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Abstract. We consider the graph E, 11 with (n+1) generators o1, ..., oy, and 0, where o; has an
edge with ;47 fori =1,...,n+1, and 07 has an edge with §. We then define the Artin group of the
graph E, 11 for n = 3 and n = 4 and consider its reduced Perron’s representation of degrees four
and five respectively. After we specialize the indeterminates used in defining the representation
to non-zero complex numbers, we obtain necessary and sufficient conditions that guarantee the
irreducibility of the representations for n = 3 and 4 .
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1. Introduction

Let ' be an undirected simple graph. The Artin group A is defined as an abstract
group whose generators are the vertices of I' that satisfy the two relations: xy = yx for
vertices x and y that have no edge in common and zyx = yxy if the vertices x and y have
a common edge.

Having defined A, we consider the graph A, having n vertices o;’s (1 <i <mn)in
which o; and 0,41 share a comon edge, where i = 1,2, ...,n— 1. Indeed, the Artin group of
A,,, denoted by A(A,,), is the braid group on n+1 strands, B,,+1. That is, A(A4,,) = Bp+1.

From the graph A,, we obtain the graph E,;;, by adding a vertex § and an edge
connecting 0, and 6. Here 1 < p < n. Clearly, the graph A,, embeds in the graph E, 1 .
Consequently, A(A,) C A(En+1p). As a result, a representation of A(E,11,) yields a
representation of Bjy1.

Perron’s strategy is to begin with the reduced Burau representation of B,,;1 of degree
n and extend it to a representation of B, .1 of degree 2n. The representation obtained is
referred to as Burau bis representation. Next, Perron constructs for each A = (A1,..., A\y)
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a representation ¢ : A(Enq1,p) = GLon(Q(t,d1,...,dy)), where t,di,...,dp A1,..., Ay
are indeterminates.

In [3], we determined necessary and sufficient condition that guarantees the irreducibil-
ity of the representation 1, for n = 2. In our work, we extend our work to n = 3 and
n = 4. We reduce the complex specialization of the representation 1, to representations
of A(E4;) and A(FEs5,1) of degrees 4 and 5 respectively. In each case, a necessary and
sufficient condition which guarantees the irreducibility of the considered representation is
obtained. The obtained conditions are similar to the condition obtained in the case n = 2,
which was studied in [3].

2. Burau bis Representation

The Burau Bis representation is a representation of B, of degree 2n.
It is defined as follows:
W Bos1 = Glo (Z[t, 1)

v = ). =iz

Here, R; denotes an n x n block of zeros with a ¢ placed in the (4,4) th position and
I, denotes the n x n identity matrix.

This representation was constructed by Perron by extending the reduced Burau rep-
resentation of degree n to a representation of B,y of degree 2n.

The reduced Barau representation By, 11 — GLy(Z[t,t7']) is defined as follows:

I o 0 0
1 0 0
o; — Jz = 0 t —t 1 0 s
0 0 1
0 0 In_i1
where I stands for the k x k identity matrix. Here, i =2,...,n — 1.
—t 1 0
o1 — J1 = 0 1
0 [In
Ina| 0
Opn — Jp = 0 1 0
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For more details, see [2] and [5].

3. Perron Representation

The Burau bis representation extends to A(E,1,) for all possible values of n and p
in the following way.
We define the following n x n matrices:

A= (A1b, Ash, ..., Anb)
B=1(0,...,0,b,0,...,0)
C = (Md, \ad, . .., Md)
D=(0,...,0,d,0,...,0),

by dy
where 0 denotes a column of n zeros, b= | : | ,d=| ¢ | ;and A = (A1,..., An).
by, dy,
For each i = 1,...,n, we have that b; satisfies the following conditions

thy = —tdi1 + (1 +8)di — diy1, @ # p,
thy = —tdp—1 + (1 +t)dy — dpy1 + ¢,

Z/\ibi =—(1+d,+1),
=1

setting any undefined d; equal zero.

