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1. Introduction

One of the attempts to substitute numerous concepts in topology with concepts pos-
sessing either weaker or stronger properties was done by N. Levine [4]. He introduced
the concepts of semi-open, semi-closed set and semi-continuity of a function, which gener-
ated new results, some of which are generalization of existing ones. After this noteworthy
work of Levine several mathematicians became attracted in presenting other topological
concepts which can substitute the concepts of open sets.

In [5], Velicko introduced the concepts of θ-continuity between topological spaces and
subsequently defined the concepts of θ-closure and θ-interior of a subset of topological
space. In [1], Al-Hawary characterized θ-continuity and the other well-known variations
of continuity such as strong continuity, semi-continuity and closure-continuity.

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are,
respectively, denoted and defined by

Cls(A) = {x ∈ X : Cl(U) ∩A 6= ∅ for every open set U containing x}

and
Ints(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x},
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where Cl(U) is the closure of U in X. A subset A of X is θ-closed if Cls(A) = A and
θ-open if Ints(A) = A. Equivalently, A is θ-open if and only if X\A is θ-closed.

In [2], Hdeib introduced the concepts of ω-open and ω-closed sets and ω-closed map-
pings on a topological space. He showed that ω-closed mappings are strictly weaker than
closed mappings and also showed that the Lindelöf property is preserved by counter im-
ages of ω-closed mappings with Lindelöf counter image of points. In 2010, Ekici et al.
[3] introduced the concepts of ωθ-open and ωθ-closed sets on a topological space. They
showed that the family of all ωθ-open sets in a topological space X forms a topology on X.
They also introduced the notions of ωθ-interior and ωθ-closure of a subset of a topological
space.

A point x of a topological space X is called a condensation point of A ⊆ X if for each
open set G containing x, G∩A is uncountable. A subset B of X is ω-closed if it contains
all of its condensation points. The complement of B is ω-open. Equivalently, a subset
U of X is ω-open (resp., ωθ-open [3]) if and only if for each x ∈ U , there exists an open
set O containing x such that O\U (resp., O\Ints(U)) is countable. A subset B of X is
ωθ-closed [3] if its complement X\B is ωθ-open. The ω-closure (resp., ωθ-closure [3]) and
ω-interior (resp., ωθ-interior [3]) of A ⊆ X are, respectively, denoted and defined by

Clω(A) = ∩{F : F is an ω-closed set containing A}

(resp., Clωθ(A) = ∩{F : F is an ωθ-closed set containing A})

and
Intω(A) = ∪{G : G is an ω-open set contained in A}

(resp., Intωθ(A) = ∪{G : G is an ωθ-open set contained in A}).

It is worth noting that A ⊆ Clω(A) (resp., A ⊆ Clωθ(A) [3]) and Intω(A) ⊆ A (resp.,
Intωθ(A) ⊆ A [3]). Let Tω (resp., Tωθ) be the family of all ω-open (resp., ωθ-open) subsets
of a topological space X. Since Tω (resp., Tωθ) is a topology on X, for any set A ⊆ X,
Intω(A) (resp., Intωθ(A)) is ω-open (resp., ωθ-open) and the largest ω-open (resp., ωθ-open
set) contained in A. Moreover, for any set A ⊆ X, Clω(A) (resp., Clωθ(A)) is ω-closed
(resp., ωθ-closed) and the smallest ω-closed (resp., ωθ-closed) set containing A.

A topological space X is said to be ω-connected (resp., θ-connected, ωθ-connected [3])
if X cannot be written as the union of two nonempty disjoint ω-open (resp., θ-open, ωθ-
open) sets. Otherwise, X is ω-disconnected (resp., θ-disconnected, ωθ-disconnected [3]).
A subset B of X is ω-connected (resp., θ-connected, ωθ-connected) if it is ω-connected
(resp., θ-connected, ωθ-connected) as a subspace of X. Throughout the paper, related
results of ωθ-open, ωθ-closed, ωθ-closure, ωθ-interior, and ωθ-connectedness are due to [3].

A function f from a topological space X to another topological space Y is said to be

(i) ω-open (resp., θ-open, ωθ-open) if f(G) is ω-open (resp., θ-open, ωθ-open) in Y for
every open set G in X;

(ii) ω-closed (resp., θ-closed, ωθ-closed) if f(G) is ω-closed (resp., θ-closed, ωθ-closed) in
Y for every closed set G in X;
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(iii) ω-continuous if f−1(V ) is ω-open (resp., θ-open, ωθ-open) in X for every open subset
V of Y ;

(iv) ω-irresolute if for every x ∈ X and every ωθ-open set A containing f(x), there exists
an ω-open set U containing x such that f(U) ⊆ A.

