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On the existence of roots of some p-adic
exponential-polynomials
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Abstract. In this paper, we apply Newton polygon method in order to derive sufficient conditions
for the existence of zeros of some p-adic exponential-polynomials.

1. Introduction

Let K be an algebraically closed field of characteristic zero, and let exp be a (partial)
exponential map exp : E → K×, E ⊂ K being the domain of the exponential map. An
exponential-polynomial is any expression of the form

a(X) = P1(X) exp(w1X) + ...+ Pd(X) exp(wdX), (1)

where the Pi’s (i = 1, . . . , d) are polynomials in K[X], and wi ∈ K for i = 1, 2, . . . , d.
The theory of exponential polynomials is an important topic in transcendental number
theory. A remarkable work has been made by P. D’A quino, A. Macintyre and G. Terzo
[1], where they proved that Shapiro’s Conjecture (over an algebraically closed exponential
field of characteristic zero having an infinite cyclic group of periods and the exponential
is surjective onto the multiplicative group) is true with an extra assumption, Schanuel’s
Conjecture. In 2017, they proved the following [2]:
Assume Schanuel’s Conjecture. Let Z(f) be the zero set of the exponential polynomial

f(X) = α1 exp(w1X) + ...+ αd exp(wdX),

where αi, wi are constants in K. If Z(f) is infinite, then each infinite subset X ⊆ Z(f)
has an infinite transcendence degree over Q.
In this paper, we work in the non-archimedean fields, namely the p−adic fields. Here,
the situation is different to some extend. In fact, Poorten and Rumely [PR] proved that
each exponential polynomial of the form (1.1) has at most finitely many roots in the
domain of convergence. Their proof relies on a geometric approach, namely The Newton
polygon of power series, where they proved that The Newton polygon of the exponential
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polynomial (1.1) ends with a straight line. That guarantees the existence of a bound
on the number of zeros. Furthermore, the p-adic exponential function and the p-adic
trigonometric functions are not periodic. Many results, however, have been made in the
p−adic exponential polynomials. For example, Poorten, [5] , used Strassmann Theorem
to prove that the exponential polynomial

b(z) = P1[z] exp(w1z) + ...+ Pd[z] exp(wdz), (2)

with Pi[z] ∈ Cp[z] and ord(wi) >
1
p−1+ε, i = 1, 2, .., d, has at most (d−1+

∑d
i=1 degPi[z])(1+

1
ε(p−1)) roots in the unit disk. Poorten and Rumely, [6], proved that the exponential poly-

nomial (1.2) over Qp (for large enough p) has at most (d − 2 +
∑d

i=1 degPi[z])p roots in
its domain of convergence using the Newton polygon method and concepts of recurrence
sequences and generalized sums.
In this work, we consider some p−adic exponential polynomials, where we put a least
bound on the number of zeros (counting multiplicity) of the p−adic exponential polyno-
mials. We mainly use here the Newton Polygon of power series method which assures that
the roots of the power series yield from the finite segments of the polygon. In other words,
if the Newton polygon of the power series f has a finite segment with projection length on
the x-axis equals to m, then there exist m roots (counting multiplicity) of f of the same
order. Similarly, we use The Newton polygon method to put sufficient conditions on some
polynomials P [X,Y ] ∈ Q[X,Y ] to have roots of the form (x, exp(x)).

2. Notation and preliminaries

Let p be a prime number, Qp the completion of Q with respect to the p−adic absolute
value |.| and Cp the completion of an algebraic closure of Qp. The absolute value | · | on
Cp is the extension of the p−adic absolute value |.|.
Starting from | · |, one can define a map ord : Cp → Q∪{∞}, as follows: ord(0) =∞, and
ord(x) = − log(|x|). This map satisfies the properties:

ord(x± y) ≥ min {ord(x), ord(y)},
ord(xy±1) = ord(x)± ord(y),

if ord(x) 6= ord(y), then ord(x± y) = min{ord(x), ord(y)}.