For any choice A = (A1,...,\,), we get a linear representation
(L A(En+1,p) — Glan(R),

where R is the field of rational fractions in n+1 indeterminates Q(¢,dy, ..., dy).

ne) = (g 9):

For more details, see [2].
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4. Reducibility of v, : A(E41) — GLg(C)

Having defined Perron’s representation, we set n = 3 and p = 1 to get the following

by dy
vectors. b= [be | ,d= [da | ,and A = (A1, A2, \3).
b3 ds
After we specialize the indeterminate d3 to _t(ll%t:ﬁ) , we get the following 3 x 3
matrices:
Atb1 Aobr Asby
A= | Aby Aaba Azbz |,
A1bs  Aobs  Asbs
by 0 0
B=1b 0 0],
bs 0 0
)\1d1 /\le )\Sdl
C = >\1d22 >\2d22 )\3d22
—t(1+t+t —t(14t4t —t(14t+t
(1+t ))‘1 (1+t ))‘2 (1+t ))‘3
and
dq 00
D = do 0 0
—t(1+t+t>
R

Simple computations show that the parameters satisfy the following equations:

2
o thy = —td; + (1 + t)dy + "LHH)

o thy = —tdy — t(1 +t+12)
° tb1:(1+t)d1—d2+t

 \iby+ Aoba + A3bs = —(1+t+dp)

Having defined the 3 x 3 matrices A, B, C' and D, we obtain the multiparameter
representation A(Fy ). This representation is of degree 6. We specialize the parameters

A1, A2, Az, by, ba, b3, dy, da, t to values in C — {0}. We further assume that ¢ # —1. The
representation ¢y : A(E41) — GLg(C) is defined as follows:
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1 00 0 00O
010 0 00O
001 0 0O
D=1, 00 ¢t 1 0|
000 O 10
000 O 01
10 00 0 O
01 00 0 O
001 0 0 O
@) =15 001 0 ol
0Ot 0 ¢t —t 1
0000 0 1
1 0000 O
01000 O
001 00 O
w/\(0—3>_ 0 O 0 1 0 0 )
000010
0 0 ¢t 0 ¢t —t
and
14+ M\by Aoby A3by by 00
A1b2 1+ Aobs A3bo by 0 0
B A1b3 Aabs 1+ A3b3 b3 00
¢>\(5)— Ady Aody Azdy 1+ d; 0 0
A1ds Aods Azdo do 10
—t(14t+t2 —t(14+t+t2 —t(14-t4t2 —t(14-t+t2
(1+t ))\1 (1+t )\ (1+t )>\3 (1+t ) 0 1

The graph F4 1 has 4 vertices o1, 092,03 and d. Since p = 1, it follows that the vertex
0 has a common edge with o, = 01. Therefore, the following relations are satisfied.

010201 = 020109 (4.1)
090309 = 030903 (4.2)
0103 = 0301 (43)

090 = 009 (4.4)
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030 = 003 (4.5)
01001 = 0010 (4.6)

We note that relations (4.1),(4.2), and (4.3) are actually Artin’s braid relation of the
classical braid group, B4 having o1, 09, and o3 as standard generators. This assures that
a representation of A(Fy 1) yields a representation of By.

For more details, see [1] and [4].

Lemma 1. The representation ¢y : A(Es1) — GL6(C) is reducible.

Proof. For simplicity, we write o; instead of 1) (o;) .The subspace
S = <€1 + %62 + %63, e4, €5, € ) is an invariant subspace of dimension 4.

