EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 1, 2018, 215-237 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On the Irreducibility of Perron Representations of Degrees 4 and 5

Malak M. Dally¹, Mohammad N. Abdulrahim^{1,*}

¹ Department of Mathematics, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon

Abstract. We consider the graph $E_{n+1,1}$ with (n+1) generators $\sigma_1, ..., \sigma_n$, and δ , where σ_i has an edge with σ_{i+1} for $i=1,\ldots,n+1$, and σ_1 has an edge with δ . We then define the Artin group of the graph $E_{n+1,1}$ for n=3 and n=4 and consider its reduced Perron's representation of degrees four and five respectively. After we specialize the indeterminates used in defining the representation to non-zero complex numbers, we obtain necessary and sufficient conditions that guarantee the irreducibility of the representations for n=3 and 4.

2010 Mathematics Subject Classifications: 20F36

Key Words and Phrases: Artin representation, braid group, Burau representation, graph, irreducibility

1. Introduction

Let Γ be an undirected simple graph. The Artin group A is defined as an abstract group whose generators are the vertices of Γ that satisfy the two relations: xy = yx for vertices x and y that have no edge in common and xyx = yxy if the vertices x and y have a common edge.

Having defined A, we consider the graph A_n having n vertices σ_i 's $(1 \le i \le n)$ in which σ_i and σ_{i+1} share a comon edge, where i = 1, 2, ..., n-1. Indeed, the Artin group of A_n , denoted by $A(A_n)$, is the braid group on n+1 strands, B_{n+1} . That is, $A(A_n) = B_{n+1}$.

From the graph A_n , we obtain the graph $E_{n+1,p}$ by adding a vertex δ and an edge connecting σ_p and δ . Here $1 \leq p \leq n$. Clearly, the graph A_n embeds in the graph $E_{n+1,p}$. Consequently, $A(A_n) \subset A(E_{n+1,p})$. As a result, a representation of $A(E_{n+1,p})$ yields a representation of B_{n+1} .

Perron's strategy is to begin with the reduced Burau representation of B_{n+1} of degree n and extend it to a representation of B_{n+1} of degree 2n. The representation obtained is referred to as Burau bis representation. Next, Perron constructs for each $\lambda = (\lambda_1, \dots, \lambda_n)$

Email addresses: malakdally@hotmail.com (M. Dally), mna@bau.edu.lb (M. Abdulrahim)

^{*}Corresponding author.

a representation $\psi_{\lambda}: A(E_{n+1,p}) \to GL_{2n}(Q(t,d_1,\ldots,d_n))$, where t,d_1,\ldots,d_n $\lambda_1,\ldots,\lambda_n$ are indeterminates.

In [3], we determined necessary and sufficient condition that guarantees the irreducibility of the representation ψ_{λ} for n=2. In our work, we extend our work to n=3 and n=4. We reduce the complex specialization of the representation ψ_{λ} to representations of $A(E_{4,1})$ and $A(E_{5,1})$ of degrees 4 and 5 respectively. In each case, a necessary and sufficient condition which guarantees the irreducibility of the considered representation is obtained. The obtained conditions are similar to the condition obtained in the case n=2, which was studied in [3].

2. Burau bis Representation

The Burau Bis representation is a representation of B_{n+1} of degree 2n. It is defined as follows:

$$\psi: B_{n+1} \to Gl_{2n}(\mathbb{Z}[t, t^{-1}])$$

$$\psi(\sigma_i) = \begin{pmatrix} I_n & 0 \\ R_i & J_i \end{pmatrix}, \quad 1 \le i \le n$$

Here, R_i denotes an $n \times n$ block of zeros with a t placed in the (i, i) th position and I_n denotes the $n \times n$ identity matrix.

This representation was constructed by Perron by extending the reduced Burau representation of degree n to a representation of B_{n+1} of degree 2n.

The reduced Barau representation $B_{n+1} \to GL_n(\mathbb{Z}[t,t^{-1}])$ is defined as follows:

$$\sigma_i \to J_i = \begin{pmatrix} I_{i-2} & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline 0 & t & -t & 1 & 0 \\ \hline 0 & 0 & 1 & \\ \hline 0 & 0 & I_{n-i-1} \end{pmatrix},$$

where I_k stands for the $k \times k$ identity matrix. Here, i = 2, ..., n-1.

$$\sigma_1
ightarrow J_1 = \left(egin{array}{c|ccc} -t & 1 & 0 \ \hline 0 & 1 & 0 \ \hline 0 & I_{n-2} \end{array}
ight)$$

$$\sigma_n \to J_n = \left(\begin{array}{c|cc} I_{n-2} & 0 \\ \hline 0 & 1 & 0 \\ \hline t & -t \end{array}\right)$$

For more details, see [2] and [5].

3. Perron Representation

The Burau bis representation extends to $A(E_{n+1,p})$ for all possible values of n and p in the following way.

We define the following $n \times n$ matrices:

$$A = (\lambda_1 b, \lambda_2 b, \dots, \lambda_n b)$$

$$B = (0, \dots, 0, b, 0, \dots, 0)$$

$$C = (\lambda_1 d, \lambda_2 d, \dots, \lambda_n d)$$

$$D = (0, \dots, 0, d, 0, \dots, 0),$$

where 0 denotes a column of n zeros, $b=\begin{pmatrix}b_1\\ \vdots\\ b_n\end{pmatrix}$, $d=\begin{pmatrix}d_1\\ \vdots\\ d_n\end{pmatrix}$, and $\lambda=(\lambda_1,\dots,\lambda_n).$

For each i = 1, ..., n, we have that b_i satisfies the following conditions

$$tb_{i} = -td_{i-1} + (1+t)d_{i} - d_{i+1}, \quad i \neq p,$$

$$tb_{p} = -td_{p-1} + (1+t)d_{p} - d_{p+1} + t,$$

$$\sum_{i=1}^{n} \lambda_{i}b_{i} = -(1+d_{p} + t),$$

setting any undefined d_j equal zero.

For any choice $\lambda = (\lambda_1, \dots, \lambda_n)$, we get a linear representation

$$\psi_{\lambda}: A(E_{n+1,p}) \to Gl_{2n}(R),$$

where R is the field of rational fractions in n+1 indeterminates $\mathbb{Q}(t, d_1, ..., d_n)$.

$$\psi_{\lambda}(\sigma_i) \to \begin{pmatrix} I_n & 0 \\ R_i & J_i \end{pmatrix},$$

$$\psi_{\lambda}(\delta) \to \begin{pmatrix} I_n + A & B \\ C & I_n + D \end{pmatrix}.$$

For more details, see [2].