The set O := {x ∈ Cp : ord(x) ≥ 0} forms a local ring called the ring of integers in Cp.
Let n ∈ N with n ≥ 1. It is well known that

ord(n!) =
n− Sn
p− 1

,

where Sn is the sum of digits of n when it is written in the base p. In particular, if
n = pm,m ≥ 1, then Sn = 1. It is clear that Sn ≥ 1,∀n ≥ 1. This implies that

ord(
1

n!
) ≥ −n− 1

p− 1
.

We also recall some basic concepts and results concerning The Newton polygon method.
For more details, see [4] and [3].
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2.1. The Newton polygon for polynomials

Let f(X) = 1 + a1X + · · ·+ anX
n ∈ 1 +XCp[X] be a polynomial with degree n and

the constant term is 1. We plot the following points in the Euclidean space R2:

(0, 0), (1, ord(a1)), (2, ord(a2)), . . . , (n, ord(an)).

If ai = 0 for some i, we omit this point (considering it as a point at infinity). The Newton
polygon of the polynomial f is defined as the convex hull of the points
(0, 0), (1, ord(a1)), (2, ord(a2)), . . . , (n, ord(an)). That is the highest convex polygonal line
joining (0, 0) with (n, ord(an)) and passing through or below all the points (i, ord(ai)), i =
1, 2, .., n− 1. Practically, the Newton polygon of polynomials is obtained by the following
steps:
1) Start with the vertical half-line which is the negative part of the y-axis.
2) Rotate the line counter-clockwise until it hits one of the points we have plotted.
3) Break the line at that point, and continue rotating the remaining part until another
point is hit.
4) Continue until all the points have either been hit or lie strictly above a portion of the
polygon.
A vertex of the Newton polygon is a point (i, ord(ai)) where the slopes change. If a
segment joins the point (i,m) to the point (i′,m′), then the slope is the quantity m−m′

i−i′ .
By the length of the slope we mean the quantity i− i′.
If the polygon has a segment ends by a point (i, ord(ai)) and continues by another segment
of different slope, we say that the Newton polygon has a ”break” at the point (i, ord(ai)).

Theorem 1. Let f(X) = 1 + a1X + · · · + anX
n ∈ 1 + XCp[X]. If λ is a slope of the

Newton polygon associated to the polynomial f with the length m, then there exist the
numbers α1, α2, .., αm ∈ Cp (counting multiplicity) such that f(αi) = 0 and ord(αi) = −λ,
∀i = 1, 2, ..,m.

2.2. The Newton polygon for power series

The definition is formally identical to that given for polynomials: Consider the power
series

f(X) = 1 + a1X + a2X
2 + · · ·+ anX

n + . . .

We plot the points (i, ord(ai)), i = 1, 2, ..., ignoring as before any points where ai = 0.
The Newton polygon of f(X) is again obtained by the rotating line procedure. In this
case, the things become more complicated than the case of polynomials. For example, the
Newton polygon of the power series f(X) = 1 + pX + pX2 + .. + pXn + ... is just the
horizontal line OX which does not hit any of the points (i, ord(ai)), i = 1, 2, .... For this
case and other cases, we must modify the rules to obtain the Newton polygon of power
series as the following steps:
Start with the half-line which is the negative part of the y-axis. Rotate that line counter-
clockwise until one of the following happens:
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i) The line simultaneously hits infinitely many of the points we have plotted. In this case,
stop and the polygon is complete. For example the Newton polygon of the power series
f(X) = 1 +

∑∞
i=1 p

iXi is just the line Y = X.
ii) The line reaches a position where it contains only one of our points that serves as a
center of rotation, but can be rotated no further without leaving behind some points. In
this case, stop and the polygon is complete. We will counter this case in Section 4.
iii) The line hits a finite number of points. In this case, break the line at the last point it
was hit, and repeat the whole procedure again.
Using the above procedure, it can be seen that the Newton polygon of power series either
ends by a ray (see the Appendix) or has an infinite number of finite segments (for example,
the Newton polygon of the power series 1 +

∑∞
i=1 p

i2Xi).
Furthermore, it is well known that if the Newton polygon of a power series f ends by a ray,
then f has at most finitely many zeros in its disk of convergence. The following lemma
is a connection between the domain of convergence of a power series and the slopes of its
polygon.