To see this:
. b b b b
(i) o1(e1 + e+ ﬁeg) =e1+ p2ex+ egttes € S
(i) oa2(e1 + %62 + %‘;’63) =e1 + %62 + %63 + t%€5 es
bro) 4 B3er) — o 4+ By 4 Bos 4 tbies € §
(iii) o3(e1 + e+ b163) =e1+er+Pes +tptes €

(iV) d(er + %62 + %63) = (1 + A1b1 + Aabo + )\363)(61 + %62 + %‘1’63) + %(Albl + Aoby +
_ 2
Asbs)es + %(Albl + A2ba + Asb3)es + W(Aﬂ)l + Aoba + Asbs)eg € S

1(1+1)
(v) o1e4 = —tey € S
(vi) o9eq4 =e4+tles €S
(vil) o3eq =e4 €S
(viii) deq = bi(e; + %62 + g—feg) + (1 +di)es + d2€5_t(11%tt+t2)66 S
(ix) ores =es+e5 € S
(x) o9e5 = —tes € S
(xi) ozes =e5+teg €5
(xii) des =e5 € S
(xiii) o1e6 =es € S

(xiv) o9e6 =e5+e5 € S

(XV) o3eg = —teg € S
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(XVi) deg =eg €5

5. On the Irreducibility of 9} : A(FEs1) = GL4(C)

We consider the representation ¢y : A(E41) — GLg(C) restricted to the basis ey, e,
el + %62 + Z—feg, e4, €5, and eg. The matrix of 01 becomes

100 ¢t 00
010 0 00
001 ¢t 00

v =19 0 0 —t 0 o
000 1 10
00 0 0 1

We reduce our representation to a 4-dimensional one by considering the sub-basis
e1 + %62 + %63,64,65, and eg to get ¢} : A(E41) — GL4(C). The representation is
defined as follows:

1 ¢t 00
. o =t o000
W =19 1 1 ol
0 0 1

th
10 % o
oo o1 ot oo
Be) =156 ¢ o]
00 1 1

1 00 s

b1

oo 1ot o 0
o) =1y 01 ¢ |
000 —t

and

UA(8) =



M. Dally, M. Abdulrahim / Eur. J. Pure Appl. Math, 11 (1) (2018), 215-237 222

3 3 3 —t(14t+t2 3
L+ Aibe (00 Abe) (0 Abs) RS (0 Abe)

b1 1+d; do —t(14t+1t%)
0 0 1 0
0 0 0 1

We then diagonalize the matrix corresponding to ¢} (1) by an invertible matrix, say
T, and conjugate the matrices of ¢\ (02), ¥ (03), and ¢} (0) by the same matrix 7. The
invertible matrix T is given by

0 01 t
000 —1-—t¢
= 010 1
1 00 0
In fact, a computation shows that
100 O
_ 01 0 O
TADT =15 o 1 o
00 0 —t
After conjugation, we get
1 1 0 1
42 —(1+t+t?)
0 1+t 0 I+t
T~'\(09)T = 0 tbatbitthat) q tatbit+bar) | o
51(1+t) b1(1+t)
- 1
0 T 0 e
—t 0 0 0
t 1 .00
T_IT/JS\(US)T = tb: 3
> 010
0 0 0 1

and
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T\ (6)T =
1 0 0 0
D ety *
—tlfll(J{iJg)tQ) L ‘;—fk‘ 1+ k (—d1(1+t)+d2+b12(((1§5):1 Aibi)(14t)+b1t)
t(1+t4t2) —ds —by 1
T+t T+t I+t T+t
where k= 1L 4+ 377 | \ib;.

The entries of the matrices 7719} (02)T and T~ 14} (§)T are well-defined since we assume
in our work that ¢ # —1. For simplicity, we denote 714} (61)T by ¢ (01), T~} (02)T
by ¥4 (02), T~ (03)T by ¥4 (03), and T~} (6)T by ¢4 (6).

We now prove some lemmas and propositions to determine a sufficient and necessary
condition for irreducibility of ¢} : A(Ey41) — GL4(C).

Lemma 2. The proper subspace S = <61,e4,62 + %€3> is mot invariant if and only if

B3+ 2+t +14£0.

