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Abstract. The main object of this paper is to present some q-identities involving some of the
theta functions of Jacobi and Ramanujan. These q-identities reveal certain relationships among
three of the theta-type functions which arise from the celebrated Jacobi’s triple-product identity in
a remarkably simple way. The results presented in this paper are motivated by some recent works
by Chaudhary et al. (see [4] and [5]) and others (see, for example, [1] and [13]).
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1. Introduction, Definitions and Preliminaries

As long ago as 1829, Carl Gustav Jacob Jacobi (1804-1851) introduced a set of four
theta functions ϑj(z, q) (j = 1, 2, 3, 4), which we recall here in the following forms (see [9]
and [15, pp. 463 et seq.]; see also [12, p. 86]):

ϑ1(z, q) = −i

∞∑
n=−∞

(−1)n e(2n+1)iz
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= 2

∞∑
n=0

(−1)n q

(
n+1

2
2

)2
sin[(2n+ 1)z]

= 2q
1
4

∞∑
n=0

(−1)n qn(n+1) sin[(2n+ 1)z], (1)

ϑ2(z, q) =
∞∑

n=−∞
q

(
n+1

2
2

)2
e(2n+1)iz

= 2
∞∑
n=0

q

(
n+1

2
2

)2
cos[(2n+ 1)z]

= 2q
1
4

∞∑
n=0

qn(n+1) cos[(2n+ 1)z], (2)

ϑ3(z, q) =

∞∑
n=−∞

qn
2

e2niz = 1 + 2

∞∑
n=1

qn
2

cos(2nz) (3)

and

ϑ4(z, q) =

∞∑
n=−∞

(−1)n qn
2

e2niz = 1 + 2

∞∑
n=1

(−1)n qn
2

cos(2nz), (4)

where z ∈ C and |q| < 1, C being the set of complex numbers. We also recall here that,
in Chapter 16 of his celebrated Notebooks, Srinivasa Ramanujan (1887-1920) defined the
general theta function f(a, b) as follows (see, for example, [10] and [11]; see also [1] and
[13]):

f(a, b) := 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn)

=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f(b, a) (|ab| < 1), (5)

so that, for any integer n, it is easily seen that

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f

(
a(ab)n,

b

(ab)n

)
= f(b, a). (6)

Ramanujan also rediscovered Jacobi’s famous triple-product identity which, in Ramanu-
jan’s notation, is given by

f(a, b) = (−a; ab)∞ (−b; ab)∞ (ab; ab)∞, (7)
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or, equivalently, by (see [9])

∞∑
n=−∞

qn
2
zn =

∞∏
n=1

(
1− q2n

) (
1 + zq2n−1

)(
1 +

1

z
q2n−1

)
=
(
q2; q2

)
∞
(
−zq; q2

)
∞

(
−q
z

; q2
)
∞

(|q| < 1; z 6= 0), (8)

which was, in fact, first proved by Carl Friedrich Gauss (1777-1855).

As usual, in the above equations as well as throughout our present investigation, we
denote the set of complex numbers by C and the set of positive integers by N with, of
course, N0 := N∪{0}. Moreover, for q, λ, µ ∈ C (|q| < 1), the basic (or q-) shifted factorial
(λ; q)µ is defined by (see, for example, [12, Chapter 3, Section 3.2.1] and [14, pp. 346 et
seq.])

(λ; q)µ :=

∞∏
j=0

(
1− λqj

1− λqµ+j

)
(|q| < 1; λ, µ ∈ C), (9)

so that

(λ; q)n :=


1 (n = 0)

n−1∏
j=0

(
1− λqj

)
(n ∈ N)

(10)

and

(λ; q)∞ :=
∞∏
j=0

(
1− λ qj

)
(|q| < 1; λ ∈ C). (11)

The theory of Jacobi’s theta functions ϑj(z, q) (j = 1, 2, 3, 4), which are defined
above by the equations (1) to (4), has a long history and many applications in a wide
variety of research fields such as number theory (especially in quadratic forms and elliptic
functions) and quantum physics. Besides, the subject of q-analysis, which is popularly
known as the quantum analysis, has its roots in such important areas as (for example)
Mathematical Physics, Analytic Number Theory, and the Theory of Partitions. Motivated
essentially by the potential for applications of q-series and q-products, we investigate here
the following three most interesting functions which are related closely to such entities as
Jacobi’s theta functions in the equations (1) to (4), Ramanujan’s general theta function
in (5) and Jacobi’s triple-product identity in (7) or (8) (see also [1] and [13]):