Lemma 1. Let m be the sup of all slopes appearing in the Newton polygon of a power
series f(X) = 1 +

∑∞
i=1 aiX

i. Then, the domain of f is the set

{x ∈ Cp : ord(x) > −m}.

In the case m is infinite. Then f converges on all of Cp. In particular, if the Newton
polygon of f ends by a ray of slope m, then the domain is {x ∈ Cp : ord(x) > −m}.

Finally, we need the following:

Corollary 1. ([4], p.106) If a segment of the Newton polygon of f(X) ∈ 1 + Cp[[X]] has
finite length N and slope λ, then there are precisely N values of x counting multiplicity
for which f(x) = 0 and ord(x) = −λ.

We summarize what we need as the following:
Fact 1. The points (i,ord( 1

i!)); i > 1 are on or above the line Y = −1
p−1(X − 1). It

algebraically means that ord( 1
i!) >

−1
p−1(i− 1), ∀i > 1.

Fact 2. A finite segment of the length m of the Newton polygon of the power series f
determines at least m roots (counting multiplicity) of f of the same order.

3. The Main Results

Keep the notation as above. We prove the following:

Theorem 2. Consider the polynomials over O:

P1(z) =

n1∑
j=0

a
(1)
j zj , P2(z) =

n2∑
j=0

a
(2)
j zj , . . . ., Pd(z) =

nd∑
j=0

a
(d)
j zj ,
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where nd > max1≤i≤d−1{degPi, 1}. Let w1, . . . , wd ∈ Cp with ord(wi) >
1
p−1 , i = 1, 2, .., d.

Then, the exponential polynomial

b(z) = P1(z) exp(w1z) + P2(z) exp(w2z) + . . . .+ Pd(z) exp(wdz),

with ord(a
(1)
0 + · · ·+ a

(d)
0 ) = ord(a

(d)
nd ) = 0, has at least nd roots (counting multiplicity) in

the unit disk.

Proof. As ord(wj) >
1
p−1 for j = 1, 2, .., d, the domain of convergence is the unit disk.

Let c = a
(1)
0 + ....+ a

(d)
0 , then, by expanding a(z) as a power series in z, one finds:

a(z)

c
= 1 + c−1

∞∑
i=1

( d∑
j=1

a
(j)
0

wij
(i)!

+ ....+ a(j)nj

w
i−nj

j

(i− nj)!

)
zi =: 1 +

∞∑
i=1

miz
i.

We have

ord(wj) >
1

p− 1
=

i

i(p− 1)
>

i− Si
i(p− 1)

, ∀i ≥ 1,∀j = 1, 2, .., d.

Hence,

i ord(wj) >
i− Si
p− 1

= ord(i!)⇒ i ord(wj)− ord(i!) > 0.

Therefore,

ord(
wij
i!

) > 0. (3)

Using (3), the assumptions of the theorem that ord(c) = 0 and the coefficients of Pj , j =
1, 2, ..., d are in O, we find that

ord(mi) ≥ 0, i = 1, 2, ...

That means the points (i, ord(mi)), i = 1, 2, .. are on or above the x-axis. Consider the

coefficient mnd
in the series a(z)

c . The assumption that ord(and
) = ord(c) = 0 and (3)

guarantee that
ord(mnd

) = 0.

Assume that ord(w1) = min{ord(wj), j = 1, 2, .., d} (the other cases can be done similarly).
Therefore, we have for all i > nd

min
{

ord(
1

(i− j)!
) : 0 ≤ j ≤ nd

}
= ord(

1

i!
).

Hence,

ord(mi) ≥ min
{

ord(ord(
wi−kj

(i− k)!
)) : j = 1, . . . , d, 0 ≤ k ≤ nj

}
≥ (i− nd)ord(w1) + ord(

1

i!
)
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Figure 1: The Newton polygon of a(z)
c

≥ (i− nd)ord(w1)−
i− 1

p− 1
.

Therefore, for all i > nd the points (i, ord(mi)) are on or above the line

L : Y + nd.ord(w1)−
1

p− 1
= (ord(w1)−

1

p− 1
)X.

This line has a positive slope λ = ord(w1)− 1
p−1 > 0 and intersects with the x-axis in the

point (
nd.ord(w1)− 1

p−1

ord(w1)− 1
p−1

, 0) which lies on the right of the point (nd, 0) since nd > 1.