Proof. First, we prove that proper subspace S = <61, e4,€2 + %:1363> is not invariant if

th+ B3 +12+t+140.
Assume, for contradiction, that S is invariant.

1

—(1+t+¢2)
T+t
We have ¢/ (02)(e4) = €_s.
t(ba+bot+b1t)
b1 (1+1)

1
1+t
This implies that (1 +t + t2)bg = —t(ba + tby + tby).

By using the equations: tbe = —tdy + (1+1t)ds + %, thy = —tdy —t(1+t+1?), and
thy = (1 +t)dy — dg +t, simple computations give t* +¢3 +¢2 4+t + 1 = 0, a contradiction.

On the other hand, we assume that t* 4+ 3 + 2+t +1 = 0. We prove that the proper
subspace S = <61, eq,€9 + g—feg> is invariant as follows:
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(i) ¥yoi(er) =e1 €8S.

(ii) Y\o2(e1) =e1 € 5.

—t
(i) Yhos(er) = [ 22| €.
0
1
—t(1+t4t%)
(1+1)?
(iv) Pio(er) = , ) )
L | by b+ A
—t(14t4¢%)
(1+1)
Here, we have a = 1, b = %ﬁ%, c= 1det, and
42 2 _ 2
=) L e ot

Thus, szi, — but(I4) (AabitAobat+Asbs) (5.1)

b1

(v) Yhoi(es) = —teg € S.

224

= ae; +be4+c(62+lb’—i’63).

1
—(1+t+t2)
1+¢ .
(vi) ioa(es) = = ae1 + bey + c(ea + ez).
t(ba+bat+bit)
by (1+t)
1
I+t
_ 2
Here, we have a = 1, b:#t,c:%ﬂmd %:%
Thus, —(1+ ¢+ t2)% = {etlettht) (5.2)

(vil) Yhos(es) =es € S.
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0

t
1+t )
viil) ¥id(eq) = = aeq + bey + c(ex + 2e3).
( ) d}A ( 4) (—dl(1+t)+d2+blt)((A1b1+)\2b2+)\3b3)(1+t)+b1t) ! ( 2 b1 3)
b1 (1+¢)

L
1+t

— -1 .t
Here, we have a =0, b = 177, ¢ = 15, and

cbs _ (=di(14t)+da+bit)(A1bi+Xaba+A3b3)(141)+b1t)
b T b1 (1+1) :

Thus, b% _ (—d1(1+t)+d2+blt)((Allljzlllj—i-)\zbg-&-)\gbg)(1+t)+b1t)' (5.3)

(ix) YPhoi(e2 + %63) =eg + %63 es.

0
—¢2
I+t

(X) 1%\(72(62 + 2%63) = | t(batbottbit) = aey + beg + 0(62 + %1;63).

b3
b1 (1+t) + b1
=t
1+t

cby __ t(ba+bat4b1t) b3

—t =2
> and B = b o

Here, we have a =1, b= 175, ¢ =

Thus, —(1+ ¢ +t2)% = Hetlettht) (5.4)

1

(xi) P\os(ea + %63) =es+ %63 €s.
(xii) ¥}d(ea + Bieg) =
0
1+ £ + &%

%mm+M@+M%+%@;%ﬂ+hh+&b+&%+%@
—a 3

1+t 1+t

= aey + beg + c(ea + %63).
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_ _ —ds _ b3 . _ da 4 b3 by _ do
Here, we have a = 0, b= 133 — 13, c = 1 + {4 + 7, and g = bl()\1b1+)\262+

Aghs + L) + B5.(1 4 Ayby + Aobs + Aghs + 22L).

Thus, (142 +35) 2 = 2(A\1b1+Aaba+Asbs+ 25+ 22 (14 A1by + Aaba + Agbg+ BL).
(5.5)

By simple computations, we can verify that equations (5.1), (5.2), (5.3) , and (5.5) are
clearly satisfied without any assumption of the indeterminates whereas equation (5.4) is
satisfied only if t* +t3 +t2 +t+1 = 0.

