and G/N are solvable, we have that G is solvable, a contradiction completing the proof of the lemma.

**Proof of Theorem 1.2.** We need only to prove (b)  $\Rightarrow$  (a) as (a)  $\Rightarrow$  (b) is true with H = 1.

Let E(G) be the layer subgroup of G. Since C is a solvable normal subgroup of G, it follows, by Lemma 2.5(c), that [E(G), C] = 1 and so  $C \leq C_G(E(G))$ . By Lemma 2.3(a), we have that  $F^*(H) = F(H)E(H)$ . Moreover, E(H) is a perfect quasinilpotent characteristic subgroup of H by Lemma 2.5(a). Now E(H) char H and H is normal in G, then E(H) is normal in G. Note that  $E(H) \leq E(G)$  by Lemma 2.5(b), and hence  $C \leq C_G(E(H))$ . Now we will show that E(H) is solvable. By Feit-Thompson Theorem [3], we may assume that 2 divides the order of E(H). Clearly,  $\mathfrak{Z} \cap E(H)$  is a complete set of Sylow subgroups of E(H) by Lemma 2.1(a). Let U be a maximal subgroup of  $G_2 \cap F^*(H)$ , where  $G_2 \in \mathfrak{Z}$ . The hypothesis and Lemma 2.1(e) imply that  $U \cap E(H)$  is C- $\mathfrak{Z}$ -permutable subgroup of G. So, there exists some  $x \in C$  such that  $(U \cap E(H))^x G_q$  is a subgroup of G, for all  $G_q \in \mathfrak{Z}$ . But  $(U \cap E(H))^x = U \cap E(H)$  as  $x \in C \leq C_G(E(H)) \leq C_G(U \cap E(H))$ , then  $(U \cap E(H))G_q$  is a subgroup of G, for all  $G_q \in \mathfrak{Z}$ . Therefore,  $U \cap E(H)$  is  $\mathfrak{Z}$ -permutable subgroup of G. By Lemma 2.1(c),  $U \cap E(H)$  is  $\mathfrak{Z} \cap E(H)$ -permutable subgroup of E(H). Suppose that  $G_2 \cap E(H) = G_2 \cap F^*(H)$ . By the hypothesis and the previous arguments, the maximal subgroups of  $G_2 \cap E(H)$  are  $\mathfrak{Z} \cap E(H)$ -permutable subgroups of E(H). Consequently, E(H) is 2-nilpotent by Lemma 2.6, where C = 1 in this case. So,  $E(H) = (G_2 \cap E(H))K$ , where K is a normal Hall 2'-subgroup of E(H). Because K is solvable by Feit-Thompson Theorem [3] and  $G/K \cong G_2 \cap E(H)$  is solvable, it follows that E(H) is solvable. Thus, we may assume that  $G_2 \cap E(H)$  is a proper subgroup of  $G_2 \cap F^*(H)$ . Then we can choose U to be a maximal subgroup of  $G_2 \cap F^*(H)$  such that  $G_2 \cap E(H) \leq U$ . Therefore,  $G_2 \cap E(H) = U \cap E(H)$  as  $G_2 \cap E(H)$  is a Sylow 2-subgroup of E(H). Now we have that  $G_2 \cap E(H) = U \cap E(H)$ , as we proved in the beginning, is  $\mathfrak{Z} \cap E(H)$ -permutable subgroup of E(H). This implies that E(H) is solvable by Lemma 3.3. So, in either case, E(H) is solvable. But E(H) is perfect, then E(H) = 1 and therefore  $F^*(H) = F(H)$ . Applying Theorem 3.2 yields  $G \in \mathfrak{F}$ . This completes the proof of the theorem.

The next theorem is an improvement of Theorem 3.12 in [4]:

**Theorem 3.4.** Let  $\mathfrak{F}$  be a saturated formation containing the class of supersolvable groups  $\mathfrak{U}$ ,  $\mathfrak{Z}$  be a complete set of Sylow subgroups of a group G and C be a solvable normal subgroup of G. Then the following two statements are equivalent:

- (a)  $G \in \mathfrak{F}$ .
- (b) There is a normal subgroup H in G such that  $G/H \in \mathfrak{F}$  and the maximal subgroups of  $G_p \cap F_n^*(H)$  are C-3-permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ , for some positive integer n.

**Proof**. We need only to prove (b)  $\Rightarrow$  (a) as (a)  $\Rightarrow$  (b) is true with H = 1.

If n = 1, then  $G \in \mathfrak{F}$  by Theorem 1.2. So, we may assume that n > 1. Let  $K = F_{n-1}^*(H)$ . It is clear that  $(G/K)/(H/K) \cong G/H \in \mathfrak{F}$ . By Lemma 2.2, the maximal subgroups of  $(\mathfrak{Z}K/K) \cap (F_n^*(H)/K) = (\mathfrak{Z}K/K) \cap F^*(H/K)$  are  $CK/K-\mathfrak{Z}K/K$ -permutable subgroups of G/K. Hence,  $G/K \in \mathfrak{F}$  by Theorem 1.2. Thus  $G/F_n^*(H) \cong (G/K)/(F_n^*(H)/K) \in \mathfrak{F}$  and the maximal subgroups of  $G_p \cap F_n^*(H)$  are C-3-permutable subgroups of G, for all  $G_p \in \mathfrak{Z}$ . Applying Lemma 2.7 yields  $G \in \mathfrak{F}$ . This completes the proof of the theorem.

#### Acknowledgements

This paper was financially supported by The Deanship of Scientific Research, Northern Border University, under the project no. 434-071. The authors would like to thank The Deanship of Scientific Research for their financial support. The authors also thank Prof. M. Asaad for his helpful comments.

#### References

- M. ASAAD AND A. A. HELIEL. On permutable subgroups of finite groups, Arch. Math. (Basel), 80 (2003), 113–118.
- [2] K. DOERK AND T. HAWKES. Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.
- [3] W. FEIT AND J. G. THOMPSON. Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775–1029.
- [4] A. A. HELIEL AND T. M. AL-GAFRI. On conjugate-3-permutable subgroups of finite groups, J. Algebra Appl., 12 (9) (2013),
- [5] B. HUPPERT. Endliche Gruppen I, Springer-Verlag, Berlin, 1979.
- [6] B. HUPPERT AND N. BLACKBURN. Finite Groups III, Berlin, Heidelberg, New York, 1982.
- [7] O. H. KEGEL. Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.
- [8] Y. LI AND X. LI. 3-permutable subgroups and p-nilpotency of finite groups, J. Pure Appl. Algebra, 202 (2005), 72–81.
- [9] W. R. SCOTT. Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
- [10] H. WEI, Y. WANG AND Y. LI. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II, Comm. Algebra, 31(10) (2003), 4807–4816.
- [11] M. WEINSTEIN (EDITOR), Between Nilpotent and Solvable, Passaic: Polygonal Publishing House, 1982.