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1. Introduction

In [4], Beggs form a set M of left coset representatives for the left action of a sub-
group G of a group X on the group X. Moreover, he defined an operation on M which
has a left identity and satisfies the right division property. This binary operation is not
associative. However, associativity can be obtained by a ”cocycle” τ : M ×M −→ G.
By using this cocycle, one can construct a non-trivial associator for a category C whose
objects are the M -graded right representations of G. Every object in this category has
a dual. Consequently, it is possible to define an evaluation and a coevaluation maps to
make the category into a rigid tensor category. If we assume that the binary operation on
M satisfies the left division property, then the grading and group action can be combined
into the action of an algebra A on the objects in the category. It turns out that A itself
is in C, and that the multiplication is associative.

It is well known that for every factorization X = GM of a group into two subgroups
G and M , a Hopf algebra H = KMBJ K(G) can be constructed, where K is a field, KM
is the group Hopf algebra of M and K(G) is the Hopf algebra functions on G. In the
symbol KMBJ K(G), the B part means that KM acts on K(G), and the J part means
that K(G) coacts on KM , [3]. Moreover, if A is an algebra (resp. a coalgebra) in a rigid
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tensor category, then its dual A∗ is a coalgebra (resp. an algebra) in the same category.
In [1], Al-shomrani reproved this result by using specific definitions in terms of diagrams
that had been used in [2], [5], [7]and [8] .

In this article we obtain mathematical formulas for some operations on the objects of
a non-trivially associated tensor category constructed from a factorization of a group into
a subgroup and a set of left coset representatives. We consider the same non-trivially
associated tensor category C as defined in [4].

Throughout this article, we use the same formulas and ideas from [4] which is itself
based on [3], [5] and [6], but is mostly self-contained in terms of notation and definitions.
In addition, we assume that all groups mentioned, unless otherwise stated, are finite, and
that all vector spaces are finite dimensional over a field k, which will be denoted by 1 as
an object in the category. Moreover we are going to restrict ourselves to the finite case of
algebras, coalgebras and Hopf algebras although many results are still true in the infinite
case (see [10]).

2. Preliminaries

In this section, we include some definitions and results that will be used later in this
article.

Definition 2.1. [11] A K-algebra is a triple (A,µA, ηA) consisting of a vector space A
over a field K and K-linear maps µA : A ⊗ A −→ A and ηA : K −→ A such that the
following diagrams commute:

−−−−−−−→

−−−−−−−−→

y
y

K ⊗A A⊗A

A A

ηA ⊗ IA

IA

∼= µA

←−−−−−−−−

←−−−−−−−−−

A⊗K

A

IA ⊗ ηA

IA

y∼=
−−−−−−→

−−−−−−−→

y
y

A⊗A⊗A A⊗A

A⊗A A

µA ⊗ IA

µA

IA ⊗ µA µA

Figure 1: Unit and the associative property on A.

Here the map IA : A −→ A is the identity map and the maps IA⊗µA : A⊗A⊗A −→
A⊗A and µA ⊗ IA : A⊗A⊗A −→ A⊗A are defined by a⊗ b⊗ c 7−→ a⊗ µA(b⊗ c) and
a⊗ b⊗ c 7−→ µA(a⊗ b)⊗ c, respectively, for all a, b, c ∈ A. The maps IA⊗ ηA, ηA⊗ IA are
defined by a⊗k 7−→ a⊗ηA(k), k⊗a 7−→ ηA(k)⊗a for all k ∈ K, a ∈ A, respectively. These
commuted diagrams can be represented in terms of equations as follows for all k ∈ K and
a, b, c ∈ A:

µA(IA ⊗ µA)(a⊗ b⊗ c) = µA(µA ⊗ IA)(a⊗ b⊗ c) (1)
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and
µA(IA ⊗ ηA)(a⊗ k) = ka = µA(ηA ⊗ IA)(k ⊗ a) (2)

The map µA is the multiplication map and ηA is the unit map. The associative property
follows from (1) and the unit property follows from (2).

We say that the K-algebra A is commutative if µAτ = µA, where τ is the twist map
which is defined by τ(a⊗ b) = b⊗ a for a, b ∈ A.

Definition 2.2. [11] A K-coalgebra is a triple (C,∆C , εC) consisting of a vector space C
over a field K and K-linear maps ∆C : C −→ C ⊗ C and εC : C −→ K such that the
following diagrams commute:

←−−−−−−−

←−−−−−−−−

x
x

k ⊗ C C ⊗ C

C C

εC ⊗ IC

IC

1⊗− ∆C

−−−−−−−−→

−−−−−−−−−→

C ⊗ k

C

IC ⊗ εC

IC

x−⊗ 1

←−−−−−

←−−−−−−−

x
x

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆C ⊗ IC

∆C

IC ⊗∆C ∆C

Figure 2: Counit and the coassociative property on C.

Here the map IC : C −→ C is the the identity map on C. Also, the maps IC ⊗∆C :
C⊗C −→ C⊗C⊗C and ∆C⊗IC : C⊗C −→ C⊗C⊗C are defined by a⊗b 7−→ a⊗∆C(b)
and a ⊗ b 7−→ ∆C(a) ⊗ b, for all a, b ∈ C, respectively. In addition, the maps − ⊗ 1 and
1⊗− are defined by c 7−→ c⊗ 1 and c 7−→ 1⊗ c, respectively.