4. Reducibility of $\psi_{\lambda}: A(E_{4,1}) \to GL_6(\mathbb{C})$

Having defined Perron's representation, we set n=3 and p=1 to get the following vectors. $b=\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}$, $d=\begin{pmatrix}d_1\\d_2\\d_3\end{pmatrix}$, and $\lambda=(\lambda_1,\lambda_2,\lambda_3)$.

After we specialize the indeterminate d_3 to $\frac{-t(1+t+t^2)}{1+t}$, we get the following 3×3 matrices:

$$A = \begin{pmatrix} \lambda_1 b_1 & \lambda_2 b_1 & \lambda_3 b_1 \\ \lambda_1 b_2 & \lambda_2 b_2 & \lambda_3 b_2 \\ \lambda_1 b_3 & \lambda_2 b_3 & \lambda_3 b_3 \end{pmatrix},$$

$$B = \begin{pmatrix} b_1 & 0 & 0 \\ b_2 & 0 & 0 \\ b_3 & 0 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} \lambda_1 d_1 & \lambda_2 d_1 & \lambda_3 d_1 \\ \lambda_1 d_2 & \lambda_2 d_2 & \lambda_3 d_2 \\ \frac{-t(1+t+t^2)}{1+t} \lambda_1 & \frac{-t(1+t+t^2)}{1+t} \lambda_2 & \frac{-t(1+t+t^2)}{1+t} \lambda_3 \end{pmatrix},$$

and

$$D = \begin{pmatrix} d_1 & 0 & 0 \\ d_2 & 0 & 0 \\ \frac{-t(1+t+t^2)}{1+t} & 0 & 0 \end{pmatrix}.$$

Simple computations show that the parameters satisfy the following equations:

•
$$tb_2 = -td_1 + (1+t)d_2 + \frac{t(1+t+t^2)}{1+t}$$

•
$$tb_3 = -td_2 - t(1+t+t^2)$$

•
$$tb_1 = (1+t)d_1 - d_2 + t$$

•
$$\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 = -(1 + t + d_1)$$

Having defined the 3×3 matrices A, B, C and D, we obtain the multiparameter representation $A(E_{4,1})$. This representation is of degree 6. We specialize the parameters $\lambda_1, \lambda_2, \lambda_3, b_1, b_2, b_3, d_1, d_2, t$ to values in $\mathbb{C} - \{0\}$. We further assume that $t \neq -1$. The representation $\psi_{\lambda} : A(E_{4,1}) \to GL_6(\mathbb{C})$ is defined as follows:

$$\psi_{\lambda}(\sigma_{1}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ t & 0 & 0 & -t & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & t & 0 & t & -t & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_3) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & t & 0 & t & -t \end{pmatrix},$$

and

$$\psi_{\lambda}(\delta) = \begin{pmatrix} 1 + \lambda_1 b_1 & \lambda_2 b_1 & \lambda_3 b_1 & b_1 & 0 & 0 \\ \lambda_1 b_2 & 1 + \lambda_2 b_2 & \lambda_3 b_2 & b_2 & 0 & 0 \\ \lambda_1 b_3 & \lambda_2 b_3 & 1 + \lambda_3 b_3 & b_3 & 0 & 0 \\ \lambda_1 d_1 & \lambda_2 d_1 & \lambda_3 d_1 & 1 + d_1 & 0 & 0 \\ \lambda_1 d_2 & \lambda_2 d_2 & \lambda_3 d_2 & d_2 & 1 & 0 \\ \frac{-t(1+t+t^2)}{1+t} \lambda_1 & \frac{-t(1+t+t^2)}{1+t} \lambda_2 & \frac{-t(1+t+t^2)}{1+t} \lambda_3 & \frac{-t(1+t+t^2)}{1+t} & 0 & 1 \end{pmatrix}.$$

The graph $E_{4,1}$ has 4 vertices $\sigma_1, \sigma_2, \sigma_3$ and δ . Since p = 1, it follows that the vertex δ has a common edge with $\sigma_p = \sigma_1$. Therefore, the following relations are satisfied.

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \qquad (4.1)$$

$$\sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3 \qquad (4.2)$$

$$\sigma_1 \sigma_3 = \sigma_3 \sigma_1 \tag{4.3}$$

$$\sigma_2 \delta = \delta \sigma_2 \tag{4.4}$$

$$\sigma_3 \delta = \delta \sigma_3 \tag{4.5}$$

$$\sigma_1 \delta \sigma_1 = \delta \sigma_1 \delta \tag{4.6}$$

We note that relations (4.1),(4.2), and (4.3) are actually Artin's braid relation of the classical braid group, B_4 having σ_1 , σ_2 , and σ_3 as standard generators. This assures that a representation of $A(E_{4,1})$ yields a representation of B_4 . For more details, see [1] and [4].

Lemma 1. The representation $\psi_{\lambda}: A(E_{4,1}) \to GL_6(\mathbb{C})$ is reducible.

Proof. For simplicity, we write σ_i instead of $\psi_{\lambda}(\sigma_i)$. The subspace $S = \left\langle e_1 + \frac{b_2}{b_1} e_2 + \frac{b_3}{b_1} e_3, \ e_4, \ e_5, \ e_6 \right\rangle$ is an invariant subspace of dimension 4. To see this:

(i)
$$\sigma_1(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) = e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + te_4 \in S$$

(ii)
$$\sigma_2(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) = e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + t\frac{b_2}{b_1}e_5 \in S$$

(iii)
$$\sigma_3(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) = e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + t\frac{b_3}{b_1}e_6 \in S$$

(iv)
$$\delta(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) = (1 + \lambda_1b_1 + \lambda_2b_2 + \lambda_3b_3)(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) + \frac{d_1}{b_1}(\lambda_1b_1 + \lambda_2b_2 + \lambda_3b_3)e_5 + \frac{-(1+t+t^2)}{b_1(1+t)}(\lambda_1b_1 + \lambda_2b_2 + \lambda_3b_3)e_6 \in S$$

(v)
$$\sigma_1 e_4 = -t e_4 \in S$$

(vi)
$$\sigma_2 e_4 = e_4 + t e_5 \in S$$

(vii)
$$\sigma_3 e_4 = e_4 \in S$$

(viii)
$$\delta e_4 = b_1(e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3) + (1+d_1)e_4 + d_2e_5 \frac{-t(1+t+t^2)}{1+t}e_6 \in S$$