Lemma 3. Any proper subspace S containing the vector e; + ue; + vey, where i,j,k €
{1,2,3,4}, except possibly the subspace having the form <61, eq, €9 + %63>, s not invari-
ant.

Proof. We consider all the subspaces containing the vector e; 4+ ue; 4 vey, where
i,7,k € {1,2,3,4} except possibly the subspace of the form <61, e4, e + Z—i’eg>.
We then assume, for contradiction, that each considered subspace is invariant.
In each case, simple computations give a contradiction.

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 1. Assume all the indeterminates used in defining Perron representation of de-

_ 2
gree 4 are non zero complex numbers. Let d3 = % and t # —1. The representation

Y A(Ey1) — GL4(C) is irreducible if and only if t* +¢3 + 2+t +1 #£ 0.

In the following sections, we set n = 4 and p = 1 and we study the irreducibility of
the reduced representation of ¢y : A(E51) — GLg(C). Indeed, we obtain a sufficient and
necessary condition that gauarantees the irreducibility of ¥, : A(E51) — GLs5(C).

6. Reducibility of ¢, : A(Es51) — GLg(C)

Having defined Perron’s representation, we set n = 4 and p = 1 to get the following

by dy
bo do

vectors. b = ,d = ,and A = (A1, A2, A3, Aq).
b3 ds

by dy
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After we specialize the indeterminates do and d3 to —(1 +t+t2) and —¢(1 +t) respec-
tively, we get the following 4 x 4 matrices:

A1br A2bi Asbr Aaby
A1ba A2ba Asba Agbo

A= Aibs Aabs Asbs Mbs |
Mbs abs Agby Aaba
by 0 0 0
|2 000
B= bs 0 0 0]’
by 0 0 0
A1dy Aady Azdq Aady
o —(I4t+H)N —(A+t+tHA —(L+t+1)Ag —(L+t+t*)Ny
Tt —t(14t) g —t(14t)A3 —t(1+tH) s |’
A dy Nody A3dy Aady
and
di 000
—(1+t+t3) 0 0 0
D:
—t(l+t) 0 0 0
dy 000

Simple computations show that the parameters satisfy the following equations:

o thy = —tdy — (1 +t)(1+t+t2) +t(1+1t) = —tdy — (1 +t)(1 +1?)

thy =t(1+t+t2) —t(1+t)? —dy = —t(22 + 3t +2) — dy

thy = t2(1+t) + (1 + t)dy

thy = (L +t)dy + 1+ 2t + ¢*

A1b1 + A2bo + A3bs + Aby = —(1 +t + dy)

Having defined the 4 x 4 matrices A, B, C and D, we obtain the multiparameter
representation A(FEs ). This representation is of degree 8. We specialize the parameters
AL, A2, A3, Ag, b1, b2, b3, by, di,dy,t to values in C — {0}. We further assume that ¢ # —1.
The representation 1y : A(Es51) — GLg(C) is defined as follows:
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1000 O O0OOO
0100 0 O0O0O
0010 0 O0O0O

0 001

)

0 0 0O
-t 1 0 0

t 000

0 0

1

0000 O O0OT1FPO

0000 O

0000 O O0O01

Ya(o1) =

10000 0 0O
01000 O OO
00100 O OO
00010 O OO

0 0001
0 ¢t 0 0 ¢t

0 0 0
-t 1 0

0

1

0 00 O0O0 O
000O0O0O O 01

Ya(o2)

1000 0O0 O O
01 00O0O0 O O
001 0O0O0 O O
0001O0O0O0 O
000010 0 O

0 00O0O0T1

)