These commuted diagrams can be represented in terms of equations as follows for all
c ∈ C:

(IC ⊗∆C)∆C(c) = (∆C ⊗ IC)∆C(c) (3)

and
(εC ⊗ IC)∆C(c) = 1⊗ c, (IC ⊗ εC)∆C(c) = c⊗ 1 . (4)

The maps ∆C and εC are called the comultiplication and counit maps on the coalgebra
C, respectively. The coassociative property is presented by equation (3) and the counit
property is presented by equation (4).

A K-coalgebra C is cocommutative if τ(∆C(c)) = ∆C(c), for all c ∈ C. We use the
notation of Sweedler [9] to write ∆C(c) =

∑
(c) c(1) ⊗ c(2). Since (1 ⊗ c) = c = (c ⊗ 1),

equation (4) implies that
∑

(c) εC(c(1))c(2) = c =
∑

(c) εC(c(2))c(1). Moreover, we have

(IC⊗∆C)∆C(c) = (IC⊗∆C)
(∑

(c)

c(1)⊗c(2)

)
=
∑
(c)

c(1)⊗∆C(c(2)) =
∑

(c),(c(2))

c(1)⊗c(2)(1)⊗c(2)(2)
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and

(∆C⊗IC)∆C(c) = (∆C⊗IC)
(∑

(c)

c(1)⊗c(2)

)
=
∑
(c)

∆C(c(1))⊗c(2) =
∑

(c),(c(1))

c(1)(1)⊗c(1)(2)⊗c(2).

But, (IC ⊗ ∆C)∆C = (∆C ⊗ IC)∆C by (3). So, the expressions in both of the above
equations are equal. The common value in both is denoted by∑

(c)

c(1) ⊗ c(2) ⊗ c(3).

In general we write

∆n−1(c) =
∑
(c)

c(1) ⊗ . . . . ⊗ c(n) .

∆n−1(c) is the element obtained by applying the coassociativity (n− 1) times.

Definition 2.3. [11] A K-vector space H over a field K is a bialgebra if (H,µH , ηH) is an
algebra, (H,∆H , εH) is a coalgebra and either of the following equivalent conditions holds:
1) ∆H and εH are algebra maps.
2) µH and ηH are coalgebra maps.

Corollary 2.4. [11] Let K be a filed and let Vi, 1 ≤ i ≤ n, be a finite set of vector spaces
over K. Then

V ∗1 ⊗ V ∗2 ⊗ ...⊗ V ∗n ⊆ (V1 ⊗ V2 ⊗ ...⊗ Vn)∗.

Definition 2.5. [4] For a group X and a subgroup G, we call M ⊂ X a set of left coset
representatives if for every x ∈ X there is a unique s ∈ M such that x ∈ Gs. The
decomposition x = us is called the unique factorization of x where u ∈ G and s ∈M .

In what follows, M ⊂ X is assumed to be a set of left coset representatives for the
subgroup G ⊂ X. In addition, the identity in X will be denoted by e.

Definition 2.6. [4] For s, t ∈ M we define τ(s, t) ∈ G and s · t ∈ M by the unique
factorization st = τ(s, t)(s · t) in X. The functions . : M ×G→ G and / : M ×G→ M
are also defined by the unique factorization su = (s . u)(s / u) for s, s / u ∈ M and
u, s . u ∈ G.

It was shown in [4] that the binary operation (M, ·) has a unique left identity em ∈M
and also has the right division property (i.e. there is a unique solution p ∈ M to the
equation p · s = t for all s, t ∈M). If e ∈M then em = e is also a right identity [4].

The next proposition will be used at many places in this article:

Proposition 2.7. [4] For t, s, p ∈M and u, v ∈ G, the following identities between (M, ·)
and τ are satisfied:

s . (t . u) = τ(s, t)
(
(s · t

)
. u)τ

(
s / (t . u), t / u

)−1
and (s · t) / u =

(
s / (t . u)

)
· (t / u) ,

s . uv = (s . u)
(
(s / u) . v

)
and s / uv = (s/) / v ,

τ(p, s)τ(p · s, t) =
(
p . τ(s, t)

)
τ
(
p / τ(s, t), s · t

)
and

(
p / τ(s, t)

)
· (s · t) = (p · s) · t .
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In what follows, unless otherwise stated, we assume that e ∈ M for the sake of sim-
plicity. In [4], it was proved that for all t ∈M and v ∈ G, the following identities hold:

e / v = e , e . v = v , t . e = e , t / e = t .

Let X = GM be a factorization of a finite group as defined before, the category C is
defined as the following [4]: Take a category C of finite dimensional vector spaces over a
field K, whose objects are right representations of the group G and have M -gradings. The
action for the representation is written as /̄ : V ×G→ V . In addition it is supposed that
the action and the grading satisfy the compatibility condition, i.e. 〈ξ/̄u〉 = 〈ξ〉 / u where
ξ ∈ Vs corresponds to 〈ξ〉 = s. The morphisms in the category C is defined to be linear
maps that preserve both of grading and action, i.e. for a morphism ϑ : V → W we have
〈ϑ(ξ)〉 = 〈ξ〉 and ϑ(ξ)/̄u = ϑ(ξ/̄u) for all ξ ∈ V and u ∈ G. C can be made into a tensor
category by taking V ⊗W to be the usual vector space tensor product, with actions and
gradings given by

〈ξ ⊗ η〉 = 〈ξ〉 · 〈η〉 and (ξ ⊗ η)/̄u = ξ/̄(〈η〉 B u)⊗ η/̄u .

There is an associator ΦUVW : (U ⊗ V )⊗W → U ⊗ (V ⊗W ) given by

Φ((ξ ⊗ η)⊗ ζ) = ξ/̄τ(〈η〉, 〈ζ〉)⊗ (η ⊗ ζ) .

