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1. Introduction

Let H be an infinite dimensional separable Complex Hilbert space. Let B(H) be
the algebra of all bounded linear operators acting on H. Let T be an operator on H.
Every operator T' can be decomposed into T' = U|T| with a partial isometry U, where
|T| is the square root of (T*T). If U is determined uniquely by the kernel condition
N(U) = N(|T), then this decomposition is called the polar decomposition, which is one
of the most important results in operator theory.

Recall that an operator T is said to be paranormal if ||Tz||?> < ||T?z||||z|| for every
x € H [7). An operator T is said to be n-paranormal if ||Txz||"*1 < |77 z||||z||™ for
every x € H [16] and normaloid if r(7") = ||T'||, where r(T") denotes the spectral radius
of T. An operator T is of class Q [3], if T**T? — 2T*T + I > 0. Equivalently T' € Q if

1
I <
by B. P. Duggal et al and it is well known that every class () operator is not necessarily

(||T%x||? +||z||?) for every = € H. Class Q operators are introduced and studied
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normaloid and every paranormal operator is a normaloid of class Q. ie P C QN N, where
P and N denotes the class of paranormal and normaloid operators respectively. Also he
showed that the restiction of T to an invariant subspace is again a class () operator.

Devika, Suresh [5], introduced a new class of operators which we call the quasi class
@ operators and it is defined as, for T' € B(H)

1
|T2z|)? < §(HT3{L‘H2 + || Tz||?) for every x € H

In [8], A k-quasi class @ operator is defined as follows,
An operator T is of k-quasi class Q) if

1
|TF+1)2 < §(||Tk+2x||2 + || T*2||?) for every x € H

and k is a natural number. D. Senthil Kumar, Prasad. T in [11], has defined the new
class of operators which we call M-class () operators. An operator T is of M class Q)
if for a fixed real number M > 1, T satisfies M?T*?>T? — 2T*T 4+ I > 0 or equivalently

1
|Tz|? < §(M2HT23;H2 + ||z||?) for every x € H and a fixed real number M > 1.
In [15], Youngoh Yang and Cheoul Jun Kim introduced a class Q* operators. If

T*2T2 —2TT* + 1 > 0,

then T is called class @Q* operators. He also proved that if T is class Q* if and only if
|T*x||? < $(||T%x|* + ||2[|?) for every z € H. In [4], D. Senthil Kumar et. al. introduced
quasi class Q* operators. If

T*3T3 — 2(T*T)2 + T*T > 0,

then T is called quasi class Q* operators. He also proved that if T is quasi class Q* if and
only if |T*Tz||> < 3(|T3z|? + || Tx||?) for every x € H

In this paper, we study some properties of quasi n-class ) and quasi n-class Q* op-
erators and we derive conditions for composition and weighted composition operators to
be quasi n-class (Q and quasi n-class Q*. Aluthge transformation of quasi n-class ) and
quasi n-class Q* operators are derived. Conditions for Composite multiplication opera-
tors to be quasi n-class @) and quasi n-class Q* are also obtained. A characterization of
quasi n-class @) and quasi n-class Q* composition and weighted composition operators on
weighted Hardy space are obtained.

2. Quasi n class () Operators

In this section, we define new class of operators called quasi n-class (), which is a super
class of n-class () operators and studied some properties of this class of operators.

Definition 1. An operator T € B(H) is said to be quasi n-class Q if for every positive
integer n and for every x € H
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1
T22012 < T2+n 4.2 Txl2
1T < o AT "2l + | T])

when n = 1 it is of quasi class () operators.

Theorem 1. An operator T is of quasi n-class Q if and only if T*>F T+ — (14-n)T*2T2% +
nT*T > 0 for every positive integer n.

Proof. Since T is quasi n class @ operator, we have
1
1722 < 1+7n(HT2+"fUH2 +n||Tz|]?)

(1T ]2 = (1+n)|| %] + 0| T2|?) > 0
N <T2+n$’ T2+n$> _ (1 + n) <T2x, T2:C> + n(T.I,TSU> >0
o Tx2+n24n _ (1 4 n)T*2T2 L nT*T >0

For example: let 2 = (x1,22,...) € [2, Define T : 1> — 12 by T(z) = (0,21, 29, ...),
T*(z) = (2,23, ...). Then T*>+"T2+7 _ (1 4 n)T*2T? + nT*T > 0. ie T is quasi n-class
() operators.

From the definition of n class () operator we can easily say that every n class () operator
is also an operator of quasi n class ). Hence we have the following implication

class Q C n class Q C quasi n class Q.
Theorem 2. FEvery quasi class () operator is quasi n class Q) operator.

Proof. By using induction principle and simple calculation we get the result.

Corollary 1. If T € B(H) is of quasi n-class Q) then T is of quasi n+ 1-class Q) operator

Corollary 2. If T € B(H) is of quasi n-class Q then oT is of quasi n-class () operator
for any complex number a.

Theorem 3. Let T € B(H). If A2 T is an operator of quasi n class Q, then T is quasi
n paranormal operator for all X > 0.

Proof. Since A7 T is an operator of quasi n-class @, then
AT TCHIAT )2 — (14 n)AZ T)2(A2 T)2 +n((AZ T)* (A2 T)) > 0.

Hence [\2 |2G+H0)Ts24nT24n _ (1 4 p)|A\ 7 [AT*2T2 + n|A2 |2T*T > 0. By multiplying
IA]*" and let |\| = i, then

T*2+nT2+n _ (1 + n)u"T*QTQ 4 nu1+nT*T Z 0.

Hence T is quasi n-paranormal operator for all A > 0.

Theorem 4. If quasi n-class Q operator T doubly commutes with an isometric operator
S, then T'S is an operator of quasi n-class Q.
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Proof. Since T is quasi n-class Q operator, then T*(T***T14" —(14n)T*T+nI)T > 0.
Suppose T doubly commutes with an isometric operator S, then T'S = ST, S*T = T'S*
and S*S = I. Now let A = T'S. So we get A*(A*(1H+M) A0+7) _ (1 £ n)A*A +nl)A > 0.
Therefore T'S is a quasi n-class () operator.

Theorem 5. If a quasi n-class Q operator T € B(H) is unitarily equivalent to operator
S, then S is an operator of quasi n-class Q.

Proof. Assume T is unitarily equivalent to operator S. Then there exists an unitary
operator U such that S = U*TU and T is quasi n-class @ operator, then S*(S*+ngi+n
(1 +n)S*S + nI)S = (U*TU)*((U*TU)* "+ (U*TU)'*™ — (1 + n)(U*TU)*(U*TU) +
nl)(U*TU) > 0. Therefore S is quasi n-class ) operator.