(ix)
$$\sigma_1 e_5 = e_4 + e_5 \in S$$

(x)
$$\sigma_2 e_5 = -t e_5 \in S$$

(xi)
$$\sigma_3 e_5 = e_5 + t e_6 \in S$$

(xii)
$$\delta e_5 = e_5 \in S$$

(xiii)
$$\sigma_1 e_6 = e_6 \in S$$

(xiv)
$$\sigma_2 e_6 = e_5 + e_6 \in S$$

(xv)
$$\sigma_3 e_6 = -t e_6 \in S$$

(xvi)
$$\delta e_6 = e_6 \in S$$

5. On the Irreducibility of $\psi_{\lambda}':A(E_{4,1})\to GL_4(\mathbb{C})$

We consider the representation $\psi_{\lambda}: A(E_{4,1}) \to GL_6(\mathbb{C})$ restricted to the basis $e_1, e_2, e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3, e_4, e_5$, and e_6 . The matrix of σ_1 becomes

$$\psi_{\lambda}(\sigma_{1}) = \begin{pmatrix} 1 & 0 & 0 & t & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & 0 & 0 \\ 0 & 0 & 0 & -t & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

We reduce our representation to a 4-dimensional one by considering the sub-basis $e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3$, e_4 , e_5 , and e_6 to get $\psi_{\lambda}': A(E_{4,1}) \to GL_4(\mathbb{C})$. The representation is defined as follows:

$$\psi_{\lambda}'(\sigma_1) = \begin{pmatrix} 1 & t & 0 & 0 \\ 0 & -t & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}'(\sigma_2) = \begin{pmatrix} 1 & 0 & \frac{tb_2}{b_1} & 0\\ 0 & 1 & t & 0\\ 0 & 0 & -t & 0\\ 0 & 0 & 1 & 1 \end{pmatrix},$$

$$\psi_{\lambda}'(\sigma_3) = \begin{pmatrix} 1 & 0 & 0 & \frac{tb_3}{b_1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & -t \end{pmatrix},$$

and

$$\psi'_{\lambda}(\delta) =$$

$$\begin{pmatrix} 1 + \sum_{i=1}^{3} \lambda_{i} b_{i} & \frac{d_{1}}{b_{1}} (\sum_{i=1}^{3} \lambda_{i} b_{i}) & \frac{d_{2}}{b_{1}} (\sum_{i=1}^{3} \lambda_{i} b_{i}) & \frac{-t(1+t+t^{2})}{b_{1}(1+t)} (\sum_{i=1}^{3} \lambda_{i} b_{i}) \\ b_{1} & 1 + d_{1} & d_{2} & -t(1+t+t^{2}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We then diagonalize the matrix corresponding to $\psi'_{\lambda}(\sigma_1)$ by an invertible matrix, say T, and conjugate the matrices of $\psi'_{\lambda}(\sigma_2)$, $\psi'_{\lambda}(\sigma_3)$, and $\psi'_{\lambda}(\delta)$ by the same matrix T. The invertible matrix T is given by

$$T = \begin{pmatrix} 0 & 0 & 1 & t \\ 0 & 0 & 0 & -1 - t \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

In fact, a computation shows that

$$T^{-1}\psi_{\lambda}'(\sigma_1)T = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & -t \end{pmatrix}.$$

After conjugation, we get

$$T^{-1}\psi_{\lambda}'(\sigma_2)T = \begin{pmatrix} 1 & 1 & 0 & 1\\ 0 & \frac{-t^2}{1+t} & 0 & \frac{-(1+t+t^2)}{1+t} \\ 0 & \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} & 1 & \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} \\ 0 & \frac{-t}{1+t} & 0 & \frac{1}{1+t} \end{pmatrix},$$

$$T^{-1}\psi_{\lambda}'(\sigma_3)T = \begin{pmatrix} -t & 0 & 0 & 0\\ t & 1 & 0 & 0\\ \frac{tb_3}{b_1} & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and

$$T^{-1}\psi'_{\lambda}(\delta)T =$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{-t(1+t+t^2)}{(1+t)^2} & 1 + \frac{d_2}{1+t} & \frac{b_1}{1+t} & \frac{t}{1+t} \\ \frac{-t(1+t+t^2)}{b_1(1+t)}k & \frac{d_2}{b_1}k & 1+k & \frac{(-d_1(1+t)+d_2+b_1t)((\sum_{i=1}^3 \lambda_i b_i)(1+t)+b_1t)}{b_1(1+t)} \\ \frac{t(1+t+t^2)}{1+t} & \frac{-d_2}{1+t} & \frac{-b_1}{1+t} & \frac{1}{1+t} \end{pmatrix}.$$

where $k = \frac{b_1 t}{1+t} + \sum_{i=1}^{3} \lambda_i b_i$

The entries of the matrices $T^{-1}\psi_{\lambda}'(\sigma_2)T$ and $T^{-1}\psi_{\lambda}'(\delta)T$ are well-defined since we assume in our work that $t \neq -1$. For simplicity, we denote $T^{-1}\psi_{\lambda}'(\sigma_1)T$ by $\psi_{\lambda}'(\sigma_1)$, $T^{-1}\psi_{\lambda}'(\sigma_2)T$ by $\psi_{\lambda}'(\sigma_2)$, $T^{-1}\psi_{\lambda}'(\sigma_3)T$ by $\psi_{\lambda}'(\sigma_3)$, and $T^{-1}\psi_{\lambda}'(\delta)T$ by $\psi_{\lambda}'(\delta)$.

We now prove some lemmas and propositions to determine a sufficient and necessary condition for irreducibility of $\psi'_{\lambda}: A(E_{4,1}) \to GL_4(\mathbb{C})$.

Lemma 2. The proper subspace $S = \left\langle e_1, e_4, e_2 + \frac{b_3}{b_1} e_3 \right\rangle$ is not invariant if and only if $t^4 + t^3 + t^2 + t + 1 \neq 0$.

Proof. First, we prove that proper subspace $S = \left\langle e_1, e_4, e_2 + \frac{b_3}{b_1} e_3 \right\rangle$ is not invariant if $t^4 + t^3 + t^2 + t + 1 \neq 0$.

Assume, for contradiction, that S is invariant.

We have
$$\psi'_{\lambda}(\sigma_2)(e_4) = \begin{pmatrix} 1 \\ \frac{-(1+t+t^2)}{1+t} \\ \frac{t(b_2+b_2t+b_1t)}{b_1(1+t)} \\ \frac{1}{1+t} \end{pmatrix} \in S.$$

This implies that $(1 + t + t^2)b_3 = -t(b_2 + tb_2 + tb_1)$.

By using the equations: $tb_2 = -td_1 + (1+t)d_2 + \frac{t(1+t+t^2)}{1+t}$, $tb_3 = -td_2 - t(1+t+t^2)$, and $tb_1 = (1+t)d_1 - d_2 + t$, simple computations give $t^4 + t^3 + t^2 + t + 1 = 0$, a contradiction.

On the other hand, we assume that $t^4 + t^3 + t^2 + t + 1 = 0$. We prove that the proper subspace $S = \left\langle e_1, e_4, e_2 + \frac{b_3}{b_1} e_3 \right\rangle$ is invariant as follows:

(i)
$$\psi'_{\lambda}\sigma_1(e_1) = e_1 \in S$$
.