Now, for the rigidity of C, suppose that (M, ·) has right inverses, i.e. for every s ∈M there
is an sR ∈M so that s · sR = e and consider V =

⊕
s∈M Vs, where ξ ∈ Vs corresponds to

〈ξ〉 = s. Now take the dual vector space V ∗, and set V ∗
sL

= {α ∈ V ∗ : α|Vt = 0 ∀t 6= s}.
Then V ∗ =

⊕
s∈M V ∗

sL
, and we define 〈α〉 = sL when α ∈ V ∗

sL
, where sL is the left

inverse of s in M . The evaluation map ev : V ∗ ⊗ V → K is defined by ev(α, ξ) = α(ξ).
Considering the action /̄u, if we apply evaluation to α/̄(〈ξ〉 B u) ⊗ ξ/̄u we should get
α(ξ)/̄u = α(ξ). So we define

(
α/̄(〈ξ〉 B u)

)
(ξ/̄u) = α(ξ), or if we put η = ξ/̄u we get(

α/̄
(
(〈η〉 C u−1) B u

))
(η) = α(η/̄u−1) =

(
α/̄(〈η〉 B u−1)−1

)
(η) . If this is rearranged to

give α/v, we get the following formula:

(α/̄v)(η) = α
(
η/̄τ(〈η〉L, 〈η〉)−1(〈η〉L B v−1)τ(〈η〉L C v−1, (〈η〉L C v−1)R)

)
. (5)

For the coevaluation map to be defined, a basis {ξ} of each Vs is taken and a corresponding
dual basis {ξ̂} of each V ∗

sL
, i.e. η̂(ξ) = δξ,η. Then these bases are put together for all s ∈M

to get the following definition, which is a morphism in C [4]:

coev(1) =
∑

ξ∈basis
ξ/̄τ(〈ξ〉L, 〈ξ〉)−1 ⊗ ξ̂ .

The algebra A in the tensor category C is constructed such that the group action and
the grading in the definition of C can be combined. We consider a single object A in C, a
vector space spanned by a basis δs⊗u for s ∈M and u ∈ G. For any object V in C define
a map /̄ : V ⊗A→ V by ξ/̄(δs ⊗ u) = δs,〈ξ〉ξ/̄u . This map is a morphism in C only if
〈ξ〉 · 〈δs ⊗ u〉 = 〈ξ/̄u〉, i.e. s · 〈δs ⊗ u〉 = s/u, where 〈ξ〉 = s. If we put a = 〈δs ⊗ u〉, the
action of v ∈ G is given by (δs ⊗ u)/̄v = δsC(aBv) ⊗ (a B v)−1uv .



B. Al-harbi, W. M. Fakieh, M. M. Al-Shomrani / Eur. J. Pure Appl. Math, 11 (4) (2018), 1027-1045 1032

In the remaining of this article, when an algebra A in C is mentioned, it is meant to
refer to this construction.

Proposition 2.8. [4] The formula of the multiplication µA for A in C is given by

(δs ⊗ u)(δt ⊗ v) = δt,sCuδsCτ(a,b) ⊗ τ(a, b)−1uv,

where a = 〈δs ⊗ u〉 and b = 〈δt ⊗ v〉.

Proposition 2.9. [4] Multiplication µA : A⊗ A −→ A is a morphism and associative in
C. Also there are an identity I for the multiplication and an algebra map εA : A −→ K in
the category given by

IA =
∑
t

δt ⊗ e, εA(δs ⊗ u) = δs,e.

The identity IA has the trivial action on the objects of C. Also the action of h ∈ A on the
object K is just multiplication by εA(h), and εA(I) = 1, the identity element in K.

Proposition 2.10. [1] Define a basis s⊗ δu of A∗ with evaluation map given by

ev
(
(s⊗ δu)⊗ (δt ⊗ v)

)
= δs,t δu,v ,

for s, t ∈ M and u, v ∈ G. Then the M -grade and the G-action on A∗ are defined as
follows: 〈s⊗ δu〉 = 〈δs ⊗ u〉L, and for any w ∈ G

(s⊗ δu)/̄(〈s⊗ δu〉R B w) = s/(〈s⊗ δu〉R B w)⊗ δ
(〈s⊗δu〉RBw)−1uw

.

Proposition 2.11. [1] If A is an algebra in a rigid tensor category, then its dual A∗ is a
coalgebra in the category using the following definitions:

@@ ��

@@ ��

�� @@

�
� @

@

@
@

��

A∗A∗

A∗

=�� @@

∗

A∗

A∗ A∗

,

A∗

@@ ��

�
��
ηA=�
��

εA∗

A∗

Figure 3: Comultiplication and counit on A∗.
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Proposition 2.12. [1] If C is a coalgebra in a rigid tensor category, then its dual C∗ is
an algebra in the category using the following definitions:

�� @@

�� @@

@@ ��

@
@ �

�
�
�@@

C∗C∗

C∗

=@@ ��
∗

C∗C∗

C∗

,

�� @@

C∗

�
��
εC

=

C∗

����
ηC∗

Figure 4: Multiplication and unit on C∗.
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3. Results

In this section, we consider an algebra A and a coalgebra C in the rigid tensor category
C as defined before as well as their duals in the same category. We provide mathematical
formulas for some operations on the dual objects of C. Precisely, formulas for the multipli-
cation µC∗ on C∗, the counit εA∗ on A∗ and the unit ηC∗ on C∗ are obtained. Moreover,
the unit property and the counit property for ηC∗ and εA∗ , respectively, are checked.