Theorem 6. Let T € B(H) be an invertible operator and N be an operator such that N
commutes with T*T. Then operator N is quasi n class Q if and only if operator TNT~!
1s of quasi n class Q.

Proof. Let N be quasi n class Q operator, then N*(N*ITnN1+n _(14n)N*N+nl)N >
0. Since operator N commutes with operator T*T, we have
(TNT-YHY*(TNT-H)y*H(TNT-H)H — (1 4 n)(TNTY)*(TNT™Y) + nI)(TNT™Y) =
T(N*(N*HnNY" — (1 + n)N*N + nl)N)T~1. Since N is quasi n class Q operator,
then T(N*(N*Tn N — (1 + n)N*N + nI)N)T* > 0. Which implies (TT*) commutes
with T(N*(N*H N — (1 4+ n)N*N +nl)N)T*. Also (TT*)~! is also commutes with
TN*((N*U2N1+7 — (1 4 n)N*N + nI)N)T*. Then T(N*(N*I*2N1+7 — (1 4 n)N*N +
nI)N)T~' > 0. Hence TNT~! is quasi n class Q operator. Conversely suppose that
(TNT™1) is quasi n class Q operator, then N*(N*!Tn NI+t (1 4 n)N*N +nl)N > 0.

Corollary 3. Let S be quasi n class Q) operator and A any positive operator such that
A=l = A% Then T = A~'SA is quasi n class Q operator.

Theorem 7. Let T be quasi n class QQ operator. Then the tensor product T @I and I QT
are both quasi n class QQ operators.

Proof. By the definition of quasi n class () and tensor product and by the simple
calculation we get the result.

Theorem 8. If T € B(H) is a quasi n-class Q operator for a positive integer n, the
range of T' does not have dense range then T has the following 2 X 2 matrix representation

T = <1(;1 ?) on H =ran(T) @ ker T*, if and only if Th is also quasi n-class Q) operator
3

onran(T) and Ts = 0. Further more o(T') = o(T1)U{0} where o(T) denotes the spectrum
of T.

Proof. Let P be an orthogonal projection of H onto ran(T"). Then T3 = TP = PTP.
By Theorem 1 we have that
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P(T* 2+ — (1 4+ n)T*2T? + nT*T)P >0

*2 * *
Hence <T1 g2 () +0n)T12T12 +nTyTy 8) >0

This implies T}t TE™ — (1 + n)Ty2T2 + nTyTy > 0
So T; is quasi n-class @ operator on ran(T).
Also for any x = (z1,22) € H,

<T§aj2, x2) <Tk(I — P)z,(I — P)x)
(I — P)x, T**(I — P)x)

0

This implies 73 = 0

Since o(T) U T = o(T1) U o(T3) where 7 is the union of certain holes in ¢(7"), which
happens to be a subset of o(71) No(T3) [by corollary 7, [10]]. o(T3) = 0 and o(T1) No(T3)
has no interior points we have o(T") = o(T7) U {0}.

Suppose that T = (1(;1 ;2> on H = ran(T) @ ker T* where T} is quasi n-class @
3

operator on ran(7’) and T3 = 0

1 j +1—j 2+
T2t — LY Tf2T2T§L ") and 2 = nt1 ' nn+1—‘ (2)+
0 Ty (22520 LT ) I35

Since T3 =0
T*2+nT2+n _ (1 4 n)T*QTZ 4 nT*T
_ <T1*2+"T12+” — (1 +n)TPT? + Ty X) -0
X* Y) =
Where X = T2t T Ty — (14 n)T32T Ty + nTy Ts
Y = (T3 T T2ty (T2 ) — (1 4+ n) T3 T T Ty + Ty Ty

We know that, ” If A is a matrix of the form <§1* g) >0ifandonlyif A>0,C >0

and B = A3W(C? for some contraction W. Since T7 is quasi n-class () operator, then we
have T*2+n 24" — (1 4+ n)T*2T? + nT*T > 0. Hence T is quasi n-class @ operator.

Theorem 9. Let M be a closed T-invariant subspace of H. Then the restriction T|pr of
a quasi n-class QQ operator T to M is quasi n-class Q@ operator.

T Ts
0 T;
by Theorem 8, we have T'| is also quasi n-class @) operator.

Proof. Let T = ( ) on H =M@ M-=*. Since T is quasi n-class Q operator then

Theorem 10. Let T be a reqular quasi n class (Q operator, then the approximate point
spectrum lies in the disc
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1
oap(T) C{AEC: (14n)2 <A <|T
(@) <A et < M
Proof. Suppose T is regular quasi n class () operator, then for every unit vector x in
—2112
H, we have [[e]? < | 772|272 |? < FZE (17 2| Ta]? + n| T2|?).

14+n
2 (14n)||?
Hence |[Tzl|® > pr=aqrrrememy -
Now assume that A € 04p(7). Then there exists a sequence { Z,}, ||zm| = 1 such
that ||(T"— Nxy,|| — 0 when m — oo we have ||[Tzp, — Azp|| > || Txm| — [Al||lzml|l >

(1+n)1/2
IT=2]1(IT 7|2 +n)1/2

(1—i—n)1/2
IT=2][(IT 7|2 +n)1/2

— |A|. Now, when m — oo, |A| >

3. Quasi n-class (Q* Operators
In this section we define operators of quasi n-class Q* and consider some basic prop-
erties and examples.
Definition 2. An operator T is said to be quasi n-class Q* (quasi *- n-class Q )if
1

T*Tz|)? < ——(|T**"z||? + n||Tz|?

| P =10 | 1T(%)
for every x € H and every positive integer n. When n = 1, it is of quasi class Q* (quasi
*-class Q )operator.

Theorem 11. For each positive integer n, T is of quasi n-class Q* operator if and only
if T*(T*nrin — (14 n)TT* +nI)T > 0.

For example: let = (x1,22,...) € [, Define T : 1> — 12 by T(z) = (0,21, 22, ...),
T*(x) = (22,23, ...). Then T*2>TT*" — (1 4+ n)(T*T)? +nT*T > 0. ie T is quasi n-class
Q.

From the definition of n-class QQ* operator, we can easily say that every operator of
n-class Q* is also an operator of quasi n-class Q*. Hence we have the following implications

class Q* C n-class Q* C quasi n-class Q*

Also every quasi class Q* is quasi n-class Q*, but the converse is not true and every quasi
n-class Q* is quasi n + 1-class Q* operator. Again, if T' € B(H) is quasi n-class Q* then
T is of quasi n-class Q* operator for any complex number a.