0
1
1

0
—t

00t 0 0 ¢

00 0O0O0O0O O

Ya(o3) =

100 00O0O0 O
01 00O0O0O0 O
001 0O0O0O0 O
0001 0O0O0 O

000 01O0O0 O

I

000 0O0OT1TTO0 O
0 00 O0O0O01
000100t

0
—t

Ya(og) =

and
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Ya(6)=

14+ Aby Aabq A3b1 Agb1 by 0 0 0
A1bo 1+ Aobo Azbo Agbo ba 0 0O
A1b3 Aobs 1+ A3bs Aqb3 b3 0 00
A1by Aoby Azby 1+ Mgby by 0 0O
A1dy Aodq Asdy Aqdy 14+4dy 0 0 0}’
kA1 kMo ks kAy k 1 00

—t(l —i—t)/\l —t(l —I—t))\g —t(l +t)>\3 —t(l +t))\4 —t(l -f—t) 010
A1dy Aody Agdy Aqdy dy 0 01

where k = —(1 +t + t2).

The graph Fs; has 5 vertices 01,092,03,04 and 0. Since p = 1, it follows that the
vertex ¢ has a common edge with 0, = 01. Therefore, the following relations are satisfied.

010901 = 090102 (6.1)
090309 = 0309073 (6.2)
030403 = 040304 (6.3)
0103 = 0307 (6.4)
0104 = 0407 (6.5)
0904 = 0409 (6.6)
020 = 09 (6.7)
030 = do3 (6.8)
040 = 604 (6.9)
o160 = 0010 (6.10)

We note that relations (6.1),(6.2), (6.3), (6.4), (6.5) and (6.6) are actually Artin’s braid
relation of the classical braid group, Bs having o1, 02, 03, and o4 as standard generators.
This assures that a representation of A(Es5 1) yields a representation of Bs.

For more details, see [1] and [4].

Lemma 4. The representation 1y : A(Es1) — GLg(C) is reducible.

Proof. For simplicity, we write o; instead of ¥ (o;) .The subspace

S = <61 + %62 + %63 + 2—‘1164, es, €g, €7, eg> is an invariant subspace of dimension 5.
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7. On the Irreducibility of ¢} : A(FEs1) = GL5(C)

We consider the representation ¢ : A(E5s 1) — GLg(C) restricted to the basis ey, e, e3,
61+%€2+%63+%64, es, e, €7, and eg to get the subrepresentation ¢} : A(Es1) — GLs(C)
which is the representation restricted to the sub-basis e; + %62 + %63 + %64, es5, €6, €7.
This representation is defined as follows:

1 t 000
0 -t 0 0 0
Yi(e)=10 1 1 0 0],
0 0 0 1 0

0 0 00 1
10 %2 00

1

01 t 00

Yi(o) =10 0 —t 0 0],
00 1 10
00 0 01
100 % ¢

1

010 0 0
Yh(es)=10 01 ¢t o],
000 —t 0
000 1 1
100 0 i

1

0100 0
Y()=[0o 0 10 0],
000 1 ¢
0000 —t

and

UA(9) =
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1+7r %r _(ngfHQ)r _t(b11+t)r z—fr
by 1+dy —(1+t+t?) —t(1+t) ds
0 0 1 0 0 |’
0 0 0 1 0
0 0 0 0 1

where r = 2?21 Aib;.

We then diagonalize the matrix corresponding to ¢, (o1) by an invertible matrix, say
T, and conjugate the matrices of ¢} (02), ¥ (03),9} (04) and ¢} (§) by the same matrix 7.
The invertible matrix T is given by