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For
each α ∈ A, let Tα be the topology on Yα. The Tychonoff topology on Π{Yα : α ∈ A}
is the topology generated by a subbase consisting of all sets p−1α (Uα), where the projec-
tion map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα, Uα ranges over all
members of Tα, and α ranges over all elements of A. Corresponding to Uα ⊆ Yα, denote
p−1α (Uα) by 〈Uα〉. Similarly, for finitely many indices α1, α2, . . . , αn, and sets Uα1 ⊆ Yα1 ,
Uα2 ⊆ Yα2 , . . . , Uαn ⊆ Yαn , the subset

〈Uα1〉 ∩ 〈Uα2〉 ∩ · · · ∩ 〈Uαn〉 = p−1α1
(Uα1) ∩ p−1α2

(Uα2) ∩ · · · ∩ p−1αn (Uαn)

is denoted by 〈Uα1 , Uα2 , . . . , Uαn〉. We note that for each open set Uα subset of Yα, 〈Uα〉 =
p−1α (Uα) = Uα×Πβ 6=αYβ. Hence, a basis for the Tychonoff topology consists of sets of the
form 〈Bα1 , Bα2 , ..., Bαk〉, where Bαi is open in Yαi for every i ∈ K = {1, 2, ..., k}.

Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα for
each α ∈ A. It is known that every projection map is a continuous open surjection. Also,
it is well known that a function f from an arbitrary space X into the Cartesian product Y
of the family of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only
if each coordinate function pα ◦f is continuous, where pα is the α-th coordinate projection
map.

2. ω-Open and ω-Closed Functions

In this section, we investigate the connection of ω-open (resp., ω-closed) function to the
other well-known functions such as open, θ-open, and ωθ-open (resp., closed, θ-closed, ωθ-
closed) functions. We also give some characterizations of ω-open and ω-closed functions.
Throughout, if no confusion arises, let X and Y be topological spaces.

We shall be using the following lemma later.

Lemma 1. Let f : X → Y be a bijective function. Then f is ω-open on X if and only if
it is ω-closed on X.

Remark 1. [3, Remark 4] Let A ⊆ X. Then

(i) If A is open, then A is ω-open;

(ii) If A is θ-open, then A is open;

(iii) If A is θ-open, then A is ωθ-open; and

(iv) If A is ωθ-open, then A is ω-open.
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It is shown in [3, p.295] that the implications above are not reversible.

Remark 2. Let f : X → Y be a function. Then

(i) If f is open (resp., closed), then f is ω-open (resp., ω-closed).

(ii) If f is ωθ-open (resp., ωθ-closed), then f is ω-open (resp., ω-closed).

Remark 3. The converses of Remark 2 (i) and (ii) do not necessarily hold.

(i): First, consider the topological spaces X = Z = Y = {a, b, c, d} with respective
topologies TX = {∅, X, {a, b, c}}, TZ = {∅, Z, {a, b}}, and TY = {∅, Y, {a}, {d}, {a, d},
{a, b}, {a, b, d}}. Define f : X → Y by f(a) = a, f(b) = b, f(c) = c, and f(d) = a. Define
g : Z → Y by g(a) = g(b) = g(c) = g(d) = d. Since Y is countable, f(A) is ω-open in Y
for every open set A of X. However, f({a, b, c}) = {a, b, c} is not open in Y . Thus, f is
ω-open but not open on X. Since Y is countable, g(A) is ω-closed in Y for every closed
set A in X. However, g({c, d}) = {d} is not closed in Y . Thus, g is ω-closed but not
closed on Z.

(ii): Next, consider R with topologies T1 = {∅,R,Qc ∪ {0}} and T2 = {∅,R,Qc}.
Define f : (R,T1) → (R,T2) by f(x) = x for all x ∈ R. We will show first that Qc ∪ {0}
is ω-open in T2. Let x ∈ Qc ∪ {0}. Then x ∈ R and R\(Qc ∪ {0}) = Q\{0} is countable.
Hence, Qc∪{0} is ω-open in T2. Since f(Qc∪{0}) = Qc∪{0}, f is ω-open on (R,T1). Next
we show that every nonempty proper subset A of R is not ωθ-open in (R,T2). Suppose
that Ints(A) 6= ∅. Note first that the only nonempty open sets in T2 are R and Qc with
Cl(R) = Cl(Qc) = R. Let y ∈ Ints(A). Then there exists an open set O containing y such
that Cl(O) = R ⊆ A, a contradiction. Hence, Ints(A) = ∅. If follows that R\Ints(A) = R
and Qc\Ints(A) = Qc, which are uncountable. Thus, A is not ωθ-open in (R,T2). This
means that f(Qc ∪ {0}) = Qc ∪ {0} is not ωθ-open in (R,T2). Thus, f is not ωθ-open on
(R,T1). Since f is bijective, f is ω-closed but not ωθ-closed on (R,T1).