Theorem 12. Let T € B(H). If AT T is an operator of quasi n-class Q*, then T is quasi
*-n-paranormal operator for all A > 0.

Proof. Since A7 T is an operator of quasi n-class @Q* then
AZ TN T T2 — (1) (A2 T A2 D) +n(A2 T)* (A2 T) >0

By multiplying |A|>*" and letting |\| = i, we have T is quasi *-n-paranormal operator for
all A > 0.
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Theorem 13. If quasi n-class Q* operator T doubly commutes with an isometric operator
S, then T'S is an operator of quasi n-class Q*.

Theorem 14. If a quasi n-class Q* operator T' € B(H) is unitarily equivalent to operator
S, then S is an operator of quasi n-class Q*.

Theorem 15. Let T' € B(H) be an invertible operator and N be an operator such that N
commutes with T*T. Then operator N is quasin class Q* if and only if operator TNT ™!
is quasi of n class Q*.

Corollary 4. Let S be quasi n class Q* operator and A any positive operator such that
A7V = A*. Then T = A7'SA is quasin class Q* operator.

Theorem 16. Let T be quasi n class Q* operator. Then the tensor product T ® I and
1 ®T are both quasi n class Q* operators.

Theorem 17. If T' € B(H) is of quasi n class Q* operator for any positive integer n,

a non zero complex number X € op(T) and T is of the form T = <())\ ?) on H =
3

ker(T'— \) @ ran(T — )\)*, then
1. T5, =0 and
2. T3 is quasi n-class Q* operator.

(A T
Proof. Let T = <0 T

ity assume that A = 1, then by Theorem 11, T***"T2t" — (14+-n)(T*T)%24+-nT*T > 0. Now,

) on H = ker(T—\)@ran(T — \) . Without the loss of general-

Ln 1)
2 _ (1250 7;23:? and
0 T

(Ej:o 1513 ])* 13 "

1+ 1+n—j
T*2An24n - 1 nei - - .ijgl_TQTg n1+g | n .
n n—, n n—, n n— *
(Zj:O 1513 ])* 2(Zj:o 1513 J)*(ijo 15T ]) + I3
So, T** 12t — (1 +n)(T*T)? + nT*T > 0 gives

A B
>
(i )=
Where A = 1— (1+n)(1+ TyT3) +n, B = Y 50 DTy 7 — (14 n)[Th + To(T3Th +
T3Ty)] +nTy and C = (L 20 BTy ™) Sy Ty M + 1T — (1+ ) T3 Th +
TyTo + TiT5% 4+ n(Ts Ty + T3 T3)

But,we know that, ” If A is a matrix of the form < A B

. A
B C) > 0 if and only if A > 0,
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C>0and B = A%WC’% for some contraction W.
Therefore 1 +n — (1 +n)(1 + 1275) +n > 0, which implies that (1 + n)(=127%) > 0.
This gives To = 0, since n is a positive integer. Also T3 is quasi n-class Q* operator.

Corollary 5. If T' € B(H) is of quasi n class Q* operator for a positive integer n, then T

is of the form T = <0 T> on H =ker(T — \) @ ran(T — )\) , where T3 is quasi n-class
3
A) =
)

= {0}

Theorem 18. IfT € B(H) is a quasi n-class Q* operator for a positive integer n, T does
not have dense range and T has the following 2 x 2 matrix representation

Q* operator and ker(T —

T = Lo T on H =ran(T) & ker T,
0 T3

if and only if TF T — (1 + n)(TA T} + ToTy) +nl > 0 and Ty = 0.Further more
o(T) = o(T1) U {0} where o(T) denotes the spectrum of T'.

Proof. Let T € B(H) be quasi n class Q* operator and P be an orthogonal projection
onto ran(T). Then Ty = TP = PTP. By Theorem 11 we have that

P(T*1+nT1+n _ (1 + n)(TT*) + nI)P >0

T — (14 n) (VT + ToTy) +nl >0
Also for any x = (z1,22) € H,

(Tsxo,x9) = (T'(I — P)x, (I — P)z)
= (I — P)z,T*(I — P)z) =0

This implies T5 = 0
Since o(T)UT = o(T1)Uo(T3) where 7 is the union of the holes in ¢ (7"), which happens
to be a subset of o(T1) No(13) [by corollary 7, [10]]. ¢(753) = 0 and o(T1) No(T3) has no
interior points we have o(T") = o(T7) U {0}.
Suppose that T = (1(;1 ;2> on H = ran(T) @ ker T*, T 1™ — (1 4+ n)(Ty T +
3
T5T5) +nl > 0 and 75 = 0. Then we have

T*2+nT2+n_(1 —|—n)(T*T)2 —|—7”LT*T

T*2+n 0 T12+n T11+7IT2
(Ty T*”") 0 0 0

—(1+n) (M) + LGN TN+ TR T
GO+ TLIT LT+ (131:)
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TiTy TiTy
+n<T2*T1 Tsz)

A B
_<B* C)ZO

Where A = T (T T — (14 0) (T + ToTy) +nl)Ty
B = THT T — (14 n) (T T5 + ToTy) +nl)Ty

C =Ty (T T — (L4 n) (T + ToTy) + nl)To.
Hence T is quasi n class QQ* operator.

Theorem 19. Let M be a closed T-invariant subspace of H. Then the restriction T'|py; of
a quasi n class Q* operator T to M is quasi n class Q* operator.

Proof. By Theorem 18, T'|)s is also quasi n class Q* operator.

Theorem 20. Let T be a reqular quasi n class Q* operator, then the approrimate point
spectrum lies in the disc

Amfe) <y < |7

oawn(T) C{X e C:
o) €A IT=H == T (|2 +n) 2

Proof. Suppose T is regular quasi n class Q* operator, then for every unit vector x in
H, we have

—ATEHPITE P + )
Now assume that A € 0,,(7). Then there exists a sequence { xy,}, ||zm| = 1 such that

(T — N)xpm|| — 0 when m — oo we have

[T — Azl > | Tzl = [Alllzm |
> || — |l
(1 + n)1/2

> = Al
7= =T 2 + 022

(1—&-71)1/2
[T =T = (| T ]2 +n) /2

Now when m — oo, |A| >

4. Quasi n-class ) and Quasi n-class ()* Composition Operators

Let L2(\) = L?(X, %, \), where (X, X, \) be a sigma-finite measure space. A bounded
linear operator Crf = foT on L?(X,%, \) is said to be a composition operator induced
by T, a non-singular measurable transformation from X into itself, when the measure
AT~ is absolutely continuous with respect to the measure A and the Radon-Nikodym
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-1
dA

measure \(T%)~! with respect to \ is denoted by fék), where T* is obtained by composing

T- k times. Every essentially bounded complex-valued measurable function fy induces the

bounded operator My, on L?(\), which is defined by My, f = fof for every f € L*()).