Proposition 3.1. Let C be a coalgebra in the category C. Then the multiplication µC∗ on
C∗ for any elements α

′
= (t1⊗ δv1) and α = (t2⊗ δv2) in C∗ for v1, v2 ∈ G and t1, t2 ∈M,

can be given by

µC∗(α⊗ α
′
) = δt1Cv1,t2

(
t1 C τ(a1, a2) ⊗ δτ(a1,a2)−1v1v2

)
,

with τ(a2, a
L) = e where a1 = 〈δt1 ⊗ v1〉, a2 = 〈δt2 ⊗ v2〉 and a = a1 · a2.

Proof. From Proposition 2.12, we know that

�� @@

�� @@

@@ ��

@
@ �

�
�
�@@

C∗C∗

C∗

=@@ ��
∗

C∗C∗

C∗

For α, α
′ ∈ C∗, we follow the above figure from top to bottom and calculate the following:

Put coev(1) = β ⊗ γ for some β ∈ C and γ ∈ C∗with 4C (β) = β1 ⊗ β2, α ⊗ α′ = γ,

ev (α⊗ β2) = 1 and ev
(
α
′ ⊗ β1

)
= 1 that imply 〈β〉·〈γ〉 = e, 〈α〉·〈β2〉 = e,

〈
α
′
〉
·〈β1〉 =

e, 〈β〉 = 〈β1〉 · 〈β2〉 and 〈α〉.〈α′〉 = 〈γ〉.
We start with

(α⊗ α′)⊗ coev(1) = (α⊗ α′)⊗ (β ⊗ γ). (6)

Applying the associator Φ on the right hand side of (6) and then the comultiplication on
β give

α/̄τ(〈α′〉, 〈β〉 · 〈γ〉)⊗
(
α′ ⊗ (β ⊗ γ)

)
= α⊗

(
α′ ⊗ (β ⊗ γ)

)
= α⊗

(
α
′ ⊗
(
(β1 ⊗ β2)⊗ γ

))
,

(7)

since α/̄τ((〈α′〉, 〈β〉 · 〈γ〉) = α/̄τ(〈α′〉, e) = α/̄e = α and 4C (β) = β1 ⊗ β2.
Now, Applying the associator Φ and then the associator inverse Φ−1 on the right hand

side of (7) give
α⊗

(
α
′ ⊗
(
β1/̄τ(〈β2〉, 〈γ〉

)
⊗ (β2 ⊗ γ)

)
,
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α⊗
((
α
′
/̄τ(〈β′〉, 〈β2〉.〈γ〉)−1 ⊗ β′

)
⊗ (β2 ⊗ γ)

)
, (8)

where
β
′

= β1/̄τ(〈β2〉, 〈γ〉).

Next, we apply the evaluation map on (
(
α
′
/̄τ(〈β′〉, 〈β2〉.〈γ〉)−1 ⊗ β′

)
of (8) to get

α
′
/̄τ(〈β′〉, 〈β2〉 · 〈γ〉)−1(β

′
) (9)

= α
′
(β
′
/̄τ(〈β′〉l, 〈β′〉)−1(〈β′〉l.τ(〈β′〉, 〈β2〉·〈γ〉))τ(〈β′〉L C τ(〈β′〉, 〈β2〉·〈γ〉), (〈β

′〉L C τ(〈β′〉, 〈β2〉·〈γ〉))R)).

To make this equation simpler we need to do following calculations:
We first show that 〈β′〉 = (〈β2〉 · 〈γ〉)L as follows:

〈β′〉 · (〈β2〉 · 〈γ〉) =
(
〈β1〉 C τ(〈β2〉, 〈γ〉)

)
· (〈β2〉 · 〈γ〉) = (〈β1〉 · 〈β2〉) · 〈γ〉 = 〈β〉 · 〈γ〉 = e.

But we know 〈α〉 · 〈α′〉 = 〈γ〉 and 〈α〉 · 〈β2〉 = e, that imply 〈β2〉 · 〈γ〉 = 〈α′〉 . Hence,

〈β′〉 = (〈β2〉.〈γ〉)L = 〈α′〉L.

Substituting in (9) gives

α
′
/̄τ(〈α′〉L, 〈α′〉)−1(β

′
) = (10)

α
′
(β
′
/̄τ(〈β′〉l, 〈β′〉)−1(〈β′〉l.τ(〈α′〉l, 〈α′〉))τ(〈β′〉l C τ(〈α′〉l, 〈α′〉), (〈β′〉l C τ(〈α′〉l, 〈α′〉))R)).

Next, we need to do the following calculations:(
〈α′〉

LL
/τ(〈α′〉

L
, 〈α′〉)

)
· (〈α′〉

L
· 〈α′〉) = (〈α′〉

LL
· 〈α′〉

L
) · 〈α′〉,

which implies that

〈α′〉
LL
C τ(〈α′〉

L
, 〈α′〉) = 〈α′〉.

Thus, we can consider the following

〈α′〉
LL
〈α′〉

L
〈α′〉 = 〈α′〉

LL
τ(〈α′〉

L
, 〈α′〉) =

(
〈α′〉)LL B τ(〈α′〉

L
, 〈α′〉)

)
〈α′〉,

which implies that

〈α′〉
LL
〈α′〉

L
= τ(〈α′〉

LL
, 〈α′〉

L
) = 〈α′〉LL B τ(〈′α〉L, 〈α′〉).