The points (i, ord(mi)), i = 1, 2, 3, . . . are thus distributed as follows:
1) The points (1, ord(m1)), . . . , (nd − 1, ord(mnd−1)) are on or above the x-axis.
2) The point (nd, ord(mnd

)) is on the x-axis.
3) The points (i, ord(mi)), i > nd are on or above the line L and above x-axis. It follows
that there exists a finite number of points (i, ord(mi)) lying on a horizontal line above the
x-axis.
Now, we apply the previous steps to obtain The Newton polygon of a(z)c as follows: Rotate
the vertical half-line of the negative part of the y-axis until it hits the point (nd, 0). Break
the line at this point (the existence of the break is because there is at most finitely many
points (i, ord(mi)) lying on a horizontal line above the x-axis). Rotate it around this point
until it hits another point or continues until it reaches a position parallel to a line with a
positive slope. In all cases, the Newton polygon of a(z)c starts with a segment of the length
nd and has a break at the point (nd, 0) (see figure 1). Therefore, using Fact 2, we find

that a(z)
c (and hence a(z)) has at least nd roots.
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Remark 1. Theorem 2 covers only certain cases of exponential polynomials. The as-
sumption ord(wj) = 0,∀j = 1, 2, .., d is crucial. In fact, there exists a very big class of
exponential polynomials that have no roots. For example, the exponential polynomial over
O:

a(z) = a exp(w1z) + (a1z + · · ·+ anz
n) exp(w2z) + (b1z + · · ·+ bmz

m) exp(w3z),

where ord(wj) = 0,∀j = 1, 2, 3, . . . , n < m, has no roots it its domain even if ord(a) =
ord(bm) = 0.

The above follows since, if z0 ∈ {z ∈ Cp : ord(z) > 1
p−1} is a root of a(z), then

a exp(w1z0) = −
(

(a1z0 + · · ·+ anz
n
0 ) exp(w2z0) + (b1z0 + · · ·+ bmz

m
0 ) exp(w3z0)

)
.

Therefore,

|a exp(w1z0)| =
∣∣∣(a1z0 + · · ·+ anz

n
0 ) exp(w2z0) + (b1z0 + · · ·+ bmz

m
0 ) exp(w3z0)

∣∣∣
≤ max{|(a1z0 + · · ·+ anz

n
0 ) exp(w2z0)|, |(b1z0 + · · ·+ bmz

m
0 ) exp(w3z0)|}

< p
−1
p−1 < 1,

since | exp(wjz0)| = 1, j = 2, 3 and |z0| < p
−1
p−1 < 1. On the other hand, we have

|a exp(w1z0)| = | exp(w1z0)| = 1. This contradiction shows that a(z) has no roots in
its domain.

Corollary 2. Consider the polynomial

P [X,Y ] = a+ bY m + a(i1,j1)X
i1Y j1 + · · ·+ a(id,jd)X

idY jd ∈ Z[X,Y ],

with p| gcd(m, j1, .., jd), 0 < i1 < · · · < id, and (a+ b, p) = (a(id,jd), p) = 1. Then, P has at
least id roots of the form (x, exp(x)).

Proof. Consider the exponential polynomial

b(z) = (a · z0) + (b · z0) exp(mz) + a(i1,j1)z
i1 exp (j1z) + · · ·+ a(id,jd)z

id exp (jdz).

Then, we have

ord(m) ≥ 1 >
1

p− 1
, ord(jk) ≥ 1 >

1

p− 1
, k = 1, 2, . . . , d.

Also, the polynomial Pd(z) = a(id,jd)z
id has the largest degree with ord(a(id,jd)) = ord(a+

b) = 0. This implies, by Theorem 2, that b(z) has at least id roots. This proves the
Corollary.

Corollary 3. Let P [X,Y ] ∈ Q[X,Y ] be polynomial defined by the conditions of the pre-
vious Corollary.
Then there exists a tuple (x, exp(x)), x ∈ E (domain of the exponential function) such that
P (x, exp(x)) = 0. In other words, the elements x, exp(x) are Q−algebraically dependent.
Hence, tdQQ(x, exp(x)) ≤ 1, where td stands for the transcendence degree.
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4. Further Applications of the Newton polygon method

One can also use the Newton polygon of power series in order to obtain sufficient
conditions on a polynomial P [X,Y ] ∈ Q[X,Y ] to have roots of the form (x, exp(x)), as
done in what follows.