Further C7.Cr = My, Ci202 = Mj @) and c;1+”c{+n2T = My ).

The following lemma due to Harrington and Whitley [9] is well known.

derivative

= fo is essentially bounded. The Radon-Nikodym derivative of the

Lemma 1. Let P denote the projection of L?> on R(C)

(i) C3xCrf = fof and CrCif = (foo T)Pf for all f € L%, where P is the projection of
L? onto R(O).

(ii)) R(C)={f € L?: f is T~'Y measurable}.
In this section quasi n-class Q and quasi n-class Q* composition operator on L? space are
characterized as follows.

Theorem 21. Let Cr € B(L*(\)). Then Cr is of quasi n-class Q if and only if f(§2+n) -

A+n) P +nfo >0 ae.

Proof. Let Cr € B(L?*()\)) is of quasi n-class Q if and only if C;2T"CE™ — (1 +
n)C’:’cm% +nCHCr > 0. By Theorem 1
Thus ((C;ZC" — (1 4 n)C2C2 + nCLC7)XE, XE) > 0 for every characteristic

function x g of F in ¥ such that A(F) < co. Since C7Cr = My, and C’;?HLC%JF" = Mf<2+n),
0

then <(Mféz+n)—(1+n)Mféz)+an0)XE,XE> > 0. Hence fE(f(§2+n)_(1+n) 52)+nf0)d/\ >

0 for every F in X. Hence C7 is of quasi n class @ if and only if fé2+n) — (1+n)f(§2) +nfo >0
a.e.

Example 1. Let X = N, the set of all natural numbers and X\ be the counting measure
onit. DefineT: N — N byT(1)=1,T4p+q—2)=p+1 forq=0,1,2,3 andp € N.
We have fo(p) = f5(p) = . = J5" () = 1 for p = 1. folp) = 4,57 (p) = 16,... =
fé%n) (p) = 42T forp € N —{1}. Since f(ngrn) (p) — (14 n)féQ) (p) + nfo(p) > 0 for every
p, Hence Cr is of quasi n class QQ operator.

Theorem 22. [1/] If Cr € B(L?*(\)) has dense range then fo = gooT a.e.

Corollary 6. If Cr is quasi n-class Q with dense range on L*(\) then (go o T)2+") —
(1+n)(gooT)® +n(gooT) >0 a.e.

Proof. By Theorem 21 and Theorem 22, we obtain the result.
Theorem 23. Let Cr € B(L?(\)). Then C is of quasi n-class Q operator if and only if

(FF o T2y Py = (14 n)(F2 o TPy + n(fo o T)PL > 0 ace, where Py, Py, ..., Payn
are the projections of L? onto R(C), R(C?), ..., R(C?t™) respectively.
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Proof. Suppose Cr € B(L*(\)) and C is of quasi n-class Q if and only if CA™Ci2 " —
(1 4+ n)C2C32 + nCpCs > 0. By Theorem 1. then ((CECitt™ — (1 4+ n)C2C3? +
nCrCH) f, f) > 0 for every f € L?(X). Since (CC*f, f) = ((foo T)P1f, f) By [9]. Hence
(S o T Py f, ) = (L4 n){((f) 0 T2)Pof, ) + n{(fo o T)PLf, f) > 0 for every
£ € L2(N). Hence ((fT o T27)Pyyy — (14 0) (£ o TPy +n(fo o T)P)f, f) > 0 &
(FE™ o 12 Py — (1 4+ 0) (fP 0 T2) Py + n(fo o TP, > 0 ae.

Corollary 7. Let Cr € B(L?*(\)) with dense range. Then Cj is of quasi n-class Q
operator if and only if ( é2+n) o T?t") — (1 + n)(fé2) oT?) +n(fooT) >0 a.e.

Theorem 24. Let Cr € B(L?()\)). Then Cr is of quasi n-class Q* if and only if fé2+") —
(14+n)(f0)?P +nfo >0 a.e.

Proof. Let Cp € B(L?*()\)) is of quasi n-class Q* if and only if C;2T"C2t" — (1 +
n)(C5Cr)? + nCxCr > 0.
Thus ((C32T"CE™ — (14 n)(CCr)? + nCiCr)xE, XE) > 0 for every characteristic

function xz of F in ¥ such that A(E) < oo. Since CxCr = My, C32 02" = M y(z24m),
0

then ((Mfé2+n) -1+ n)(Mfo)2 +nMy,)xe, xe) > 0. Hence fE(f(§2+n) — (1 +n)(fo)? +

nfo)d\ > 0 for every E in ¥. Hence Cr is quasi n class Q* if and only if f(§2+n) -1+
n)(fo)® +nfo >0 ae.

Example 2. Let X = N, the set of all natural numbers and \ be the counting measure
on it. DefineT: N — N byT(1)=T2)=TB)=1,TMA4p+q) =p+1 forq=0,1,2,3
and p € N. Since f(§2+n) — (1 +n)(fo)® + nfy > 0 for every p, Hence Cr is of quasi n
class Q* operator.

Corollary 8. If Cr is quasi n-class Q* with dense range on L%(\) if and only if féﬂn) -
(1+n)(fo)* +nfo >0 a.e

Theorem 25. Let Cr € B(L?()\)). Then C% is quasi n-class Q* if and only if (f(§2+n) o
TPy — (1 +n)(foo T)?Pr +n(foo T)Py > 0 a.e. where P;’s are the projections of
L? onto R(C?), respectively.

Proof. Let C} € B(L*(\)) is of quasi n-class Q* if and only if CZ™"C2t™ — (1 +
’I’L)(CTC;w)z + TLCTC% > 0.

Thus ((CEFC3E™ — (14 n)(CrCy)? + nCrCi)x e, XE) > 0 for every characteristic
function yg of F in ¥ such that A\(E) < co. Since CiCr = My, Cil™"CH™ = M (14m)

0

and CpC%. = (fooT)P, then fE((féQ+n)oT2+")P2+n—(1—|—n)(fooT)2P1+n(fooT)P1)d)\ >0

for every E in ¥. Hence Cr is of quasi n class Q* if and only if ( fé2+”) oT*™M\Pyyp —
(1+n)(fooT)?*Pr +n(fooT)P, >0 ae.

Corollary 9. Let Cr € B(L?(\)) with dense range. Then Ck is quasi n-class Q* if and
only if (F*T o T4y — (14 n)(foo T)2 + n(foo T) > 0 a.c.