0 001 t
0 00 0 —-1-—t¢
T=10 01 0 1
01 00 0
10 00 0
In fact, a computation shows that
10 00 O
0100 O
T 'Y\(e)T=]0 0 1 0 0
0001 O
00 0 0 —t
After conjugation, we get
10 0 0 0
01 1 0 1
42 —(1+t+¢?)
0 w0 —a—
T~ (02)T = ,
0 0 t(b2+b1t+b2t) 1 t(b2+b1t+b2t)
b1 (1+t) b1 (14t)
—t 1
00 7 0 7
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1 1 000
0 -t 0 00
T YW\(o3)T=10 ¢t 1 0 0],
0 % 010
0 0 001
—t 0 0 0 0
t 1.0 00
T Y\(e)T=]10 0 1 0 0],
b0 010
1
0 0001
and
T, (6T =
1 0 0 0 0
0 1 0 0 0
d — (14412 b t
IET; —t 1+ (1+t : T4 1+t
_ _ _ _ 2 ’
Z—fw t(b11+t)w (1Zf+t2)w 14w (—d1(1+2) %11+t+t )+b1t)w
—da t 14t+t2 —b 1
T+t I+t T+t T+
Wherew:Z?zl)\ibﬁ—%.

The entries of the matrices T~} (02)T, T~ 4 (03)T, T~} (04)T and T4} (0)T
are well-defined since we assume in our work that ¢ # —1. For simplicity, we denote
T4\ (01)T by ¢ (01), T4 (02)T by 9} (02), T~ (03)T by ¢ (03),

T4 (04)T by ¥4 (04), and T4 (8)T by 4 (6).

We now prove some lemmas and propositions to determine a sufficient and necessary
condition for irreducibility of ¢} : A(Es1) — GL5(C).

Lemma 5. Ezcept possibly the subspaces having the forms (e1,es, e5, ea + ueq) and
(€9, €3, €5,e1 + ueq), where u € C*, every proper subspace is not invariant.
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Proof. We assume, for contradiction, that every subspace, except those having the
forms (e, e3, €5, €2 + ueyq) and (e, €3, €5, €1 + uey), is invariant.
We then study each possible form. In each case, simple computations give a contradiction.

Lemma 6. Ift3 # —1, then the subspaces {(e1, e3, €5, ez + ues) and
(€9, €3, €5,€1 + ueq) are not invariant.

Proof. First, we assume, for contradiction, that S = (ej, es, €5, €2 + uey4) is invariant.

—t
t
o Y\ouler) = w, | = ae1 + bez + ces + d(ez2 + ueyq) which implies that u = 2—‘11.
by
0
(7.1)
0
1
=t
o Y\oa(e3) = L+t = aey + bes + ces + d(ey + uey) which implies that
t(b1t+ba+baot)
bl(ij-t)
b ba+b 1+
t(bit+batbat
u = Uiteset), (7.2)
1
—t
t
o Y\ o3(ea2 + uey) u ths | = ael + bes + ces + d(ez + ueq) which implies that
b1
0
—tb
U= iy (7.3)

Since equations (7.1) and (7.3) are equal, we have (1 4+t +t?)dy = —t2(1 4+t + t?).
Thus, d4 = —t2.

Moreover, equations (7.2) and (7.3) are equal. This implies that dy = —(1+2)%2 +¢2.
By substituting dq = —t2, we get t* +t3+t+1 = (t+1)(#3+1) = 0, a contradiction.

Now, we assume, for contradiction, that S = (es, e3, €5, e1 + uey) is invariant.
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0
1

o
° 1/13\02(63) = 1+ = aey + beg + ces + d(el + ue4).

t(byt+ba+bot)
b1 (1?%)

1+t
This implies that t(bit + by + bat) = 0.

Simple computations give —(1+t+12)2+#(1+t)2+1> = 0. Thus, t* +#3+t+1 =0,
a contradiction.

We now determine conditions under which one of the subspaces mentioned in Lemma
7 is invariant. But first we write down the following lemma.

Lemma 7. The proper subspaces S1 = (e, e3, €5, €2 + ueyq) and
Sy = (ea, e3,€5,e1 + ueyq) cannot be both invariant.

Proof. Assume that S is invariant. This implies that ¢} o2(e3) and ¢\ o3(e2 + ues) €
S1. Simple computations give byt + by 4+ bot = —b3 # 0.

Assume, for contradiction, that S is invariant. This implies that ¢/} c2(e3) € Sa. Simple
computations give b1t + by + bot = 0, a contradiction.