Now, substituting in equation (10) gives

α
′
/̄τ(〈α′〉L, 〈α′〉)−1(β

′
) = α

′
(β
′
/̄τ(〈α′〉, 〈α′〉R)).

After applying the evaluation map and since τ(〈α′〉, 〈α′〉R) = e, (8) becomes

α⊗
(
(α
′
(β
′
/̄τ(〈α′〉, 〈α′〉R))⊗ (β2 ⊗ γ)

)
= α⊗

(
α
′
(β
′
)⊗ (β2 ⊗ γ)

)
. (11)
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We now apply the associator inverse Φ−1 on (11) to get

α⊗
(
α′(β

′
)/̄τ(〈β2〉, 〈γ〉)−1 ⊗ β2

)
⊗ γ.

Applying the associator inverse again gives(
α/̄τ(〈β′′〉, 〈γ〉)−1 ⊗ β′′

)
⊗ γ, (12)

where

β′′ = α
′
(β
′
)/̄τ(〈β2〉, 〈γ〉)−1⊗ β2 = α′

(
β1 C τ(〈β2〉, 〈γ〉)

)
/̄τ(〈β2〉, 〈γ〉)−1⊗ β2 = α′(β1)⊗ β2,

which implies that
〈β′′〉 = (〈α′〉 · 〈β1〉) · 〈β2〉 = e · 〈β2〉 = 〈β2〉.

Now, we apply the evaluation map on (12) to get((
α/̄τ(〈β2〉, 〈γ〉)−1

)
(β′′)

)
(γ)

= α
(
β′′/̄τ(〈β2〉L, 〈β2〉)−1

(
〈β2〉L B τ(〈β2〉, 〈γ〉)

)
τ
(
〈β2〉L C τ(〈β2〉, 〈γ〉), (〈β2〉L C τ(〈β2〉, 〈γ〉))R

))
(γ)

(13)
= α

(
β′′/̄(〈β2〉L B τ(〈β2〉, 〈γ〉)

)
(γ).

Considering the equality of the diagram, we should have

µC∗(α⊗ α′) = α
(
β′′/̄

(
〈β2〉L B τ(〈β2〉, 〈γ〉)

))
(γ), (14)

where β′′ = α′(β1)⊗ β2.

But, from the definition of the coevaluation map, we know that

coev(1) =
∑

ξ∈ basis of V

ξ /̄ τ( 〈ξ〉L, 〈ξ〉 )−1 ⊗ ξ̂, .

So we can put
β = ξ /̄ τ( 〈ξ〉L, 〈ξ〉 )−1 and γ = ξ̂,

that imply that

〈β〉 = 〈ξ〉/ τ( 〈ξ〉L, 〈ξ〉 )−1 and 〈γ〉 = 〈ξ̂〉 = 〈ξ〉L.

Thus, if we apply the coproduct on β, we get

∆C(β) = ∆C(ξ/ τ( 〈ξ〉L, 〈ξ〉 )−1) = ξ1/̄τ(〈ξ1〉L, 〈ξ1〉)−1 ⊗ ξ2/̄τ(ξL2 , ξ2)−1.

Consequently, we can write

β1 = ξ1/ τ( 〈ξ1〉L, 〈ξ1〉 )−1 and β2 = ξ2/̄τ(〈ξ2〉L, 〈ξ2〉)−1,

with

〈β1〉 = 〈ξ1〉 C τ(〈ξ1〉L, 〈ξ1〉)−1 and 〈β2〉 = 〈ξ2〉 C τ(〈ξ2〉L, 〈ξ2〉)−1.

Now, let ξ = δt⊗ v , γ = t⊗ δv , ξ1 = δt1 ⊗ v1 and ξ2 = δt2 ⊗ v2, with a = 〈ξ〉 = 〈δt⊗ v〉,
aL = 〈γ〉 = 〈t⊗ δv〉, a1 = 〈ξ1〉 = 〈δt1 ⊗ v1〉 and a2 = 〈ξ2〉 = 〈δt2 ⊗ v2〉.
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As τ(〈ξ1〉L, 〈ξ1〉)−1 = e−1 = e and τ(〈ξ2〉L, 〈ξ2〉)−1 = e−1 = e, it follows that β1 =
ξ1/̄e = ξ1 and β2 = ξ2/̄e = ξ2, which means that

β′′ = α′(δt1 ⊗ v1)⊗ (δt2 ⊗ v2).

If we put α′ = t1⊗δv1 in the right hand side of the above equation, then it can be rewritten
as

β′′ = ev
(
(t1 ⊗ δv1)⊗ (δt1 ⊗ v1)

)
⊗ (δt2 ⊗ v2) = δt1,t1δv1,v1(δt2 ⊗ v2) = (δt2 ⊗ v2).

Also, if we put q = 〈β2〉L B τ(〈β2〉, 〈γ〉) = aL2 B τ(a2, a
L), then

β′′/̄q = (δt2 ⊗ v2)/̄q = (δt2C(a2Bq) ⊗ (a2 B q)
−1v2q).

Now we substitute these simplified parts in equation (14) to get

µC∗(α⊗ α
′
) = α

(
(δt2C(a2Bq) ⊗ (a2 B q)

−1v2q)
)
(γ).