D. Senthilkumar, S. Parvatham / Eur. J. Pure Appl. Math, 11 (4) (2018), 1108-1129 1119

5. Quasi n-class () and quasi n-class (Q* Weighted Composition
Operators

A weighted composition operator is a linear transformation acting on the set of complex
valued ¥ measurable functions f of the form Wy f = w(foT'), where w is a complex valued
>} measurable function. In the case that w = 1 a.e., we say that Wr is a composition
operator. Let wy denote w(w o T)(w o T?)...(w o T*~1) so that Wk f = wy(f o T)* [13].

To examine the weighted composition operators efficiently, Alan Lambert [12], associ-
ated conditional expectation operator E with each transformation T as F(e|T'Y) = E(e).

E(f) is defined for each non-negative measurable function f € LP(1 < p) and is
uniquely determined by the conditions

(i) E(f) is T~'Y measurable and

(i) If B is any T~'% measurable set for which [, fd\ converges, then we have [, fd\ =
S5 E(f)dA

As an operator on LP, F is the projection onto the closure range of C. E, the identity
on LP if and only if T7'o = 0. Now we are ready to derive the characterization of quasi
n-class @ and quasi n-class Q* weighted composition operator as follows.

Theorem 26. Let Wr be a weighted composition operator on B(L?()\)). Then
Wr is of quasi n-class Q if and only if (fy (24n) E(ws,,)o T~y — (1+ n)(féQ)E(wg) o
T2 +nfoE(w?)oT~1 >0 a.e.
Proof. Since Wr € B(L?(\)) is of quasi n-class @ if and only if
WA W2E™ — (14 n)W;2W2 + nW;iWr > 0. By Theorem 1.

Thus (W2t W2 — (1 + n)Wi2W2 + nWiWr)xs, x5) > 0 for every character-
istic function xg of E in ¥ such that A(E) < oo. Since WiWr = foE(w?) o T7Lf,
WEf = wip(fo TV, Wik f = £V E(wyf) o T~ and WikWhf = f" E(w?) o T7% f. Hence
(S E@W,,) o T~ — (140) fP E(wd) o T2+ nfoE(w?) o T~ )xg, xg) > 0. Hence
Jo(FE ™ Bwd,,) o T=+0) — (140) £ BE(w?)? 0 T2 +nfoB(w?) o T~1)dA > 0 for every
FE in 3. Hence W is of quasi n class Q@ if and only if f02+n (w2 n) 0T~ (24n) _ (14
n) éZ)E(wQ) oT2+nfoE(w?)oT™1 >0 ae.

Corollary 10. Let Wr be a weighted composition operator in B(L?()\)) and assume that
T'Y =3%. Then

Wr is of quasi n-class Q if and only if fé2+n)w%+n o T—(2+n) _ (1+ n)féQ)w% oT72 4
nfo(w?)oT=1 >0 a.e

Theorem 27. Let Wy be a weighted composition operator in B(L*(X)). Then W3 is of
quasi n-class Q if and only if
Wain (fET 0 T2 E(wayn) — (1 + n)w (£ o T2) E(ws) + nw(fo o T)E(w) > 0 a.c.

Proof. Since W} € B(L?())) is of quasi n-class Q if and only if
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WEZFPWAE™ — (1 4+ n)W2Wi2 + nWr W2 > 0. By Theorem 1

Thus (W2MW2H" — (1 + n)W2Wi2 + nWrWi)x g, x5) > 0 for every characteristic
function xz of E in ¥ such that A\(E) < oo. Since WrWif = w(foo T)E(wf), WEf =
we(f o TV, Wikf = fEE(wpf) o T-F and WAWZ f = wi(fF o T®W))E(wyf). Then
(o (f§75 0 T7) B(wayn) — (14 n)wa(f§7 0 T%)E(wz) + nw(fo o T) E(w))xe, x2) >
0. which gives [p(wan( éﬂn) o T? ) E(waiyn) — (1 + n)wa( (52) o T?)E(w2) + nw(fo o
T)E(w))dA > 0 for every E in ¥. Hence W7 is quasi n class @ if and only if (w2+n(fé2+n) o
T2 E(wyyn) — (14 n)wa(£2 o T2)E(ws) + nw(fo o T)E(w)) > 0 ace.

Corollary 11. Let Wy be a weighted composition operator in B(L*(\)) and T~1(X) = X.
Then Wi is of n-class Q if and only if
Wi, (F7T o T2y — (1 n)wd(f57 o T?) + nu?(fo o T) > 0 ace.

Theorem 28. Let Wr be a weighted composition operator on B(L*()\)). Then
Wr is quasi n-class Q* if and only if ( 52+n)E(w§+n) o T~y — (1 4+ n)w(foE(w?) o
T2 +nfoB(w?)oT 1 >0 ae.

Proof. Since Wy € B(L?()\)) is quasi n-class Q* if and only if
WA WET™ — (14 n)(WaWr)? + nWiWr > 0 a.e.

Thus (W3 W2T" — (1 + n)(WiWr)? + nWiWr)xe, X) > 0 for every characteris-
tic function yg of F in ¥ such that A\(E) < oo. Since WiWr = foE(w?) o T7f,

Whf = wi(f o TV, Wik f = £ E(upf) o T=F and WkWEf = fME(w?) o T=F f. Then
(I B(3,,) o=+ — (1tn)(foB(w?)oT )2 4n foB(w?)oT~)xp. xi) > 0. Which
implies [ ( éQ+n)E(w%+n) oT=C+7) — (14 n)(foE(w?) o T~ N2 + nfoE(w?) o T~1)d\ > 0
for every E in ¥. Hence W is quasi n class @* if and only if (féHn)E(w%Jrn) oT—(+n)
(14+n)(foE(w?) o T2 + nfoE(w?) o T~1) >0 ae.

Corollary 12. Let Wy be a weighted composition operator in B(L*()\)) and assume that
T1Y =3%. Then Wr is quasi n-class Q* if and only if
(U W) 0 T — (1 ) (fo(w?) o T~1)? + nfo(w?) o T1) > 0 ace,

Theorem 29. Let Wy be a weighted composition operator on B(L*(\)). Then W4 is
quasi n-class Q* if and only if
Wain (fT 0 T2 E(wayn) — (1 + n)[w(fo o T)E(w)]? + nw(fo o T)E(w) > 0 a.e.