Lemma 2. Let A ⊆ X. Then

(i) x ∈ Intω(A) if and only if there exists an ω-open set U containing x such that
U ⊆ A;

(ii) A is ω-open if and only if A = Intω(A);

(iii) x ∈ Clω(A) if and only if for every ω-open set U containing x, U ∩A 6= ∅;

(iv) A is ω-closed if and only if A = Clω(A); and

(v) Clω(X \A) = X \ Intω(A).

We shall now give some characterizations of ω-open and ω-closed functions.

Theorem 1. Let f : X → Y be a function. Then the following statements are equivalent.

(i) f is ω-open on X.
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(ii) f(Int(A)) ⊆ Intω(f(A)) for every A ⊆ X.

(iii) f(B) is ω-open for every basic open set B in X.

(iv) For each p ∈ X and every open set O in X containing p, there exists an open set U
in Y containing f(p) and a countable subset V of Y such that U\V ⊆ f(O).

Proof. (i) ⇒ (ii): Let A ⊆ X. Then f(Int(A)) ⊆ f(A). Since Int(A) is open in X,
f(Int(A)) is ω-open in Y . Then f(Int(A)) ⊆ Intω(f(A)) since Intω(f(A)) is the largest
ω-open set contained in f(A).

(ii)⇒ (iii): Let B be a basic open set in X. Then f(B) = f(Int(B)). By assumption,

f(B) = f(Int(B)) ⊆ Intω(f(B)) ⊆ f(B).

Hence, f(B) = Intω(f(B)). Thus, f(B) is ω-open in Y .
(iii) ⇒ (iv): Let p ∈ X and O be an open set containing p. Then there exists a

basic open set B containing p such that B ⊆ O. This implies that f(p) ∈ f(B) ⊆ f(O).
By assumption, there exists an open set U in Y containing f(p) such that U\f(B) is
countable. Take V = U\f(B). Then U\V = U\(U\f(B)) = U ∩ f(B) ⊆ f(B) ⊆ f(O).

(iv) ⇒ (i): Let O be open in X and y ∈ f(O). Then there exists x ∈ O such that
f(x) = y. By assumption, there exists an open set U in Y containing y and a countable
subset V of Y such that U\V ⊆ f(O). Then U\f(O) ⊆ U\(U\V ) = U ∩ V ⊆ V so that
U\f(O) is countable. Thus, f(O) is ω-open in Y .

Theorem 2. The function f : X → Y is ω-closed if and only if

Clω(f(A)) ⊆ f(Cl(A)) for any A ⊆ X.

Proof. Suppose that f is ω-closed on X. Now, f(A) ⊆ f(Cl(A)). Since Cl(A) is closed
in X, f(Cl(A)) is ω-closed in Y . Then Clω(f(A)) ⊆ f(Cl(A)) since Clω(f(A)) is the
smallest ω-closed set containing f(A).

Conversely, assume that Clω(f(A)) ⊆ f(Cl(A)) for any A ⊆ X. Let B be closed in X.
Then f(B) = f(Cl(B)). By assumption,

f(B) ⊆ Clω(f(B)) ⊆ f(Cl(B)) = f(B).

Thus, f(B) = Clω(f(B)). Accordingly, f(B) is ω-closed in Y .

3. ω-Connectedness

In this section, we study the relationship of ω-connected topological spaces to con-
nected, θ-connected, and ωθ-connected topological spaces and characterize the concept of
ω-connectedness. Denote by D, the topological space {0, 1} with the discrete topology.

The proof of the following lemma is straightforward, hence omitted.



M. Labendia, J. A. Sasam / Eur. J. Pure Appl. Math, 11 (3) (2018), 834-843 839

Lemma 3. Let X be any topological space and χA : X → D the characteristic function of
a subset A of X. Then χA is ω-continuous if and only if A is both ω-open and ω-closed.