(ii)
$$\psi'_{\lambda}\sigma_2(e_1) = e_1 \in S$$
.

(iii)
$$\psi'_{\lambda}\sigma_3(e_1) = \begin{pmatrix} -t \\ t \\ \frac{tb_3}{b_1} \\ 0 \end{pmatrix} \in S.$$

$$(iv) \ \psi_{\lambda}' \delta(e_1) = \begin{pmatrix} \frac{-t(1+t+t^2)}{\frac{-t(1+t+t^2)}{(1+t)^2}} \\ \frac{-t^2(1+t+t^2)}{(1+t)^2} + \frac{-t(1+t+t^2)}{b_1(1+t)} (\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3) \\ \frac{-t(1+t+t^2)}{(1+t)^2} \end{pmatrix} = ae_1 + be_4 + c(e_2 + \frac{b_3}{b_1} e_3).$$

Here, we have
$$a=1,\,b=\frac{-d_3}{1+t},\,c=\frac{d_3}{1+t},$$
 and
$$\frac{cb_3}{b_1}=\frac{-t^2(1+t+t^2)}{(1+t)^2}+\frac{-t(1+t+t^2)}{b_1(1+t)}(\lambda_1b_1+\lambda_2b_2+\lambda_3b_3).$$

Thus,
$$\frac{b_3}{b_1} = \frac{b_1 t + (1+t)(\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3)}{b_1}$$
. (5.1)

(v)
$$\psi'_1 \sigma_1(e_4) = -te_4 \in S$$
.

(vi)
$$\psi_{\lambda}' \sigma_{2}(e_{4}) = \begin{pmatrix} 1 \\ \frac{-(1+t+t^{2})}{1+t} \\ \frac{t(b_{2}+b_{2}t+b_{1}t)}{b_{1}(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_{1} + be_{4} + c(e_{2} + \frac{b_{3}}{b_{1}}e_{3}).$$

Here, we have $a=1,\,b=\frac{1}{1+t},\,c=\frac{-(1+t+t^2)}{1+t},$ and $\frac{cb_3}{b_1}=\frac{t(b_2+b_2t+b_1t)}{b_1(1+t)}$.

Thus,
$$-(1+t+t^2)\frac{b_3}{b_1} = \frac{t(b_2+b_2t+b_1t)}{b_1}$$
. (5.2)

(vii)
$$\psi_{\lambda}' \sigma_3(e_4) = e_4 \in S$$
.

$$(\text{viii}) \ \psi_{\lambda}' \delta(e_4) = \begin{pmatrix} 0 \\ \frac{t}{1+t} \\ \frac{(-d_1(1+t)+d_2+b_1t)((\lambda_1b_1+\lambda_2b_2+\lambda_3b_3)(1+t)+b_1t)}{b_1(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_1 + be_4 + c(e_2 + \frac{b_3}{b_1}e_3).$$

Here, we have
$$a=0,\,b=\frac{1}{1+t},\,c=\frac{t}{1+t},\,$$
 and
$$\frac{cb_3}{b_1}=\frac{(-d_1(1+t)+d_2+b_1t)((\lambda_1b_1+\lambda_2b_2+\lambda_3b_3)(1+t)+b_1t)}{b_1(1+t)}.$$
 Thus,
$$\frac{b_3}{b_1}=\frac{(-d_1(1+t)+d_2+b_1t)((\lambda_1b_1+\lambda_2b_2+\lambda_3b_3)(1+t)+b_1t)}{b_1t}.$$

Thus,
$$\frac{b_3}{b_1} = \frac{(-d_1(1+t)+d_2+b_1t)((\lambda_1b_1+\lambda_2b_2+\lambda_3b_3)(1+t)+b_1t)}{b_1t}$$
. (5.3)

(ix)
$$\psi_{\lambda}' \sigma_1(e_2 + \frac{b_3}{b_1}e_3) = e_2 + \frac{b_3}{b_1}e_3 \in S$$
.

$$(x) \psi_{\lambda}' \sigma_{2}(e_{2} + \frac{b_{3}}{b_{1}}e_{3}) = \begin{pmatrix} 0 \\ \frac{-t^{2}}{1+t} \\ \frac{t(b_{2}+b_{2}t+b_{1}t)}{b_{1}(1+t)} + \frac{b_{3}}{b_{1}} \\ \frac{-t}{1+t} \end{pmatrix} = ae_{1} + be_{4} + c(e_{2} + \frac{b_{3}}{b_{1}}e_{3}).$$

Here, we have a = 1, $b = \frac{-t}{1+t}$, $c = \frac{-t^2}{1+t}$, and $\frac{cb_3}{b_1} = \frac{t(b_2 + b_2 t + b_1 t)}{b_1(1+t)} + \frac{b_3}{b_1}$.

Thus,
$$-(1+t+t^2)\frac{b_3}{b_1} = \frac{t(b_2+b_2t+b_1t)}{b_1}$$
. (5.4)

(xi)
$$\psi'_{\lambda}\sigma_3(e_2 + \frac{b_3}{b_1}e_3) = e_2 + \frac{b_3}{b_1}e_3 \in S.$$

(xii)
$$\psi_{\lambda}'\delta(e_2 + \frac{b_3}{b_1}e_3) =$$

$$\begin{pmatrix}
1 + \frac{d_2}{1+t} + \frac{b_3}{1+t} \\
\frac{d_2}{b_1} (\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \frac{b_1 t}{1+t}) + \frac{b_3}{b_1} (1 + \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \frac{b_1 t}{1+t}) \\
\frac{-d_2}{1+t} - \frac{b_3}{1+t}
\end{pmatrix}$$

$$= ae_1 + be_4 + c(e_2 + \frac{b_3}{b_1}e_3).$$

Here, we have $a=0, b=\frac{-d_2}{1+t}-\frac{b_3}{1+t}, c=1+\frac{d_2}{1+t}+\frac{b_3}{1+t},$ and $c\frac{b_3}{b_1}=\frac{d_2}{b_1}(\lambda_1b_1+\lambda_2b_2+\lambda_3b_3+\frac{b_1t}{1+t})+\frac{b_3}{b_1}(1+\lambda_1b_1+\lambda_2b_2+\lambda_3b_3+\frac{b_1t}{1+t}).$

Thus,
$$(1 + \frac{d_2}{1+t} + \frac{b_3}{1+t})\frac{b_3}{b_1} = \frac{d_2}{b_1}(\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \frac{b_1 t}{1+t}) + \frac{b_3}{b_1}(1 + \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \frac{b_1 t}{1+t}).$$
 (5.5)

By simple computations, we can verify that equations (5.1), (5.2), (5.3), and (5.5) are clearly satisfied without any assumption of the indeterminates whereas equation (5.4) is satisfied only if $t^4 + t^3 + t^2 + t + 1 = 0$.