Theorem 3. For any polynomial P [X,Y ] having the form

P [X,Y ] = dY n + cXm + c1X
m1Y n1 + · · ·+ crX

mrY nr ∈ Q[X,Y ],

with mi,m, n, ni ∈ Z≥1, (ni, p) = (n, p) = 1, ord(d) = ord(ci) = 0, for i = 1, 2, . . . r, and
such that ord(c) < −1

p−1m, has a root of the form (x, exp(x)), x ∈ Cp with ord(x) > 1
p−1 .

Proof. Let f(X) := P [X, exp(X)] be the corresponding power series associated with
the original polynomial P [X,Y ]. Then, f(X) can be written as

f(X) = d(1 + b1X + ..+ bm−1X
m−1 + (bm + c.d−1)Xm + bm+1X

m+1 + . . . ),

where bi = ni

i! + e1d
−1 n

i−m1
1

(i−m1)!
+ · · ·+ erd

−1 ni−mr
r

(i−mr)!
; ek = 0 or ck, for k = 0, .., r.

According to the assumption of theorem (the coefficients d, ci, and the degrees nj have the
same order which is zero) and fact (1), we find that the numbers bi satisfy the inequality

ord(bi) ≥
−1

p− 1
(i− 1).

Since ord(c) < −1
p−1m < −1

p−1(m− 1), it follows that

ord(bm + cd−1) = min{ord(bm), ord(cd−1)} = ord(c) <
−1

p− 1
m.

Also, if i is sufficiently large index of the form pj , then ord(n
i

i! ) = ord( 1
i!) = − i−1

p−1 .
Clearly, mk + Si−mk

> 1,∀k = 1, 2, .., r (since Sn ≥ 1,∀n ≥ 1). This is equivalent to

− i−1
p−1 < −

i−mk−Si−mk
p−1 . In other words,

ord(
1

i!
) < ord(

1

(i−mk)!
), k = 1, 2, . . . , r.

Hence,

ord(bi) = min
{

ord(
ni

i!
), ord(

ni−m1
1

(i−m1)!
+ ...+

ni−mr
r

(i−mr)!
)
}

= ord(
1

i!
).

Therefore, the points of the power series f(X)
d are distributed as follows (for more details,

see the Appendix):
The points (i, ord(bi)) are on or above the line Y = −1

p−1(X−1), the subsequence (pi, ord(bpi)),

for large enough i lies on the previous line and the point (m, ord(bm + d−1c)) is below the
line Y = − 1

p−1X.
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Figure 2: The Newton polygon of f(X)
d

Now, we apply the previous steps to obtain The Newton polygon of the power series
f(X)
d as follows:

Rotate the vertical half-line of the negative part of the y-axis until it hits the point
(m, ord(bm+d−1c)). Then rotate it around this point until it reaches a position parallel to
the line Y = − 1

p−1(X − 1). Stop here and the polygon is complete. Any further rotation
would leave behind some points (i, ord(bi)) (see figure 2 and the Appendix). Therefore,

the Newton polygon of f(X)
d has a break at the point (m, ord(bm + d−1c)). This implies,

that the Newton polygon of f(X)
d has a finite segment of the length m. Using Fact 2 , f(X)

d
(and hence f) has at least m roots. So, the original polynomial P [X,Y ] has m roots in
Cp × C∗p of the form (x,exp(x)).

Remark 2. Newton polygon method does not only guarantee the existence of polynomials
that admit roots of the form (x, exp(x)), but it also gives us information about the order
of x.

Example 1. Consider the polynomial

P [X,Y ] = p−1X2 + Y 2; p > 5.

Let

f(X) := P [X, exp(X)] = p−1X2 + (exp(X))2 = p−1X2 + exp(2X).