Theorem 3. Let X be a topological space. Then the following statements are equivalent:

(i) X is ω-connected.

(ii) The only subsets of X that are both ω-open and ω-closed are ∅ and X.

(iii) No ω-continuous function from X to D is surjective.

Proof. (i) ⇒ (ii): Let G ⊆ X which is both ω-open and ω-closed. Then X\G is also
both ω-open and ω-closed. Moreover, X = G ∪ (X\G). Since X is ω-connected, either
G = ∅ or G = X.

(ii)⇒ (iii): Suppose that f : X → D is an ω-continuous surjection. Then f−1({0}) 6=
∅, X. Since {0} is open and closed in D, f−1({0}) is both ω-open and ω-closed in X. This
is a contradiction.

(iii)⇒ (i): If X = A ∪B, where A and B are disjoint nonempty ω-open sets, then A
and B are also ω-closed sets. Consider the characteristic function χA : X → D of A ⊆ X.
By Lemma 3, χA is ω-continuous. This is a contradiction. Thus X is ω-connected.

In view of Remark 1, we have the following consequences.

Remark 4. Let X be a topological space.

(i) If X is ω-connected, then X is ωθ-connected;

(ii) If X is ωθ-connected, then X is θ-connected; and

(iii) If X is ω-connected, then X is connected.

Remark 5. The converse of Remark 4 (i) is not necessarily true.

To see this, consider R with topology T = {∅,R,Q}. We will show first that Ints(A) =
∅ for every nonempty proper subset A of R. Suppose that Ints(A) 6= ∅. Note first that
the only nonempty open sets in T are R and Q with Cl(R) = Cl(Q) = R. Let y ∈ Ints(A).
Then there exists an open set O containing y such that Cl(O) = R ⊆ A, a contradiction.
Hence, Ints(A) = ∅. Next we show that all A ⊆ Q are the only ωθ-open subsets of R.
Let A ⊆ Q. Then for all x ∈ A, there exists an open set O = Q containing x such that
Q\Ints(A) = Q is countable. Hence, A ⊆ Q is ωθ-open. Let B 6⊆ Q. Then there exists
y ∈ B such that y /∈ Q. Hence, the only open set containing y is R. But R\Ints(B) = R
is uncountable. Thus, B is not ωθ-open. Accordingly, (R,T) is ωθ-connected. Using the
similar argument in Remark 3, Qc ∪ {0} is ω-open in R. Also, for all x ∈ Q\{0}, there
exists an open set O = Q containing x such that Q\(Q\{0}) is countable. Thus, Q\{0} is
ω-open in R. Moreover, Qc ∪ {0} and Q\{0} are disjoint and R = (Qc ∪ {0}) ∪ (Q\{0}).
This means that (R,T) is ω-disconnected.

Next, we show that a surjective ω-irresolute function sends an ω-connected space to an
ω-connected space. We shall consider first the following characterization of ω-irresolute
functions.
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Theorem 4. Let f : X → Y be a function. Then the following statements are equivalent.

(i) f is ω-irresolute on X.

(ii) f−1(A) is ω-open in X for each ω-open subset A of Y .

(iii) f−1(F ) is ω-closed in X for each ω-closed subset F of Y .

(iv) Clω(f−1(A)) ⊆ f−1(Clω(A)) for each subset A of Y .

(v) f−1(Intω(A)) ⊆ Intω(f−1(A)) for each subset A of Y .

Proof. (i) ⇔ (ii): Let A be ω-open in Y and x ∈ f−1(A). By (i), there exists an
ω-open subset U containing x such that f(U) ⊆ A, so that U ⊆ f−1(A). Thus, f−1(A) is
ω-open in X.

Conversely, let x ∈ X and V be an ω-open subset of Y containing f(x). By assumption,
f−1(V ) is ω-open in X containing x. Let U := f−1(V ). Hence, f(U) ⊆ V .

(ii)⇔ (iii): Let F be an ω-closed subset of Y . By assumption, f−1(Y \F ) = X\f−1(F )
is ω-open in X. Thus, f−1(F ) is ω-closed.

The converse is proved similarly.
(ii) ⇒ (iv): Let A ⊆ Y . Let x ∈ X \ f−1(Clω(A)). Then f(x) ∈ Y \ Clω(A).

Then there exists an ω-open subset V of Y containing f(x) such that V ∩ A = ∅. By
assumption, f−1(V ) is ω-open in X containing x such that f−1(V )∩ f−1(A) = ∅. Hence,
x ∈ X \ Clω(f−1(A)). Thus, Clω(f−1(A)) ⊆ f−1(Clω(A)).