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)n q
n(3n−1)

2 = (q; q)∞

=
1√
3
q−

1
24 ϑ2

(π
6
, x

1
6

)
, (12)
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ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

=
(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

= ϑ3(0, q) (13)

and

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

=
1

2
q−

1
8
[
ϑ2
(
0,
√
q
)
− 1
]
. (14)

The main object of the present article is to prove two (presumably new) q-identities
which provide interesting relationships among the above-defined three ϑ-type functions
f(−q), ϕ(q) and ψ(q), each of which arises from Jacobi’s triple-product identity (8) in a
remarkably simple way. For more details and further results, the interested reader may be
referred to the works presented in [1], [2], [3], [6], [7], [8] and [13].

2. The Main Results

In this section, we begin by expressing the functions f(−q), ϕ(q) and ψ(q) in rising
powers of q as follows:

f(−q) = 1 +
∞∑
n=1

(−1)n
(
q

n(3n−1)
2 + q

n(3n+1)
2

)
= 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − · · · , (15)

ϕ(q) = 1 + 2
∞∑
n=1

qn
2

= 1 + 2q + 2q4 + 2q9 + 2q16 + · · · (16)

and

ψ(q) = 1 +
∞∑
n=1

q
n(n+1)

2 = 1 + q + q3 + q6 + q10 + q15 + · · · . (17)

We now state our main results as the following Theorem.

Theorem. Each of the following relationships holds true:

2qf(−q3)ψ
(
q9
)

= f
(
−q6

) [
ϕ
(
−q9

)
− ϕ(−q)

]
(18)

and

2f(−q)f
(
−q2

)
= ϕ

(
q4
) [
ψ(q) + qψ

(
q9
)]

+ ϕ
(
q36
) [
ψ(q)− 3qψ

(
q9
)]
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− 2qψ(q)
[
ψ
(
q8
)

+ q8ψ
(
q72
)]
− 2q2ψ

(
q9
) [
ψ
(
q8
)
− 3q8ψ

(
q72
)]
, (19)

where the functions f(q), ϕ(q) and ψ(q) are given by (12), (13) and (14), respectively.
Proof. First of all, we shall prove our first q-identity (18). Let L1(q) and R1(q) denote

the left-hand and the right-hand sides of the q-identity (18), respectively. Then, in order
to compute the value for L1(q), by using (15) (for q 7→ q3) and (17) (for q 7→ q9), we have

L1(q) = 2q
(
1− q3 − q6 + q15 + q21 − · · ·

)
·
(
1 + q9 + q27 + q54 + q90 + q135 + q189 + q252 + · · ·

)
,

which, after multiplication and further simplification, yields

L1(q) = 2q − 2q4 − 2q7 + 2q10 − 2q13 + 2q22 + 2q25 + 2q28

− 2q34 − 2q37 + 2q43 − 4q46 + 2q49 − 2q58 − 2q61 − 2q64 + 2q67

+ 2q70 − 2q73 + 4q76 + 2q79 + 2q88 − 2q97 − 2q100 + · · · . (20)

In a similar way, we can compute the value for R1(q) by applying (15) (for q 7→ q6) and
(16) (for q 7→ −q and q 7→ −q9) as follows:

R1(q) =
(
1− q6 − q12 + q30 + q42 − q72 − q90 + · · ·

)
·
[ (

1− 2q9 + 2q36 − 2q81 + 2q144 − 2q225 + 2q324 − 2q441 + 2q576 − · · ·
)

−
(
1− 2q + 2q4 − 2q9 + 2q16 − 2q25 + 2q36 − 2q49 + 2q64 − 2q81 + · · ·

) ]
,

which, after simplification and by using algebraic manipulation, becomes

R1(q) = 2q − 2q4 − 2q7 + 2q10 − 2q13 + 2q22

+ 2q25 + 2q28 − 2q34 − 2q37 + 2q43 − 4q46 + 2q49 − 2q58 − 2q61

− 2q64 + 2q67 + 2q70 − 2q73 + 4q76 + 2q79 + 2q88 − 2q97 − 2q100 + · · · . (21)

By comparing the equations (20) and (21), we readily arrive at the q-identity (18).