Lemma 3. Any proper subspace S containing the vector $e_i + ue_j + ve_k$, where $i, j, k \in \{1, 2, 3, 4\}$, except possibly the subspace having the form $\langle e_1, e_4, e_2 + \frac{b_3}{b_1}e_3 \rangle$, is not invariant.

Proof. We consider all the subspaces containing the vector $e_i + ue_j + ve_k$, where $i, j, k \in \{1, 2, 3, 4\}$ except possibly the subspace of the form $\left\langle e_1, e_4, e_2 + \frac{b_3}{b_1}e_3 \right\rangle$. We then assume, for contradiction, that each considered subspace is invariant. In each case, simple computations give a contradiction.

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 1. Assume all the indeterminates used in defining Perron representation of degree 4 are non zero complex numbers. Let $d_3 = \frac{-t(1+t+t^2)}{1+t}$ and $t \neq -1$. The representation $\psi'_{\lambda}: A(E_{4,1}) \to GL_4(\mathbb{C})$ is irreducible if and only if $t^4 + t^3 + t^2 + t + 1 \neq 0$.

In the following sections, we set n=4 and p=1 and we study the irreducibility of the reduced representation of $\psi_{\lambda}: A(E_{5,1}) \to GL_8(\mathbb{C})$. Indeed, we obtain a sufficient and necessary condition that gauarantees the irreducibility of $\psi'_{\lambda}: A(E_{5,1}) \to GL_5(\mathbb{C})$.

6. Reducibility of
$$\psi_{\lambda}: A(E_{5,1}) \to GL_8(\mathbb{C})$$

Having defined Perron's representation, we set n = 4 and p = 1 to get the following

vectors.
$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$
, $d = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{pmatrix}$, and $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$.

After we specialize the indeterminates d_2 and d_3 to $-(1+t+t^2)$ and -t(1+t) respectively, we get the following 4×4 matrices:

$$A = \begin{pmatrix} \lambda_1 b_1 & \lambda_2 b_1 & \lambda_3 b_1 & \lambda_4 b_1 \\ \lambda_1 b_2 & \lambda_2 b_2 & \lambda_3 b_2 & \lambda_4 b_2 \\ \lambda_1 b_3 & \lambda_2 b_3 & \lambda_3 b_3 & \lambda_4 b_3 \\ \lambda_1 b_4 & \lambda_2 b_4 & \lambda_3 b_4 & \lambda_4 b_4 \end{pmatrix},$$

$$B = \begin{pmatrix} b_1 & 0 & 0 & 0 \\ b_2 & 0 & 0 & 0 \\ b_3 & 0 & 0 & 0 \\ b_4 & 0 & 0 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} \lambda_1 d_1 & \lambda_2 d_1 & \lambda_3 d_1 & \lambda_4 d_1 \\ -(1+t+t^2)\lambda_1 & -(1+t+t^2)\lambda_2 & -(1+t+t^2)\lambda_3 & -(1+t+t^2)\lambda_4 \\ -t(1+t)\lambda_1 & -t(1+t)\lambda_2 & -t(1+t)\lambda_3 & -t(1+t)\lambda_4 \\ \lambda_1 d_4 & \lambda_2 d_4 & \lambda_3 d_4 & \lambda_4 d_4 \end{pmatrix},$$

and

$$D = \begin{pmatrix} d_1 & 0 & 0 & 0 \\ -(1+t+t^2) & 0 & 0 & 0 \\ -t(1+t) & 0 & 0 & 0 \\ d_4 & 0 & 0 & 0 \end{pmatrix}.$$

Simple computations show that the parameters satisfy the following equations:

•
$$tb_2 = -td_1 - (1+t)(1+t+t^2) + t(1+t) = -td_1 - (1+t)(1+t^2)$$

•
$$tb_3 = t(1+t+t^2) - t(1+t)^2 - d_4 = -t(2t^2+3t+2) - d_4$$

•
$$tb_4 = t^2(1+t) + (1+t)d_4$$

•
$$tb_1 = (1+t)d_1 + 1 + 2t + t^2$$

•
$$\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 + \lambda_4 b_4 = -(1+t+d_1)$$

Having defined the 4×4 matrices A, B, C and D, we obtain the multiparameter representation $A(E_{5,1})$. This representation is of degree 8. We specialize the parameters $\lambda_1, \lambda_2, \lambda_3, \lambda_4, b_1, b_2, b_3, b_4, d_1, d_4, t$ to values in $\mathbb{C} - \{0\}$. We further assume that $t \neq -1$. The representation $\psi_{\lambda} : A(E_{5,1}) \to GL_8(\mathbb{C})$ is defined as follows:

$$\psi_{\lambda}(\sigma_{1}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ t & 0 & 0 & 0 & -t & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & t & 0 & 0 & t & -t & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_3) = egin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & t & 0 & 0 & t & -t & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}(\sigma_{4}) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & t & -t \end{pmatrix},$$

and

$$\psi_{\lambda}(\delta) =$$

$$\begin{pmatrix} 1 + \lambda_1 b_1 & \lambda_2 b_1 & \lambda_3 b_1 & \lambda_4 b_1 & b_1 & 0 & 0 & 0 \\ \lambda_1 b_2 & 1 + \lambda_2 b_2 & \lambda_3 b_2 & \lambda_4 b_2 & b_2 & 0 & 0 & 0 \\ \lambda_1 b_3 & \lambda_2 b_3 & 1 + \lambda_3 b_3 & \lambda_4 b_3 & b_3 & 0 & 0 & 0 \\ \lambda_1 b_4 & \lambda_2 b_4 & \lambda_3 b_4 & 1 + \lambda_4 b_4 & b_4 & 0 & 0 & 0 \\ \lambda_1 d_1 & \lambda_2 d_1 & \lambda_3 d_1 & \lambda_4 d_1 & 1 + d_1 & 0 & 0 & 0 \\ k\lambda_1 & k\lambda_2 & k\lambda_3 & k\lambda_4 & k & 1 & 0 & 0 \\ k\lambda_1 & k\lambda_2 & k\lambda_3 & k\lambda_4 & k & 1 & 0 & 0 \\ -t(1+t)\lambda_1 & -t(1+t)\lambda_2 & -t(1+t)\lambda_3 & -t(1+t)\lambda_4 & -t(1+t) & 0 & 1 & 0 \\ \lambda_1 d_4 & \lambda_2 d_4 & \lambda_3 d_4 & \lambda_4 d_4 & d_4 & 0 & 0 & 1 \end{pmatrix},$$

where $k = -(1 + t + t^2)$.