If we put α = t2 ⊗ δv2 , the above equation becomes

µC∗(α⊗ α
′
) = ev

(
(t2 ⊗ δv2)⊗ (δt2C(a2Bq) ⊗ (a2 B q)

−1v2q)
)
(γ)

= δt2,t2C(a2Bq)δv2,(a2Bq)−1v2q)(γ)
(15)

which implies that

t2 = t2 C (a2 B q) = t2 C
(
a2 B

(
aL2 B τ(a2, a

L)
))
,

v2 = (a2 B q)
−1v2q =

(
a2 B (aL2 B τ(a2, a

L)
)−1

v2

(
aL2 B τ(a2, a

L)
)
.

To have these equations satisfied we should have τ(a2, a
L) = e. Hence, aL2 B τ(a2, a

L) = e
and a2 B (aL2 B τ(a2, a

L)) = e.

On the other hand, we know that

δt ⊗ v = (δt1 ⊗ v1)⊗ (δt2 ⊗ v2) = δt2,t1Cv1δt1Cτ(a1,a2) ⊗ τ(a1, a2)−1v1v2

Thus,
v = τ(a1, a2)−1v1v2 and t = t1 C τ(a1, a2).

Therefore,
µC∗(α⊗ α

′
) = δt1Cv1,t2

(
t1 C τ(a1, a2) ⊗ δτ(a1,a2)−1v1v2

)
.

To confirm our calculation we show t C v = t · a knowing that t1 C v1 = t1 · a1, t2 C v2 =
t2 · a2, t1 C v1 = t2, and a = a1 · a2. We start with the right hand side as follows:

t · a = t1 C τ(a1, a2) · (a1 · a2) = (t1 · a1) · a2 = (t1 C v1) · a2 = t2 · a2 = t2 C v2.

On the other hand,

t C v = t1 C τ(a1, a2) C τ(a1, a2)−1 C v1v2 = t1 C v1v2 = t1 C v1 C v2 = t2 C v2. �
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Proposition 3.2. Let A be an algebra in the category C. Then the counit εA∗ on A∗ for
any element α = (s⊗ δu) ∈ A∗ is given by

εA∗(s⊗ δu) = δu,e,

for u ∈ G and s ∈M .

Proof. From Proposition (2.11), we know that

A∗

@@ ��

�
��
ηA=�
��

εA∗

A∗

Figure 5: Definition of counit on A∗.

We follow figure 5 from top to bottom and start with the following for α ∈ A∗ and k ∈ K :

α = α⊗ k. (16)

Knowing that ηA : K −→ A, by definition (2.1), we apply the map (IA∗ ⊗ ηA) on equation
(16) to get

(IA∗ ⊗ ηA)(α⊗ k) = IA∗(α)⊗ ηA(k) = α⊗ β, (17)

where β = (δs ⊗ e) ∈ A .

Now, we put α = (s ⊗ δu) and apply the evaluation map on the right hand side of
equation (17) to have

ev(α⊗ β) = ev((s⊗ δu)⊗ (δs ⊗ e)) = δu,eδs,s = δu,e.

Finally, considering the left hand side of the equality in figure 5 gives

εA∗(s⊗ δu) = δu,e. �

Proposition 3.3. Let C be a coalgebra in the category C . Then the unit ηC∗ on C∗ can
be given by

ηC∗(1K) =
∑
v∈G

e⊗ δv,

where 1K is the unity of K.
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Proof. From Proposition (2.12), we know that

�� @@

C∗

�
��
εC

=

C∗

����
ηC∗

Figure 6: Definition of unit on C∗.

We follow figure 6 from top to bottom and start by considering the following:

coev(1) = β ⊗ γ, (18)

for β ∈ C and γ ∈ C∗, which implies 〈β〉 · 〈γ〉 = e.

But, from the definition of the coevaluation map, we know

coev(1) =
∑

ξ∈ basis of V

ξ /̄ τ( 〈ξ〉L, 〈ξ〉 )−1 ⊗ ξ̂.

We let β = ξ /̄ τ( 〈ξ〉L, 〈ξ〉 )−1, γ = ξ̂ and w = τ(〈ξ〉L, 〈ξ〉)−1. If ξ = δt ⊗ v, γ =
t⊗ δv, then a = 〈ξ〉 = 〈δt ⊗ v〉, and aL = 〈γ〉 = 〈t⊗ δv〉 . Hence,

β = (δt ⊗ v)/̄w = δtC(aBw) ⊗ (a B w)−1vw.

Now, applying the map (εC ⊗ IC∗) on equation (18) gives

εC(β)⊗ IC∗(γ) =
∑
v∈G

δtC(aBw),e ⊗ (t⊗ δv)

=
∑
v∈G

δtC(aBw),e (t⊗ δv).
(19)

To get a nonzero solution we should have t C (a B w) = e⇒ t C (a B w) C (a B w)−1 =
e C (a B w)−1 ⇒ t = e which leads to a = 〈δt ⊗ v〉 = 〈δe ⊗ v〉 = e. Thus, equation (19)
can be rewritten as

εC(β)⊗ IC∗(γ) =
∑
v∈G

e⊗ δv.

Finally, considering the left hand side of the equality in figure 6 gives

ηC∗(1k) =
∑
v∈G

e⊗ δv. �
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In the next propositions we will check the unit property and the counit property for
ηC∗ and εA∗ respectively.

Proposition 3.4. Let A be an algebra in the category C. Then the counit property for the
counit on A∗ is satisfied, i.e.

(εA∗ ⊗ IA∗)∆A∗(t⊗ δv) = (IA∗ ⊗ εA∗)∆A∗(t⊗ δv)

for any element γ = (t⊗ δv) ∈ A∗ with v ∈ G, t ∈M.