We next prove the second q-identity (19). Let L2(q) and R2(q) denote the left-hand
and the right-hand sides of (19), respectively. Then, in order to compute the value for
L2(q), we make use of (15) (for q 7→ q and q 7→ q2) as follows:

L2(q) = 2
(
1− q − q2 + q5 + q7 − q12 − q15 + · · ·

)
·
(
1− q2 − q4 + q10 + q14 − q24 − q30 + q44 + q52 − · · ·

)
,

which, after simplification and by using algebraic manipulation, yields

L2(q) = 2
(
1− q − 2q2 + q3 + 2q5 + q6 − 2q9 + q10 − 2q11 − 2q12 + 2q14 − q15

+ 2q17 + 2q19 + q21 − 2q24 − q28 − 2q29 − 2q30 + 2q32 − 2q35 + 3q36 + 2q39

+ 2q42 + 2q44 − q45 − 2q46 − 2q50 + 2q51 − 2q53 − 2q54 − q55 − 2q56
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+ 2q57 + q59 − q60 + 2q65 + q66 + 2q71 + 2q72 + 2q74 − · · ·
)
. (22)

We now compute the value for

ϕ
(
q4
) [
ψ(q) + qψ

(
q9
)]
,

which occurs in (19). By applying (16) (for q 7→ q4) and (17) (for q 7→ q and q 7→ q9), we
have

ϕ
(
q4
) [
ψ(q) + qψ

(
q9
)]

= (1 + 2q4 + 2q16 + 2q36 + 2q64 + · · · )
·
[(

1 + q + q3 + q6 + q10 + q15 + · · ·
)

+ q
(
1 + q9 + q27 + q54 + q90 + q135 + · · ·

)]
,

which, after simplification and by using algebraic manipulation, assumes the following
form:

ϕ
(
q4
) [
ψ(q) + qψ

(
q9
)]

= 1 + 2q + q3 + 2q4 + 4q5 + q6 + 2q7 + 4q10 + 4q14

+ q15 + 2q16 + 4q17 + 4q19 + q21 + 2q22 + 2q25 + 4q26

+ 2q28 + 2q31 + 4q32 + 3q36 + 6q37 + 2q39 + 2q40 + 2q42 + 4q44 + q45

+ 4q46 + 2q49 + 2q51 + 2q52 + 2q55 + · · · . (23)

We next compute the value for

ϕ
(
q36
) [
ψ(q)− 3qψ

(
q9
)]
,

which occurs in (19). By applying (16) (for q 7→ q36) and (17) (for q 7→ q and q 7→ q9), we
find that

ϕ
(
q36
) [
ψ(q)− 3qψ

(
q9
)]

=
(
1 + 2q36 + 2q144 + 2q324 + · · ·

)
·
[ (

1 + q + q3 + q6 + q10 + q15 + · · ·
)

− 3q
(
1 + q9 + q27 + q54 + q90 + q135 + · · ·

) ]
,

which, after simplification and by using algebraic manipulation, yields

ϕ
(
q36
) [
ψ(q)− 3qψ

(
q9
)]

= 1− 2q + q3 + q6 − 2q10 + q15 + q21 − 2q28

+ 3q36 − 4q37 + 2q39 + 2q42 + q45 − 4q46 + 2q51

− 2q55 + 2q57 − 4q64 + q66 + 2q72 + · · · . (24)

In order to compute the value for

−2qψ(q)
[
ψ
(
q8
)

+ q8ψ
(
q72
)]
,

which occurs in (19), by making use of (17) (for q 7→ q, q 7→ q8 and q 7→ q72), we obtain

− 2qψ(q)
[
ψ
(
q8
)

+ q8ψ
(
q72
)]

= −2q
(
1 + q + q3 + q6 + q10 + q15 + · · ·

)
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·
[(

1 + q8 + q24 + q48 + q80 + q120 + · · ·
)

+ q8
(
1 + q72 + q216 + q432 + · · ·

)]
,

which, after simplification and by using algebraic manipulation, becomes

− 2qψ(q)
[
ψ
(
q8
)

+ q8ψ
(
q72
)]

= −2q − 2q2 − 2q4 − 2q7 − 4q9 − 4q10

− 2q11 − 4q12 − 4q15 − 2q16 − 4q19 − 2q22 − 4q24 − 2q25 − 2q26 − 2q28

− 2q29 − 4q30 − 2q31 − 2q35 − 6q37 − 2q40 − 4q45 − 4q46 − 2q49 − 2q50

− 2q52 − 2q53 − 4q54 − 2q55 − 2q56 − 2q59 − 2q61 − 6q64 − · · · . (25)