The graph $E_{5,1}$ has 5 vertices $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ and δ . Since p = 1, it follows that the vertex δ has a common edge with $\sigma_p = \sigma_1$. Therefore, the following relations are satisfied.

$$\sigma_{1}\sigma_{2}\sigma_{1} = \sigma_{2}\sigma_{1}\sigma_{2} \qquad (6.1)$$

$$\sigma_{2}\sigma_{3}\sigma_{2} = \sigma_{3}\sigma_{2}\sigma_{3} \qquad (6.2)$$

$$\sigma_{3}\sigma_{4}\sigma_{3} = \sigma_{4}\sigma_{3}\sigma_{4} \qquad (6.3)$$

$$\sigma_{1}\sigma_{3} = \sigma_{3}\sigma_{1} \qquad (6.4)$$

$$\sigma_{1}\sigma_{4} = \sigma_{4}\sigma_{1} \qquad (6.5)$$

$$\sigma_{2}\sigma_{4} = \sigma_{4}\sigma_{2} \qquad (6.6)$$

$$\sigma_{2}\delta = \delta\sigma_{2} \qquad (6.7)$$

$$\sigma_{3}\delta = \delta\sigma_{3} \qquad (6.8)$$

$$\sigma_{4}\delta = \delta\sigma_{4} \qquad (6.9)$$

$$\sigma_{1}\delta\sigma_{1} = \delta\sigma_{1}\delta \qquad (6.10)$$

We note that relations (6.1),(6.2),(6.3),(6.4),(6.5) and (6.6) are actually Artin's braid relation of the classical braid group, B_5 having σ_1 , σ_2 , σ_3 , and σ_4 as standard generators. This assures that a representation of $A(E_{5,1})$ yields a representation of B_5 . For more details, see [1] and [4].

Lemma 4. The representation $\psi_{\lambda}: A(E_{5,1}) \to GL_8(\mathbb{C})$ is reducible.

Proof. For simplicity, we write σ_i instead of $\psi_{\lambda}(\sigma_i)$. The subspace $S = \left\langle e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + \frac{b_4}{b_1}e_4, e_5, e_6, e_7, e_8 \right\rangle$ is an invariant subspace of dimension 5.

7. On the Irreducibility of $\psi'_{\lambda}: A(E_{5,1}) \to GL_5(\mathbb{C})$

We consider the representation $\psi_{\lambda}: A(E_{5,1}) \to GL_8(\mathbb{C})$ restricted to the basis $e_1, e_2, e_3, e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + \frac{b_4}{b_1}e_4, e_5, e_6, e_7,$ and e_8 to get the subrepresentation $\psi_{\lambda}': A(E_{5,1}) \to GL_5(\mathbb{C})$ which is the representation restricted to the sub-basis $e_1 + \frac{b_2}{b_1}e_2 + \frac{b_3}{b_1}e_3 + \frac{b_4}{b_1}e_4, e_5, e_6, e_7.$ This representation is defined as follows:

$$\psi_{\lambda}'(\sigma_1) = \begin{pmatrix} 1 & t & 0 & 0 & 0 \\ 0 & -t & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}'(\sigma_2) = \begin{pmatrix} 1 & 0 & \frac{tb_2}{b_1} & 0 & 0\\ 0 & 1 & t & 0 & 0\\ 0 & 0 & -t & 0 & 0\\ 0 & 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\psi_{\lambda}'(\sigma_3) = \begin{pmatrix} 1 & 0 & 0 & \frac{tb_3}{b_1} & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & t & 0\\ 0 & 0 & 0 & -t & 0\\ 0 & 0 & 0 & 1 & 1 \end{pmatrix},$$

$$\psi_{\lambda}'(\sigma_4) = \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{tb_4}{b_1} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & -t \end{pmatrix},$$

and
$$\psi'_{\lambda}(\delta) =$$

$$\begin{pmatrix} 1+r & \frac{d_1}{b_1}r & \frac{-(1+t+t^2)}{b_1}r & \frac{-t(1+t)}{b_1}r & \frac{d_4}{b_1}r \\ b_1 & 1+d_1 & -(1+t+t^2) & -t(1+t) & d_4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

where $r = \sum_{i=1}^{4} \lambda_i b_i$.

We then diagonalize the matrix corresponding to $\psi'_{\lambda}(\sigma_1)$ by an invertible matrix, say T, and conjugate the matrices of $\psi'_{\lambda}(\sigma_2)$, $\psi'_{\lambda}(\sigma_3)$, $\psi'_{\lambda}(\sigma_4)$ and $\psi'_{\lambda}(\delta)$ by the same matrix T. The invertible matrix T is given by

$$T = \begin{pmatrix} 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & -1 - t \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

In fact, a computation shows that

$$T^{-1}\psi_{\lambda}'(\sigma_1)T = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -t \end{pmatrix}.$$

After conjugation, we get

$$T^{-1}\psi_{\lambda}'(\sigma_2)T = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 1 & 0 & 1\\ 0 & 0 & \frac{-t^2}{1+t} & 0 & \frac{-(1+t+t^2)}{1+t}\\ 0 & 0 & \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)} & 1 & \frac{t(b_2+b_1t+b_2t)}{b_1(1+t)}\\ 0 & 0 & \frac{-t}{1+t} & 0 & \frac{1}{1+t} \end{pmatrix},$$

$$T^{-1}\psi_{\lambda}'(\sigma_3)T = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -t & 0 & 0 & 0 \\ 0 & t & 1 & 0 & 0 \\ 0 & \frac{tb_3}{b_1} & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$T^{-1}\psi_{\lambda}'(\sigma_4)T = \begin{pmatrix} -t & 0 & 0 & 0 & 0\\ t & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ \frac{tb_4}{b_1} & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and
$$T^{-1}\psi'_{\lambda}(\delta)T =$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \frac{d_4}{1+t} & -t & 1 + \frac{-(1+t+t^2)}{1+t} & \frac{b_1}{1+t} & \frac{t}{1+t} \\ \frac{d_4}{b_1} w & \frac{-t(1+t)}{b_1} w & \frac{-(1+t+t^2)}{b_1} w & 1 + w & \frac{(-d_1(1+t)-(1+t+t^2)+b_1t)}{b_1} w \\ \frac{-d_4}{1+t} & t & \frac{1+t+t^2}{1+t} & \frac{-b_1}{1+t} & \frac{1}{1+t} \end{pmatrix},$$

where $w = \sum_{i=1}^{4} \lambda_i b_i + \frac{b_1 t}{1+t}$

The entries of the matrices $T^{-1}\psi_{\lambda}'(\sigma_2)T, T^{-1}\psi_{\lambda}'(\sigma_3)T, T^{-1}\psi_{\lambda}'(\sigma_4)T$ and $T^{-1}\psi_{\lambda}'(\delta)T$ are well-defined since we assume in our work that $t \neq -1$. For simplicity, we denote $T^{-1}\psi_{\lambda}'(\sigma_1)T$ by $\psi_{\lambda}'(\sigma_1), T^{-1}\psi_{\lambda}'(\sigma_2)T$ by $\psi_{\lambda}'(\sigma_2), T^{-1}\psi_{\lambda}'(\sigma_3)T$ by $\psi_{\lambda}'(\sigma_3), T^{-1}\psi_{\lambda}'(\sigma_4)T$ by $\psi_{\lambda}'(\sigma_4)$, and $T^{-1}\psi_{\lambda}'(\delta)T$ by $\psi_{\lambda}'(\delta)$.

