On the Bessel Operator $\odot_{B}^{t}$ Related to the Bessel-Helmholtz and Bessel Klein-Gordon Operator
DOI:
https://doi.org/10.29020/nybg.ejpam.v11i4.3319Keywords:
Bessel Helmholtz operator, Bessel Klein-Gordon operator, Bessel diamond operatorAbstract
In this paper, we study the Bessel operator $\odot_{B}^{t}$, iterated $t$-times and denote by $$\odot_{B}^{t}= \left(\left(B_{a_{1}}+\cdots+B_{a_{p}}+m^{2}\right)^{2} - \left(B_{a_{p+1}}+\cdots+B_{a_{p+q}}\right)^{2}\right)^{t} \nonumber\\
$$where $p+q=n, B_{a_i}=\frac{\partial^2}{\partial a_{i}^2}+\frac{2v_i}{a_i}\frac{\partial}{\partial a_{i}}, 2v_i=2\alpha_i+1, \alpha_i>-\frac{1}{2}, a_i>0$, $t\in \mathbb{Z}^+ \cup \{0\}$, $m\in \mathbb{R}^+ \cup \{0\}$ and $p+q=n$ is the dimension of $\mathbb{R}_{n}^{+}=\{ a:a=(a_{1},\ldots, a_{n}), a_{1}>0,\ldots, a_{n}>0\}$.
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.