Finally, we compute the value for

−2q2ψ
(
q9
) [
ψ
(
q8
)
− 3q8ψ

(
q72
)]
,

which occurs in (19). By making use of (17) (for q 7→ q8, q 7→ q9 and q 7→ q72), it is easily
observed that

− 2q2ψ
(
q9
) [
ψ
(
q8
)
− 3q8ψ

(
q72
)]

= −2q2
(
1 + q9 + q27 + q54 + q90 + q135

+ q189 + · · ·
)[(

1 + q8 + q24 + q48 + q80 + q120 + · · ·
)

− 3q8(1 + q72 + q216 + q432 + · · · )
]
,

which, after simplification and by using algebraic manipulation, yields

− 2q2ψ
(
q9
) [
ψ
(
q8
)
− 3q8ψ

(
q72
)]

= −2q2 + 4q10 − 2q11 + 4q19 − 2q26 − 2q29 − 2q35

+ 4q37 − 2q50 − 2q53 − 2q56 − 2q59 + 4q64 − 2q77 − 2q80 + · · · . (26)

Thus, by applying the equations (23) to (26), we find that

R2(q) = ϕ
(
q4
) [
ψ(q) + qψ

(
q9
)]

+ ϕ
(
q36
) [
ψ(q)− 3qψ

(
q9
)]

− 2qψ(q)
[
ψ
(
q8
)

+ q8ψ
(
q72
)]
− 2q2ψ

(
q9
) [
ψ
(
q8
)
− 3q8ψ

(
q72
)]

= 2
[
1− q − 2q2 + q3 + 2q5 + q6 − 2q9 + q10 − 2q11 − 2q12 + 2q14 − q15

+ 2q17 + 2q19 + q21 − 2q24 − q28 − 2q29 − 2q30 + 2q32 − 2q35 + 3q36

+ 2q39 + 2q42 + 2q44 − q45 − 2q46 − 2q50 + 2q51 − 2q53 − 2q54 − q55

− 2q56 + 2q57 + q59 − q60 + 2q65 + q66 + 2q71 + 2q72 + 2q74 − · · ·
]
. (27)

The q-identity (19) now follows upon comparing the equations (22) and (27).

We thus have completed our proof of the Theorem.

3. Concluding Remarks and Observations

Our present article is motivated essentially by the potential for applications of q-series
and q-products. We have investigated here the three most interesting functions f(q), ϕ(q)
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and ψ(q), which are related closely to such celebrated entities as Jacobi’s theta func-
tions in the equations (1) to (4), Ramanujan’s general theta function in (5) and Jacobi’s
triple-product identity in (7) or (8). Our main results are stated and proved as the above
Theorem and provide a sequel to some recent works by Chaudhary et al. (see [4] and [5]),
by Adiga et al. [1], and by Srivastava and Chaudhary [13].

Acknowledgements

The third-named author (Sangeeta Chaudhary) is thankful to the National Board of
Higher Mathematics (NBHM) under the Department of Atomic Energy (DAE) of the
Government of India for providing financial support by awarding her a Post-Doctoral
Fellowship (Grant Numbers: 2/40(47)/2015/R and D-II/8417 dated 22 June 2017) while
carrying out this research work.

References

[1] C. Adiga, N. A. S. Bulkhali, D. Ranganatha and H. M. Srivastava, Some new modular
relations for the Rogers-Ramanujan type functions of order eleven with applications
to partitions, J. Number Theory 158 (2016), 281–297.

[2] M. P. Chaudhary, On q-product identities, Pacific J. Appl. Math. 5 (2013), 123–129.

[3] M. P. Chaudhary and J. Choi, Note on modular relations for Rogers-Ramanujan type
identities and representation for Jacobi identities, East Asian Math. J. 31 (2015),
659–665.

[4] M. P. Chaudhary, G. A. Salilew and J. Choi, Two theta function identities, Far East
J. Math. Sci. 101 (2017), 1833–1837.

[5] M. P. Chaudhary, G. A. Salilew and J. Choi, Two identities involving theta functions,
East Asian Math. J. 33 (2017), 291–293.

[6] S. Cooper, The quintuble product identity, Internat. J. Number Theory 2 (2006),
115–161.

[7] M. D. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math.
Soc. Ser. A 34 (1983), 31–35.

[8] M. D. Hirschhorn, A generalisation of the quintuple product identity, J. Austral.
Math. Soc. Ser. A 44 (1988), 42–45.

[9] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti,
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