Corollary 13. If Wr is a weighted composition operator in B(L?*()\)) and assume that
T71Y =3%. Then W3 is quasi n-class Q* if and only if
w3, ( (52+n) oT* ) — (1 +n)w*(fooT)? +nuw?fyoT >0 a.e.
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The Aluthge transform of T is the operator T given by T = \T|%U T |% was intro-
duced in [1] by Aluthge. The idea behind the Aluthge transform is to convert an operator
into another operator which shares with the first one some spectral properties but it is
closed to being a normal operator. More generally we may form the family of opera-
tors T; : 0 < r < 1 where T, = |T|"U|T|*~" [2]. For a composition operator C, the polar
decomposition is given by C' = U|C| where |C|f = /fof and Uf = \/f(l)TTf oT.

In [12] Lambert has given more general Aluthge transformation for composition oper-

ators as C, = |C|"U|C|*7" and C,.f = (f(ng)%f oT. That is C, is weighted composition

operator with weight 7 = ( ﬁ{gT)% where 0 < r < 1. Since C, is a weighted composition
operator it is easy to show that |Cy|f = \/fo(E(m)20 T-1)f and |C}|f = vE(vf) where
— /ool Also we have

(E(mv/fooT)?)4
Crf =mi(foT)"
Citf = FEB(mef) o T
CIFCrf = fiB(my) o T70f

v =

Theorem 30. Let C; € B(LA(N)). Then C; is of quasin-class Q if and only if (f3 " E(3.,,,)o
T-C) — (L) (f7 B(m3) 0 T72) + n(foB(r) o T7) 2 0 ae.

Proof. Since C, is a weighted composition operator with weight m = ( fggT)%, it follows

from Theorem 26 that C) is quasi n-class @ if and only if (fézJFn)E(ﬂ%Jrn) o T-(+n)y
1+ n)(fPE(r2) o T~2) + n(foE(x?) o T~1) > 0 ace.

Corollary 14. If T7'Y = ¥ and C, € B(L*()\)). Then C, is of quasi n-class Q if and
only if (f5"" (x3) 0 T=F1) — (1 m)(f5? (w3)  T=2) + m(fo(x?) 0 T71) 2 0 ace.

Theorem 31. Let C, € B(L%*(\)). Then C; is of quasin-class Q if and only if7'r2+n(fé2+n)o
T2 E(mry4n) — (14 n)ma(f$? 0 T2)E(my) + nar(fo o T)E(7) > 0 a.e.

Proof. Since C} is a weighted composition operator with weight m = ( f;ch)%’ it follows

from Theorem 27 that C} is of quasi n-class @ if and only if 72, ( é%n) oT* ™M E (1o 4y) —
(1 4+ n)ma(f$? o T2 E(ms) + nm(fo o T)E(r) > 0 ace.

Corollary 15. Let C. € B(L*(\)) and T~ = %. Then C} is of quasi n-class Q if and
only if 77%+n(f(§2+n) o T?tn) — (1 + n)ﬂ'%(f(gm oT?) +nn?(fooT) >0 a.e.

Theorem 32. Let C. € B(L?*(\)). Then C, is of quasi n-class Q* if and only if
(fS B3 ,,) o T=CH) — (14 n)(foB(n?) o T™)2 + n(foE(r2) o T71) > 0 a.c.

Proof. Since C, is a weighted composition operator with weight 7 = ( fong)%’ it follows

from Theorem 46 that C, is of quasi n-class @Q* if and only if ( éH")E(w% n)© T-(@4n))
1+ n)(foBE(@?) oT™H2 + n(foE(r?) o T 1) >0 ae.
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Corollary 16. If T7'Y = ¥ and C, € B(L?*(\)). Then C, is of quasi n-class Q* if and
only if (fT(72,,) 0 T=CHW) — (1 +n)(fo(72) o T2 + n(fo(x2) 0o T~1) > 0 a.e.
Theorem 33. Let C, € B(L*(\)). Then C} is of quasi n-class Q* if and only if
Toan(fy ") 0 THM) B (ma4n) — (L4 1) (n(fo 0 T)E(T))? + n(fo o T)E(m) 2 0 ae.
Corollary 17. If T'Y = X and C € B(L?*(\)) is quasi n-class Q* if and only if
7T3+n(f[§2+n) o T*) — (1 +n)(7%(fooT))? +nr?(fooT) >0 a.e.

B. P Duggal [6] described the second Aluthge Transformation of T by T' = |T \%Vﬁ’\ \%,
where T = V/|T| is the polar decomposition of T. Now we consider C' = |Cr|%V\C’T\%,
where C, = V|C,| is the polar decomposition of the generalized Aluthge transformation
C,:0<r<1. Wehave |C,|f = VJf, where J = foE(n?) o T~

- 1 1 1

C = |CHEVICHE = VIV )= VTP r (L3 )oT = Jim((X22)oT) (foT).

i

We see then that C' is a weighted composition operator with weight w’ = .J iw((

XsupJ oT
0)o7)

~ . . . (2+n) 19 —(24n) _
Theorem 34. If C is of quasi n-class Q) if and only if f, E(wy,,)oT (1+
n)(f7 B@wf) o T=2) + n(foE(w?) o T1) 2 0 ace.

X )o)

Ja

Proof. Since C' is a weighted composition operator with weight w' = .J iﬂ'((
then by Theorem 26 we obtain the result.
Corollary 18. If T-'S = % and C € B(L?*()\)) is of quasi n-class Q if and only if
féQJrn) (w/22+n) oT—(+n) _ (14 n)(f0(2) (w/f) oT™2) + n(fo(w?)oT™1) >0 a.e.
Theorem 35. Let C € B(L%()\)). Then C* is of quasin-class Q if and only ifw’2+n(fé2+n)o
T2 B(wh, ) — (1 +n)wh(f32 o T2)E(wh) + nw'(fo o T)E(w') > 0 a.e.

XsupJ ) OT)

Proof. Since C* is a weighted composition operator with weight w’ = .J iﬂ'(( -
J1

then by from Theorem 27 we obtain the result.

Corollary 19. Let C € B(L2(\)) and T~'S = . Then C* is quasi n-class Q if and only
if w éﬂn) oTHm) — (1 + n)w/22(fé2) oT?) +nw?(fooT) >0 a.e.

Theorem 36. If C is quasi n-class Q* if and only if fé2+n)E(w;a_n) oT—(+n) (14
n)(foE(w?) o T~ 4+ n(foE(w?)oT~') >0 a.e.

Corollary 20. IfT7'S = ¥ and C € B(L2()\)) is of n-class Q* if and only z'ff(52+n) (w'22+n)o
T=Ct) — (14 n)(fo(w?) o T2 +n(fo(w?) o T~ >0 ae.