(iv)⇒ (v): Let A ⊆ Y . By assumption and Lemma 2 (v),

X \ Intω(f−1(A)) = Clω(f−1(Y \A))

⊆ f−1(Clω(Y \A))

= f−1(Y \ Intω(A))

= X \ f−1(Intω(A)).

(v) ⇒ (i): Let x ∈ X and A be an ω-open subset of Y containing f(x). Then
x ∈ f−1(A) = f−1(Intω(A)) ⊆ Intω(f−1(A)). This means that B := f−1(A) is ω-open in
X containing x such that f(B) ⊆ A.

The following result shows that a surjective ω-irresolute function sends an ω-connected
space to an ω-connected space.

Theorem 5. If f : X → Y is a surjective ω-irresolute function and X is ω-connected,
then Y is ω-connected.

Proof. Suppose that Y is ω-disconnected. Then there exist disjoint nonempty ω-open
sets U and V such that Y = U∪V . Since f is surjective, f−1(U) and f−1(V ) are nonempty.
By Theorem 4, f−1(U) and f−1(V ) are ω-open and X = f−1(U) ∪ f−1(V ). This implies
that X is ω-disconnected, a contradiction.
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4. ω-Continuity of Functions in the Product Space

This section gives a characterization of an ω-continuous function from an arbitrary
topological space into the product space.

We shall give first the characterization of ω-continuous function.

Theorem 6. Let f : X → Y be a function. Then the following statements are equivalent.

(i) f is ω-continuous on X.

(ii) f−1(F ) is ω-closed in X for each closed subset F of Y .

(iii) f−1(B) is ω-open in X for each (subbasic) basic open set B in Y .

(iv) For every p ∈ X and every open set V of Y containing f(p), then exists an ω-open
set U containing p such that f(U) ⊆ V .

(v) f(Clω(A)) ⊆ Cl(f(A)) for each A ⊆ X.

(vi) Clω(f−1(B)) ⊆ f−1(Cl(B)) for each B ⊆ Y .

Proof. (i) ⇔ (ii): Let F be closed in Y . Then f−1(Y \F ) = X\f−1(F ) is ω-open in
X. Thus, f−1(F ) is ω-closed in X. The converse is proved similarly.

(i)⇔ (iii): (i) implies (iii) holds since (subbasic) basic open sets are open sets.
Conversely, suppose that f−1(B) is ω-open in X for each B ∈ B where B is a basis

for the topology in Y . Let G be an open set in Y . Then G = ∪{B : B ∈ B∗}, where
B∗ ⊆ B. It follows that f−1(G) = ∪

{
f−1(B) : B ∈ B∗

}
. Since the collection of all ω-open

sets forms a topology, f−1(G) is ω-open in X.
(i)⇒ (iv): Let p ∈ X and V be an open set in Y containing f(p). Since f is ω-open,

U := f−1(V ) is ω-open in X containing p. Also, f(U) = f(f−1(V )) ⊆ V .
(iv)⇒ (v): Let A ⊆ X and p ∈ Clω(A). Let G be an open subset of Y containing f(p).

Since f is ω-continuous on X, there exists an ω-open subset O of X containing p such that
f(O) ⊆ G. Since p ∈ Clω(A), O ∩A 6= ∅. It follows that ∅ 6= f(O ∩A) ⊆ f(O) ∩ f(A) ⊆
G ∩ f(A). This implies that f(p) ∈ Cl(f(A)). Hence, f(Clω(A)) ⊆ Cl(f(A)).

(v) ⇒ (vi): Let B ⊆ Y and let A = f−1(B) ⊆ X. By assumption, f(Clω(A)) ⊆
Cl(f(A)). Hence, Clω(f−1(B)) ⊆ f−1(f(Clω(A))) ⊆ f−1(Cl(f(A))) ⊆ f−1(Cl(B)).

(vi)⇒ (ii): Let F be a closed subset of Y . By assumption,

Clω(f−1(F )) ⊆ f−1(Cl(F )) = f−1(F ).

Hence, f−1(F ) ⊆ Clω(f−1(F )). Then Clω(f−1(F )) = f−1(F ), which means that f−1(F )
is ω-closed.