We now prove some lemmas and propositions to determine a sufficient and necessary condition for irreducibility of $\psi'_{\lambda}: A(E_{5,1}) \to GL_5(\mathbb{C})$.

Lemma 5. Except possibly the subspaces having the forms $\langle e_1, e_3, e_5, e_2 + ue_4 \rangle$ and $\langle e_2, e_3, e_5, e_1 + ue_4 \rangle$, where $u \in \mathbb{C}^*$, every proper subspace is not invariant.

Proof. We assume, for contradiction, that every subspace, except those having the forms $\langle e_1, e_3, e_5, e_2 + ue_4 \rangle$ and $\langle e_2, e_3, e_5, e_1 + ue_4 \rangle$, is invariant.

We then study each possible form. In each case, simple computations give a contradiction.

Lemma 6. If $t^3 \neq -1$, then the subspaces $\langle e_1, e_3, e_5, e_2 + ue_4 \rangle$ and $\langle e_2, e_3, e_5, e_1 + ue_4 \rangle$ are not invariant.

Proof. First, we assume, for contradiction, that $S = \langle e_1, e_3, e_5, e_2 + ue_4 \rangle$ is invariant.

•
$$\psi'_{\lambda}\sigma_{4}(e_{1}) = \begin{pmatrix} -t \\ t \\ 0 \\ \frac{tb_{4}}{b_{1}} \\ 0 \end{pmatrix} = ae_{1} + be_{3} + ce_{5} + d(e_{2} + ue_{4}) \text{ which implies that } u = \frac{b_{4}}{b_{1}}.$$

$$(7.1)$$

•
$$\psi'_{\lambda}\sigma_{2}(e_{3}) = \begin{pmatrix} 0 \\ 1 \\ \frac{-t^{2}}{1+t} \\ \frac{t(b_{1}t+b_{2}+b_{2}t)}{b_{1}(1+t)} \\ \frac{-t}{1+t} \end{pmatrix} = ae_{1} + be_{3} + ce_{5} + d(e_{2} + ue_{4}) \text{ which implies that}$$

$$u = \frac{t(b_{1}t+b_{2}+b_{2}t)}{b_{1}(1+t)}. \tag{7.2}$$

•
$$\psi'_{\lambda}\sigma_{3}(e_{2} + ue_{4}) = \begin{pmatrix} 1 \\ -t \\ t \\ u + \frac{tb_{3}}{b_{1}} \end{pmatrix} = ae_{1} + be_{3} + ce_{5} + d(e_{2} + ue_{4})$$
 which implies that
$$u = \frac{-tb_{3}}{b_{1}(1+t)}. \tag{7.3}$$

Since equations (7.1) and (7.3) are equal, we have $(1 + t + t^2)d_4 = -t^2(1 + t + t^2)$. Thus, $d_4 = -t^2$.

Moreover, equations (7.2) and (7.3) are equal. This implies that $d_4 = -(1+t^2)^2 + t^2$. By substituting $d_4 = -t^2$, we get $t^4 + t^3 + t + 1 = (t+1)(t^3+1) = 0$, a contradiction.

Now, we assume, for contradiction, that $S = \langle e_2, e_3, e_5, e_1 + ue_4 \rangle$ is invariant.

$$\bullet \ \psi_{\lambda}'\sigma_{2}(e_{3}) = \begin{pmatrix} 0\\1\\\frac{-t^{2}}{1+t}\\\frac{t(b_{1}t+b_{2}+b_{2}t)}{b_{1}(1+t)}\\\frac{-t}{1+t} \end{pmatrix} = ae_{2} + be_{3} + ce_{5} + d(e_{1} + ue_{4}).$$

This implies that $t(b_1t + b_2 + b_2t) = 0$.

Simple computations give $-(1+t+t^2)^2+t(1+t)^2+t^2=0$. Thus, $t^4+t^3+t+1=0$, a contradiction.

We now determine conditions under which one of the subspaces mentioned in Lemma 7 is invariant. But first we write down the following lemma.

Lemma 7. The proper subspaces $S_1 = \langle e_1, e_3, e_5, e_2 + ue_4 \rangle$ and $S_2 = \langle e_2, e_3, e_5, e_1 + ue_4 \rangle$ cannot be both invariant.

Proof. Assume that S_1 is invariant. This implies that $\psi'_{\lambda}\sigma_2(e_3)$ and $\psi'_{\lambda}\sigma_3(e_2 + ue_4) \in S_1$. Simple computations give $b_1t + b_2 + b_2t = -b_3 \neq 0$.

Assume, for contradiction, that S_2 is invariant. This implies that $\psi'_{\lambda}\sigma_2(e_3) \in S_2$. Simple computations give $b_1t + b_2 + b_2t = 0$, a contradiction.

Lemma 8. If $t^3 = -1$, then the subspace $S = \langle e_2, e_3, e_5, e_1 + ue_4 \rangle$ is invariant.

Proof.

•
$$\psi'_{\lambda}\sigma_1(e_2) = \psi'_{\lambda}\sigma_2(e_2) = \psi'_{\lambda}\sigma_4(e_2) = e_2 \in S$$
.