Theorem 37. Let C € B(L%()\)). Then C* is of quasin-class Q* if and only if wy,( é2+n)o
T E(w).,) — (14 n)(w'(fo o T)E(w'))? + n(w'(fo o T)E(w')) > 0 a.e.

Corollary 21. Let C € B(L*(\)) and T~'S = X. Then C* is of n-class Q* if and only
o (f67 0 TH) = (Lt m)(w?(fo o T))? + n(w?(fo o T)) 2 0 ace.
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6. Quasi n-class () and Quasi n-class * Weighted Composition
Operators on Weighted Hardy Space

The set H?(j3) of formal complex power series f(z) = Y oo a,,2z™ such that || fH% =
S0 olam|?82, < oo is a Hilbert space of functions analytic in the unit disc with the inner
product.

(fs9) = Doo_g ambmf% for an analytic map f on the open unit disc D and g(z) =
> o o bz

Let ¢ : D — D be an analytic self map of the unit disc and consider the corresponding
composition operator C acting on H?(8). That is Cy(f) = fo ¢ for f € H*(B). The
operators Cy are not necessarily defined on all of H?(53). They are everywhere defined in
some special cases on the classical Hardy Space H? (the case when 3, = 1 for all n) and on
a general space H2(3) if the function ¢ is analytic on some open set containing the closed
unit disc having supremum norm strictly smaller than one. The weighted composition
operator Wy, is defined as (Wyf)(z) = nf(¢(z)) and (Wj[f)(z) = 7f(#(z)) for every
z€D

Let w be a point on the open disc. Define kb (z) = S.°°_, Z°%"™  Then the function

m=0 572n
k5 is a point evaluation for H2(8).Then kf is in H2(B) and ||kb|% = > =0 gz Thus
|kwl| is an increasing function of |w|. If f(z) = Y 0 amz™ then (f, ko) = f(w) for all
Wikiy = 7k, and kg =1 (the

|w|2m

f and k:g Hence we can easily seen that C’;kﬁ, = k:g(

w)’?
function identically equal to 1).

Now we characterize quasi n class Q and quasi n-class Q* composition operators on
this space as follows.

Theorem 38. If Cy is of quasi n-class Q operator in H*(3), then C;2+”C§+n -1+
n)C’;;QC’(?5 +nC3C, >0
Proof. For f € H?(j3), consider
(OO — (14 n)Ci2C3 + nCyCy) f, f)
— (CECE S, f) — (14 n)(CRCL, ) + n(CiCof, f)
= (CZPf, O3 f) = (L4 n)(C3f, C3f) + n{Cof, Co f)
= G212 = L+ n)ICSf 1P + nllCo fII?
Let f = kj then
(OO — (14 n)C32C2 + nCiCy) . f)
= IC5 kg 1> = (L + I C3kG 1> + nllCokg |1
= K I* = (1 + )| 11 + k5 1* = 0

Hence Cy is quasi n-class @) operator.
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Theorem 39. If C§ is quasi n-class Q operator in H?(B), then C;JF”C’;‘;ZJF" -1+
n)Cq%C:;Q +nCyCy >0
Proof. For f € H?(f3), consider
(O3 O~ (1 4+ n)C3C32 + nCoCi) £, f)
= (C5F" O f, f) = (L+n)(CECE f, ) + n{CuCh 1, f)
= (C7 . O3 ) = (L n)(CF2f.C2f) + n(Cf. C3 )
= |CZ 1P = (L +n)ICE 11 + nllC5 £

Let f = k:g and ¢(0) = 0 then we have
(CZEnCs ™ —(1 4 n)C3CH +nCyCy) [ f)
= (IG5 kg2 — (1 + )| C32kG |1 + | Ckg |2
= k5112 — (L +n)|K5 |12 + k|2 =0

Hence C;; is quasi n-class () operator.

Theorem 40. If Cy is quasi n-class Q* operator in H*(B) if and only if ||l<:gH2 > Hki(o) 2.

Theorem 41. If C} is of quasi n-class Q* operator in H2(B) if and only if ||k§2+n(0)||2 >
B2
1S 12

Next we characterize the quasi n class ) and quasi n class Q* weighted composition
operator on weighted hardy space as follows

Theorem 42. An operator Wy € H?(83) is quasin class Q if and only if ||7>™||> — (1 +
n)[[72)* +nlx | > 0.

Proof. Since W is quasi n class () operator, then for any f € H 2(B), we have
(WM W™ — (14 n)W3PW3 +nWiWy)f, f) > 0
S W FIP = L+ n)[WE 1P +n|We fl? >0
& W KGN = (14 n)IWEkG[1* +nl[Wekg||* = 0 when f = kg
& 7RG P~ (1 + n)|%K5|? + nl|wkg |* > 0
& =P IR 1P = (L + w211k 112 + nl )k 1> > 0
& 722 = (1 + 0|72 +nlr]? > 0

Theorem 43. An operator Wj € H?(B) is quasi n class Q if and only if |727"|% — (1 +
n)[[72|? + nl|7]* > 0.
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Proof. Since W; is quasi n class () operator, we have

(W2EmWE — (14 n) (WeW5)2 + nW W), f) > 0 for any f € H2()

(WEmWm — (14 n)(WeW5)? + nWeWi) f, f) > 0
& Wi FI12 = (14 n) [WE2F)1 + nl| Wi £I? > 0

& 7G| = (1 + |72k |1 + nl[7kG 12 > 0 for f = kjandp(0) =
& 72 = (1+n) |72 + 7] > 0

Hence the theorem.

Theorem 44. An operator Wy is of quasi n-class Q* operator in H?(B) if and only if
()2 + w2 kS 12 = (1 + )l P[5 g 12

Theorem 45. An operator Wj € H?(B) is of quasi n-class Q* if and only if
[T = (1 +n)|7]? — n||7T||2

7. quasi n-class () and quasi n-class (Q* Composite Multiplication
operator

As composite multiplication operator to a linear transformation acting on a set of
complex value ¥ measurable functions f of the form M, r(f) = CrM,f = uoTfoT
where u is a complex valued ¥ measurable function. In the case u =1 a.e, M, T becomes
a composition operator denoted by Cr.

Proposition 1. Let the composite multiplication operator M, r(f) € B(L*(\)) then for
u>0

(i) My pMyrf=ufof.
(ii) Mur My f = (u?oT)(fooT).E(f).
Since M, T(f) = CrMyf =uoT foT M{ZT(f) = (CrM,)"(f) = u™(foT)? and MJT(f) B
wfo B(f) o T~ M5(f) = ufo.E(ufo) o T-0V.E(f) o T where E(ufy) o T~V =
E(ufo) oT™ 1,E(ufo) o T2, ..., E(ufy) o T-(n=1)
E(ufo) o T = E(ufy) o T, E(ufy) o T2, ..., E(ufy) o Tn—1

In this section, we study quasi n-class (Q and quasi n-class Q* composite multiplication
operator as follows.