�� @@

∗

�
��
εA∗

= = �� @@

∗

�
��
εA∗

A∗ A∗

A∗

A∗

A∗ A∗

Figure 7: Counit property on A∗.

Proof. As A is an algebra in the category C, it has a unit map ηA : K −→ A satisfying

µA(IA ⊗ ηA)(β ⊗ k) = kβ = µA(ηA ⊗ IA)(k ⊗ β).

We consider the dual map η∗A : A∗ −→ K∗ = K and let εA∗ : A∗ −→ K denote the
restriction of η∗A to A∗.

Now, for γ = (t⊗ δv) ∈ A∗, k ∈ K, we have

εA∗(γ)(k) = γ
(
ηA(k)

)
= γ

(
ηA(1K)k

)
= γ(1A)(k). (20)

Hence, εA∗(γ) = γ(1A).

Next, let µ∗A : A∗ −→ (A⊗A)∗ be the transpose of the multiplication map µA defined
as

µ∗A(γ)(β1 ⊗ β2) = γ(µA(β1 ⊗ β2)) = γ(β1.β2). (21)

It is known that µ∗A(A∗) ⊆ A∗⊗A∗ [11]. Let ∆A∗ denote the restriction of µ∗A toA∗. Then
∆A∗ : A∗ −→ A∗ ⊗A∗ is a K-linear map defined as

∆A∗(γ) = µ∗A(γ), for γ ∈ A∗. (22)
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Thus, for γ = (t⊗ δv) ∈ A∗, β = (δs ⊗ u) ∈ A and k ∈ K, we have

(εA∗ ⊗ IA∗)∆A∗(γ)(k ⊗ β) = (η∗A ⊗ I∗A)µ∗A(γ)(k ⊗ β)

= µ∗A(γ)(ηA ⊗ IA)(k ⊗ β)

= γ
(
µA(ηA(k)⊗ β)

)
= γ

(
µA
(
(δt ⊗ e)⊗ (δs ⊗ u)

))
= γ

(
δs,tCeδtCτ(a,b) ⊗ τ(a, b)−1eu

)
= γ

(
δs,tδtCτ(e,b) ⊗ τ(e, b)−1eu

)
= γ(δs ⊗ u)

= γ(β)

= γ
(
µA(β ⊗ ηA(k))

)
= µ∗A(γ)(IA ⊗ ηA)(β ⊗ k)

= (I∗A ⊗ η∗A)µ∗A(γ)(β ⊗ k)

= (IA∗ ⊗ εA∗)∆A∗(γ)(β ⊗ k),

where a = 〈δt ⊗ e〉 = e and b = 〈δs ⊗ u〉. We have used the following calculations:
τ(a, b) = τ(e, b) = e, τ(a, b)−1 = τ(e, b)−1 = e−1 = e, t C τ(a, b) = t C e = t ,
τ(a, b)−1eu = u and t = s. Therefore, εA∗ satisfies the counit property as claimed. �

Proposition 3.5. let C be a coalgebra in category C. Then the unit property on C∗ is
satisfied, i.e.

µC∗(IC∗ ⊗ ηC∗)
(
γ ⊗ k

)
= µC∗(ηC∗ ⊗ IC∗)

(
k ⊗ γ

)
for any element γ = (t⊗ δv) ∈ C∗ with v ∈ G, t ∈M, and k ∈ K.

C∗

@@ ��

����
ηC∗

∗

= =

C∗

@@ ��

����
ηC∗

∗

C∗

C∗

C∗ C∗

Figure 8: Unit property on C∗.
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Proof. As C is a coalgebra in the category C, it has a counit map εC : C −→ K
satisfying the counit property, i.e∑

(β)

εC(β(1))β(2) = β =
∑
(β)

εC(β(2))β(1).

The transpose of the counit map of C is ε∗C : K∗ −→ C∗ which is defined by

ε∗C(γ)(β) = γ
(
εC(β)

)
,

for γ ∈ K∗, β ∈ C. If we identify K with K∗, we get ε∗C : K −→ C∗ defined as

ε∗C(k)(β) = k
(
εC(β)

)
= kεC(β), (23)

for k ∈ K, β ∈ A.

Now, we use the same techniques as in the proof of the previous proposition to have
ηC∗ = ε∗C and µC∗ = ∆∗C . We define the following maps: IC∗ ⊗ ηC∗ : C∗ ⊗K −→ C∗ ⊗C∗
by

γ ⊗ k 7−→ γ ⊗ ηC∗(k),

and ηC∗ ⊗ IC∗ : K ⊗ C∗ −→ C∗ ⊗ C∗ by

k ⊗ γ 7−→ ηC∗(k)⊗ γ.

Next, it is known that the transpose of ∆C is a K-linear map ∆∗C : (C ⊗C)∗ −→ C∗,
defined by

∆∗C(ψ)(β) = ψ(∆C(β)), (24)

for ψ ∈ (C ⊗ C)∗, β ∈ C. Also, by Corollary 2.4, we have C∗ ⊗ C∗ ⊆ (C ⊗ C)∗. Hence,
∆∗C leads to a K-linear map µC∗ : C∗ ⊗ C∗ −→ C∗, defined by

µC∗(γ1 ⊗ γ2)(β) = ∆∗C(γ1 ⊗ γ2)(β) = (γ1 ⊗ γ2)(∆C(β)) =
∑
(β)

γ1(β1)⊗ γ2(β2). (25)

Thus, if we put γ = (t⊗δv), β = (δs⊗u), β1 = (δs1⊗u1) and β2 = (δs2⊗u2) with β =
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β1 ⊗ β2 and 〈β〉 = 〈β1〉 · 〈β2〉, for k ∈ K, β, β1, β2 ∈ C and γ ∈ C∗, we get