•
$$\psi_{\lambda}' \sigma_3(e_2) = \begin{pmatrix} 1 \\ -t \\ t \\ \frac{tb_3}{b_1} \\ 0 \end{pmatrix} = ae_2 + be_3 + ce_5 + d(e_1 + ue_4),$$
if $u = \frac{tb_3}{b_1}$. (7.4)

$$\bullet \ \psi_{\lambda}' \delta(e_2) = \begin{pmatrix}
0 \\
\frac{1}{a_3} \\
\frac{d_3}{1+t} \\
\frac{d_3t}{1+t} + \frac{d_3}{b_1} \left(\sum_{i=1}^4 \lambda_i b_i \right) \\
\frac{-d_3}{1+t} \\
\text{if } \frac{t}{1+t} = \frac{-\sum_{i=1}^4 \lambda_i b_i}{b_1}. \quad (7.5)$$

• $\psi'_{\lambda}\sigma_1(e_3)=\psi'_{\lambda}\sigma_3(e_3)=\psi'_{\lambda}\sigma_4(e_3)=e_3 \in S$.

$$\bullet \ \psi_{\lambda}'\sigma_{2}(e_{3}) = \begin{pmatrix} 0\\1\\\frac{-t^{2}}{1+t}\\\frac{t(b_{1}t+b_{2}+b_{2}t)}{b_{1}(1+t)}\\\frac{-t}{1+t} \end{pmatrix} = ae_{2} + be_{3} + ce_{5} + d(e_{1} + ue_{4}),$$
if $t(b_{1}t+b_{2}+b_{2}t) = 0$. (7.6)

$$\bullet \ \psi_{\lambda}'\delta(e_3) = \begin{pmatrix} 0 \\ 1 + \frac{-(1+t+t^2)}{1+t} \\ \frac{-t^2(1+t+t^2)}{1+t} + \frac{-(1+t+t^2)}{b_1} (\sum_{i=1}^4 \lambda_i b_i) \end{pmatrix} = ae_2 + be_3 + ce_5 + d(e_1 + ue_4),$$
if $\sum_{i=1}^4 \lambda_i b_i + \frac{b_1 t}{1+t} = 0.$ (7.7)

- $\psi'_{\lambda}\sigma_1(e_5) = -te_5 \in S$.
- $\psi'_{\lambda}\sigma_3(e_5)=\psi'_{\lambda}\sigma_4(e_5)=e_5\in S$.

•
$$\psi_{\lambda}' \sigma_{2}(e_{5}) = \begin{pmatrix} 0 \\ 1 \\ \frac{-(1+t+t^{2})}{1+t} \\ \frac{t(b_{1}t+b_{2}+b_{2}t)}{b_{1}(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_{2} + be_{3} + ce_{5} + d(e_{1} + ue_{4}),$$

if $t(b_1t + b_2 + b_2t) = 0.$ (7.8)

$$\bullet \ \psi_{\lambda}'\delta(e_5) = \begin{pmatrix} 0 \\ 0 \\ \frac{t}{1+t} \\ \frac{(-d_1(1+t)-t(1+t+t^2)+b_2t)(\sum_{i=1}^4 \lambda_i b_i(1+t)+b_1t)}{b_1(1+t)} \\ \frac{1}{1+t} \end{pmatrix} = ae_2 + be_3 + ce_5 + d(e_1 + ue_4),$$

if
$$(-d_1(1+t) + d_2 + b_2 t)(\sum_{i=1}^4 \lambda_i b_i (1+t) + b_1 t) = 0.$$
 (7.9)

•
$$\psi'_{\lambda}\sigma_1(e_1 + ue_4) = \psi'_{\lambda}\sigma_2(e_1 + ue_4) = \psi'_{\lambda}\sigma_3(e_1 + ue_4) = e_1 + ue_4 \in S$$
.

•
$$\psi_{\lambda}' \sigma_4(e_1 + ue_4) = \begin{pmatrix} -t \\ t \\ 0 \\ u + \frac{tb_4}{b_1} \\ 0 \end{pmatrix} = ae_2 + be_3 + ce_5 + d(e_1 + ue_4),$$

if
$$u = \frac{-tb_4}{b_1(1+t)}$$
. (7.10)

$$\bullet \ \psi_{\lambda}'\delta(e_1 + ue_4) = \begin{pmatrix}
1 \\
0 \\
\frac{d_4}{1+t} + \frac{b_1 u}{1+t} \\
\frac{d_4}{b_1} \left(\sum_{i=1}^4 \lambda_i b_i + \frac{b_1 t}{1+t}\right) + u\left(1 + \sum_{i=1}^4 \lambda_i b_i + \frac{b_1 t}{1+t}\right) \\
\frac{-d_4}{1+t} - \frac{b_1 u}{1+t} \\
\frac{-d_4}{1+t} - \frac{b_1 u}{1+t}
\end{pmatrix} = ae_2 + be_3 + be_4 + be_5 + d(e_1 + ue_4),$$

if
$$\left(\sum_{i=1}^{4} \lambda_i b_i + \frac{b_1 t}{1+t}\right) \left(\frac{d_4}{b_1} + u\right) = 0.$$
 (7.11)

REFERENCES 237

Using the relations, we prove that equations (7.5), (7.7), (7.9), and (7.11) are clearly satisfied.

Also, we verify that equations (7.4), (7.6), (7.8) and (7.10) are satisfied if $-t(1+t)^2 = -(1+t+t^2)(1+t^2) + t^2$ which implies that $t^3 = -1$.

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 2. Assume all the indeterminates used in defining Perron representation of degree 5 are non zero complex numbers. Let $d_2 = -(1 + t + t^2)$, $d_3 = -t(1 + t)$, and $t \neq -1$. The representation $\psi'_{\lambda}: A(E_{5,1}) \to GL_5(\mathbb{C})$ is irreducible if and only if $t^3 \neq -1$.

- **Remark 1.** For n=2 and for $t \neq -1$, we proved that a complex specialization of the representation $\psi'_{\lambda}: A(E_{3,1}) \to Gl_3(\mathbb{C})$ is irreducible if and only if $t^2 \neq -1$ which is equivalent to $t^3 + t^2 + t + 1 \neq 0$.
 - For n=3 and for $t \neq -1$, we have proved that a complex specialization of the representation $\psi'_{\lambda}: A(E_{4,1}) \to Gl_4(\mathbb{C})$ is irreducible if and only if $t^4 + t^3 + t^2 + t + 1 \neq 0$.
 - For n=4 and for $t \neq -1$, we have proved that a complex specialization of the representation $\psi'_{\lambda}: A(E_{5,1}) \to Gl_5(\mathbb{C})$ is irreducible if and only if $t^3 \neq -1$ which is equivalent to $t^5 + t^4 + t^3 + t^2 + t + 1 \neq 0$.

References

- [1] J. S. Birman, *Braids, Links and Mapping Class Groups*. Annals of Mathematical Studies. Princeton University Press, volume 82, New Jersey, 1975.
- [2] T.E. Brendle, *The Torelli Group and Representations of Mapping Class Groups*. Doctoral Thesis, Columbia University, 2002.
- [3] M. Dally and M. Abdulrahim, On the Irreducibility of Artin's Group of Graphs. Journal of Mathematics Research, volume 7, number 2, 2015.
- [4] V.L. Hansen, Braids and Coverings. London Mathematical Society, Cambridge University Press, 1989.
- [5] B. Perron, A linear representation of a finite rank of the mapping class group of surfaces (preprint). Laboratoire de Topologie, volume 99, number 204, 1999.