Theorem 7. Let X be a topological space and Y =
∏
{Yα : α ∈ A} a product space. A

function f : X → Y is ω-continuous on X if and only if each coordinate function pα ◦ f
is ω-continuous on X.
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Proof. Suppose that f is ω-continuous on X. Let α ∈ A, and Uα be open in Yα. Since
pα is continuous, p−1α (Uα) is open in Y . Hence,

f−1(p−1α (Uα)) = (pα ◦ f)−1(Uα)

is an ω-open set in X. Thus, pα ◦ f is ω-continuous for every α ∈ A.
Conversely, suppose that each coordinate function pα ◦ f is ω-continuous. Let Gα be

open in Yα. Then 〈Gα〉 is a subbasic open set in Y and
(pα ◦ f)−1(Gα) = f−1(p−1α (Gα)) = f−1(〈Gα〉) is an ω-open set in X. Therefore, f is
ω-continuous on X.

Corollary 1. Let X be a topological space, Y =
∏
{Yα : α ∈ A} a product space, and

fα : X → Yα a function for each α ∈ A. Let f : X → Y be the function defined by
f(x) = 〈fα(x)〉. Then f is ω-continuous on X if and only if each fα is ω-continuous for
each α ∈ A.

Proof. For each α ∈ A and each x ∈ X, we have

(pα ◦ f)(x) = pα(f(x)) = pα(〈fβ(x)〉) = fα(x).

Thus, pα ◦ f = fα for every α ∈ A. The result now follows from Theorem 7.

Theorem 8. Let Y =
∏
{Yαi : 1 ≤ i ≤ n} be a product space and ∅ 6= Oαi ⊆ Yαi for each

i ∈ {1, 2, . . . , n}. If O = 〈Oα1 , . . . , Oαn〉 is ω-open in Y , then each Oαi is ω-open in Yαi .

Proof. Suppose that O = 〈Oα1 , . . . , Oαn〉 is ω-open in Y . Let aαi ∈ Oαi = pαi(O) for
each i ∈ {1, 2, . . . , n}. Then there exists x = 〈aαi〉 ∈ O such that pαi(x) = aαi . Since O is
ω-open, there exists a basic open set U = 〈Uα1 , . . . , Uαn〉 containing x such that U\O is
countable. Note that pαi(U)\pαi(O) = Uαi\Oαi ⊆ pαi(U\O) and since U\O is countable,
pαi(U\O) is countable. It follows that Uαi\Oαi is also countable. Thus, each Oαi is ω-open
in Yαi .

Theorem 9. Let X =
∏
{Xαi : 1 ≤ i ≤ n} and Y =

∏
{Yαi : 1 ≤ i ≤ n} be product

spaces, and for each i ∈ {1, 2, . . . , n}, let fαi : Xαi → Yαi be a function. If f : X → Y
defined by f(〈xαi〉) = 〈fαi(xαi)〉, is ω-continuous on X, then each fαi is ω-continuous on
Xαi.

Proof. Assume that f : X → Y is ω-continuous. Let Oαi be an open set in Yαi . For
each i ∈ {1, 2, . . . , n}, let aαi ∈ f−1αi (Oαi) := Gαi . Then

x := 〈aα1 , . . . , aαn〉 ∈ 〈Gα1 , . . . , Gαn〉 =
〈
f−1α1

(Oα1), . . . , f−1αn (Oαn)
〉

= f−1(〈Oα1 , . . . , Oαn〉).

Since each Oαi is open in Yαi , O := 〈Oα1 , . . . , Oαn〉 is open in Y . Since f is ω-continuous,
f−1(O) = 〈Gα1 , . . . Gαn〉 is ω-open in X. Then there exists a basic open set U =
〈Uα1 , . . . Uαn〉 containing x such that U \ 〈Gα1 , . . . , Gαn〉 is countable. Note that

pαi(U) \ pαi(〈Gα1 , . . . , Gαn〉) = Uαi \Gαi ⊆ pαi(U \ 〈Gα1 , . . . , Gαn〉).
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Since U \ 〈Gα1 , . . . , Gαn〉 is countable, pαi(U \ 〈Gα1 , . . . , Gαn〉) is also countable. It follows
that Uαi\Gαi is countable. This means that each Gαi = f−1αi (Oαi) is ω-open in Xαi . Thus,
each fαi is ω-continuous on Xαi .

5. Conclusion

The paper has studied the relationships between connected, ωθ-connected and ω-
connected topological spaces and gave a characterization of an ω-continuous function from
an arbitrary topological space into the product space via ω-open sets and ωθ-open sets.
The present paper is related to some good papers.
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