Then we have,

f(X) = 1 +
2X

1!
+ (

22

2!
+ p−1)X2 +

23

3!
X3 + · · ·+ 2i

i!
Xi + . . . .
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Therefore,

ord(
2

1!
) = 0, ord(

2i

i!
) = ord(

1

i!
),∀i > 3.

This is because, ord(2) = 0 for p > 5. Furthermore, we find

ord(
22

2!
+ p−1) = −1.

The assumption p > 5 guarantees that the point (2,−1) is below the line Y = −1
p−1X. This

means that the Newton polygon of f(X) starts with a segment of the slope (−12 ) and ends
with the point (2,-1)while the second segment is a half line which starts with the point
(2,-1) and has the slope −1

p−1 . Therefore, the Newton polygon of f(X) has a break at the
point (2,-1). Using fact (2), we find that the power series f(X) has at least two roots
of the order 1

2 . So, the original polynomial P [X,Y ] has at least two roots of the form
(x,exp(x)).

5. Appendix

The following known Lemma, (see, e.g., [4], p. 143), determines the distribution of
vertices (i, ord( 1

i!)) that appear in the Newton polygon of the exponential map.

Lemma 2. The Newton polygon of the exponential function is a straight line from (0, 0)
with the slope −1

p−1 .

Proof. We know that the exponential function exp(X) is defined as

exp(X) = 1 +
X

1
+
X2

2!
+ · · ·+ Xi

i!
+ . . .

We first show that, for all i > 0, the points (pi,ord(api)) belong to the line Y = −1
p−1(X−1)

and the other points are on or above this line. That is, for all j > 1, the points (j,ord(aj))
are on or above the line Y = −1

p−1(X − 1).
To do that, we prove that the slope of the line which passes through any two points
(pi,ord(api)), (pj ,ord(apj ));(i > j) has a slope independent of i and j and indeed has the
value −1

p−1 . Let m be the slope of the line through any points (pi,ord(api)), (pj ,ord(apj )).
Then

m =
ord(api)− ord(apj )

pi − pj
=
−ord(pi!) + ord(pj !)

pi − pj
=

ord(pj !)− ord(pi!)

pi − pj

=

pj−S
pj

p−1 −
pi−Spi

p−1
pi − pj

.

Therefore,

m =

pj−1
p−1 −

pi−1
p−1

pi − pj
=

pj−pi
p−1

pi − pj
=
−1

p− 1
.
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So, all the points (pi, ord(api)); i > 0 belong to the line with the slope −1
p−1 and passes

through the point (p0,ord(ap0))(which is the point (1,0)). This line has the equation
Y = −1

p−1(X − 1). Also, for all i > 1, we have

ord(ai) = ord(
1

i!
) ≥ − 1

p− 1
(i− 1).

This implies that all the points (i,ord(ai)); (i > 1) are on or above the line Y = −1
p−1(X−1).

From that argument, we deduce that the points (i,ord(ai)); (i ≥ 1) are distributed as
follows:
1) The subsequence (pj , ord(apj )), j ≥ 0 lies on the line Y = −1

p−1(X − 1) which has the

slope − 1
p−1 .

2) The other points are on or above this line.
Now apply the previous steps to obtain The Newton polygon of exp(X) as follows: Rotate
the vertical half-line of the negative part of the y-axis until it reaches to a position parallel
to the line Y = − 1

p−1(X − 1). We stop here without any further rotation. This is

because, for any ε > − 1
p−1 , the line Y = εX would leave behind it some points of the form

(pi, ord( 1
pi!

)). Since ε > −1
p−1 , it follows that there exists some positive real number δ > 0

such that ε = −1
p−1 + δ. Therefore,

ord(ai) < εi⇔ − i− Si
p− 1

< εi⇔ − i− Si
p− 1

< (
−1

p− 1
+ δ)i⇔

i− Si > i− (p− 1)δi⇔ (p− 1)δi > Si ⇔ i >
Si

(p− 1)δ
.

We can choose i to be sufficiently large and has the form pj . In this case, we find that
Si = 1, so the relation i > 1

δ(p−1) holds true for the index i := pj . This implies that there is

no further rotation of the line Y = −1
p−1X. Hence, the Newton polygon of the exponential

function is the straight line Y = −1
p−1X from (0, 0).
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