Lemma 8. Ift3 = —1, then the subspace S = (ea, €3, es5, e1 + uey) is invariant.
Proof.
o Y\o1(e2)=1\o2(e2)=1)\ou(e2)=es € S.

t
° 1!}3\0‘3(62) = | w, | =aez +bes+ ces + d(er + uey),

if u =42, (7.4)
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0
1
d3
1+t
° 1/15\(5(62) = A = aey + beg + ces + d(61 + ue4),
e+ (i Aibi)
—ds
\ 1+t
P D DA V1 7

o Y\oi(e3)=1\o3(e3)=1\04(e3)=e3 € S.

0
1
—t?
o V\oa(e3) = 1+¢ = aeg + bes + ces + d(e1 + uey),
t(b1t+ba+bat)
b1 (_1?—?5)

1+t
if t(blt + by + bgt) =0. (7.6)

0
0
1+ —(14t+t%)
o Y\0(e3) = 1+t = aeg + bes + ces + d(e1 + uey),
—t2(1t+t2 — (142412 4
() o “EEED) (570 Aibi)
14142
I+¢
if Z?:l A\ib; + % = 0. (77)

° w&01(€5) = —tes € 5.

o Yios(es)=y\o4(es)=es5 € S.
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0

1
—(1+t+t2)
1+t
° ¢302(65) = = aeg + beg + ces + d(61 + ue4),
t(b1t+ba+bat)
b1 (1+1)

1
1+¢

if t(blt + by + th) = 0. (78)

0
0
bt
o P\d(es) = .

(—d1 (148)—t(1+t482) +bot) (0, Aibi (14)+b1t)
b1(11+t)

1+t

if (—d1(1 + t) + dy + bgt)(zzlzl )\Z‘bi(l + t) + blt) =0. (7.9)

. ws\al(el + u64):1ﬂ5\02(61 + u64):1/)5\03(61 + ue4):e1 +ueq € 5.

—t
t
o Y\oy(er + ues) = 0 = aeg + bes + ces + d(e1 + uey),
U+ %
0
. —tb
if u= 57y (7.10)
1
0
A b
° 1/13\(5(61 + ue4) — 1+t 1+t —
%(Z?:l Aibi 4 23%) +u(l 4+ 25 Aibi + 13%)
—ds _ biu
T+t 1+t

ces + d(e1 + uey),

if (Y Aabi + 1%1)(‘1%l +u) =0. (7.11)

236

= aey+beg+ces+d(e;+uey),

aey + beg +
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Using the relations, we prove that equations (7.5), (7.7), (7.9), and (7.11) are clearly
satisfied.

Also, we verify that equations (7.4), (7.6), (7.8) and (7.10) are satisfied if —¢(1 4 ¢)? =
—(1+t+3)(1 + ¢?) + t? which implies that t3 = —1.

Thus, we have determined a necessary and sufficient condition for irreducibility.

Theorem 2. Assume all the indeterminates used in defining Perron representation of
degree 5 are non zero complex numbers. Let dy = —(1 +t +t2), d3 = —t(1 +t), and
t # —1. The representation ¢ : A(E51) — GLs5(C) is irreducible if and only if t3 # —1.

Remark 1. o For n=2 and fort # —1, we proved that a complex specialization of the
representation ¥ : A(Es1) — Gl3(C) is irreducible if and only if t* # —1 which is
equivalent to t3 + 1>+t +1 # 0.

o For n=38 and for t # —1, we have proved that a complex specialization of the repre-
sentation ¢ : A(Ey1) — Gla(C) is irreducible if and only if t* + >+t +t+1 # 0.

o For n=4 and for t # —1, we have proved that a complex specialization of the rep-
resentation 1\ : A(Es1) — Gls(C) is irreducible if and only if t3 # —1 which is
equivalent to t° +t* + 13 + 12+t +1 £ 0.
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