µC∗(IC∗ ⊗ ηC∗)(γ ⊗ k)(β) = ∆∗C
(
γ ⊗ ε∗C(k)

)
(β)

=
(
γ ⊗ ε∗C(k)

)(
∆C(β)

)
=
(
γ ⊗ ε∗C(k)

)
(β1 ⊗ β2)

=
∑
(β)

γ(β1)⊗ ε∗C(k)(β2) =
∑
(β)

γ(β1)⊗ k
(
εC(β2)

)
=
∑
(β)

γ(β1)k
(
εC(β2)

)
= k

∑
(β)

γ(β1)εC(β2)

= k
∑
(β)

γ(δs1 ⊗ u1)δs2,e = k
∑
(β)

δs2,eγ(δs1 ⊗ u1)

= k
∑
(β)

εC(β2)γ(β1) = k
∑
(β)

γ
(
εC(β2)β1

)
= kγ

(∑
(β)

εC(β2)β1

)
= kγ(β) = kγ

(∑
(β)

β2εC(β1)
)

= k
∑
(β)

γ
(
β2εC(β1)

)
= k

∑
(β)

γ(δs2 ⊗ u2)δs1,e

= k
∑
(β)

δs1,eγ(δs2 ⊗ u2) = k
∑
(β)

εC(β1)γ(β2)

=
∑
(β)

k
(
εC(β1)

)
γ(β2) =

∑
(β)

ε∗C(k)(β1)γ(β2)

=
∑
(β)

k
(
εC(β1)

)
⊗ γ(β2) =

∑
(β)

ε∗C(k)(β1)⊗ γ(β2)

=
∑
(β)

(ε∗C(k)⊗ γ)(β1 ⊗ β2) =
(
ε∗C(k)⊗ γ

)
∆C(β)

= ∆C∗
(
ε∗C(k)⊗ γ

)
(β) = ∆C∗

(
ε∗C ⊗ IC∗

)
(k ⊗ γ)(β)

= µC∗
(
ηC∗ ⊗ IC∗

)
(k ⊗ γ)(β).

In the above calculations we have used equations (23), (24) and (25), the facts that
k
(
εC(β2)

)
∈ K and C ⊗ K ∼= C, Proposition 2.9 and Definition 2.2. Therefore, ηC∗

satisfies the unit property as required. �

Example 1. Let X be the dihedral group D6 =
〈
x, y : x6 = y2 = 1, xy = yx5

〉
and let G

be the non-normal subgroup {1, x3, y, x3y}. If we choose M = {1, x, x5} to be the set of
left coset representatives, then the ·, τ , the action B and the coaction C , are given by the
following tables:

· 1 x x5

1 1 x x5

x x x5 1
x5 x5 1 x

τ 1 x x5

1 1 1 1
x 1 x3 1
x5 1 1 x3
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s B u 1 x3 y x3y

1 1 x3 y x3y
x 1 x3 y x3y
x5 1 x3 y x3y

s C u 1 x3 y x3y

1 1 1 1 1
x x x x5 x5

x5 x5 x5 x x

We take our field to be the binary field F = {0, 1}.

We check multiplication µC∗ in Proposition 3.1. For two elements α′ = (t1 ⊗ δv1) and
α = (t2 ⊗ δv2) in C∗ with v1, v2 ∈ G, t1, t2 ∈ M , if we put t1 = x, t2 = x5 in M, v1 =
y, v2 = x3 in G, then α =

(
x5 ⊗ δx3

)
, α′ =

(
x ⊗ δy

)
, a2 = 〈δt2 ⊗ v2〉, a1 = 〈δt1 ⊗ v1〉,

and a = a1 · a2.

We start by calculating the following:

t2 · a2 = t2 C v2,

x5 · a2 = x5 C x3 ⇒ x5 · a2 = x5 ⇒ a2 = 1,

and
t1 · a1 = t1 C v1,

x · a1 = x C y ⇒ x · a1 = x5 ⇒ a1 = x.

Also,
a = a1 · a2 ⇒ a = x · 1 = x ⇒ aL = x5.

The following calculations are needed as well:

t1 C τ(a1, a2) = x C τ(x, 1) = x C 1 = x,

τ(a1, a2)−1 v1 v2 = τ(x, 1)−1 v1 v2 = 1 y x3 = x3y,

and

t1 C v1 = x C y = x5, and t2 = x5.

Now, we substitute in the formula of µC∗ as follows:

µC∗(α⊗ α
′
) = δt1Cv1,t2

(
t1 C τ(a1, a2) ⊗ δτ(a1,a2)−1v1v2

)
,



REFERENCES 1045

µC∗
(
(x5 ⊗ δx3)⊗ (x⊗ δy)

)
= δx5,x5

(
x⊗ δx3y

)
= x⊗ δx3y ∈ C∗.

Next, we check the counit εA∗ in Proposition 3.2, for any element α = (s ⊗ δu) ∈ A∗
with s ∈M and u ∈ G as follows: Choose s = x. If u = e = 1, then

εA∗(x⊗ δ1) = δ1,1 = 1 ∈ F.

If u 6= e, for example u = y, then

εA∗(x⊗ δy) = δy,1 = 0 ∈ F.

Finally, we check the unit ηC∗ in Proposition 3.3, for 1 ∈ F. If we let t = 1 ∈ M, v =
y ∈ G, then

ηC∗(1) = 1⊗ δy.
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