Theorem 46. Let the composite multiplication operator M, r € B(L*(X)). Then M, r is
quasin class Q if and only if ufo. E(ufy) oT~ ™ E(ugy ) o T~ — (14+n)ufy. E(ufo)o
T 1E(ug) o T2+ nu?fy > 0. a.e.
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Proof. Suppose M, T is quasi n class () operator, then
MM — (14 n) M2 M2 4 nM: My, > 0 Then for any f € L*(X), we have
(MZMEE — (L4 n) M3 M 7 + My p Myr)f, f) > 0
(MM f, ) = (L4 n) (M2 M 1 f, f) + n(Ms p My f, f) > 0
Since M5 ME . = ufo.E(ufo) o T~*"D.E(f)o T
M p MY = w0 TF. fo o TF.E(ufy) o T* 1. E(f)
where u, = uoTwoT?. .uoTk
& ((ufo-E(ufo) o T=04 B(ugyy) o T~ f, f)—
(1 +n)((ufo-E(ufo) o T~ .E(ug) o T2 f, f) + n{(w’fo) f, f) > 0
& / (ufo.E(ufo) o T~ E(ugyn) o T~ — (1 4+ n)ufo.E(ufo) o T}
E
E(u2) o T™% 4+ nu?fo)d\ > 0

& ufo-B(ufo) o T~ E(ugin) o T~ — (14 n)ufo.E(ufo) o T~
E(uz) o T2 +nufo >0 a.e

Corollary 22. If the composition operator Cp € B(L?()\)) then Cr is quasin class Q if
and only if fo.E(fo) o T~ — (14 n)fo.E(fo) o T~  +nfy > 0. a.e.

Proof. By putting v = 1 in Theorem 46, we get the result.
Theorem 47. Let the composite multiplication operator M, v € B(L*(\)). Then M 7 is

quasi n class Q if and only if usyn.uwo T*T". fo o T*t" E(ufo) o T . E(f) — (14 n)us(uo
T%)(fo o T?).E(ufy) o TE(f) + n(u? o T)(fo o T).E(f) > 0. a.e.

Proof. Suppose M; 1 is quasi n class ) operator, then MS}"M;ZF”—(l—Fn)MiTMJ?T—F
nMyrM; p > 0 Then for any f € L?()\), we have
(MIMZE™ — (L4 n) MG p M + nMyr M) f, f) > 0
& / (Uggn-w 0 T?T fo o T*T E(ufy) o TY™.E(f) — (14 n)
E

uz(uo T (fo o T?).E(ufo) o TE(f) + n(u® o T)(fo o T).E(f))d\ >0
& Uy o T fo o T*T" E(ufy) o TV E(f) — (1 +n)
us(u o T?)(fo o T?).E(ufo) o TE(f) + n(u® o T)(fo o T).E(f) > 0 a.e

Corollary 23. If the composition operator Cr € B(L*(\)) then C% is quasi n class Q if
and only if fooT* . B(fo)oT . E(f)— (1+n) (fooT?).E(fo) T E(f)+n(fooT).E(f) > 0.

a.ce.
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Theorem 48. Let the composite multiplication operator M, r € B(L*(X)). Then M, r is
quasi n class Q* if and only if ufo.E(ufo) o T~ B(ugyy) o T~ — (14-n)(u*)(f3) +
n(u?)(fo) > 0. a.e.

Corollary 24. If the composition operator Cp € B(L*()\)). Then Cr is quasi n class Q*
if and only if fo.E(fo) o T~ — (1 4+n)(2) + n(fo) > 0. a.e.

Theorem 49. Let the composite multiplication operator M, r € B(L*(\)). Then M 7 is
quasi n class Q* if and only if ugynuo T? " fo o T* E(ufy) o T . E(f) — (14 n)(u?foo
TE(f)? +n(u?fooT)E(f) > 0. a.e.

Corollary 25. If the composition operator Cr € B(L*()\)). Then Ci is quasi n class Q*
if and only if fo o T**".E(fo) o T".E(f) — (1 + n)(fo o TE(f))* + n(fo o T)E(f) = 0.

a.e.

8. Aluthge transformation of quasi n-class () and quasi n class Q*
operator

Let T = U|T| be the polar decomposition of T. Then the Aluthge transformation
T= |T|%U T |% was introduced by Aluthge[l]. An operator T is called w hyponormal if
|T| > |T| > |T*| and he defined T = |T]%T|T|% where T = U|T|. Also the adjoint of
aluthge transformation is defined as T* = |T |%U*]T |%, *_Aluthge transformation is T* =
|T*]%U\T*|% and adjoint of *-Aluthge transformation is given by T*" = |T*|%U*|T*|%

Theorem 50. An operator T is quasin class Q if and only if (14+n)T*|T|?T < T*TO+™) 2T+
nIT*T for all x € H and for every positive integer n.

Proof. Since T is quasi n class Q operator, then T*(T* T+ — (14n)T*T+nI)T > 0
for every positive integer n. By simple calculation we get the result.

Theorem 51. If T' = U|T)| is the polar decomposition of quasin class Q operator T, then
T s quasi n class Q) operator.

Theorem 52. If T' is quasi n class Q) operator T' and S is unitary such that T'S = ST
then A =TS is also quasi n class Q) operator.

Theorem 53. Let T = U|T| be the polar decomposition of quasi n class Q operator T,
where U is unitary if and only if T is quasi n class @ operator.

Proof. Suppose we assume that T is quasi n class ) operator and T' = U|T| is the
polar decomposition of T, then we have that
T*(T*HnTIHn — (1 4 n)T*T + nI)T > 0 for every positive integer n.
s (UTh(UIT)**"UITh™" — (L +n)(UIT))*(UIT)) +nI)(U|T]) > 0.
PN |T‘%U*‘T’%<‘T(1+n)’%U*(l—i-n)‘T*(l+n)‘U(l+n)|T(l+n)‘% o (1 + n)
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T|2U*|T*|U|T|2 + nI)|T|2U|T|2 > 0.
o THEFIN _ (14 )T+ nD)T > 0

for every positive integer n. Hence T' is quasi n class ) operator.

Theorem 54. Let T = U|T| be the polar decomposition gf quasi n class Q operator T
and U is unitary, then T is quasi n class Q if and only if T™ is quasi n class Q) operator.

Proof. Suppose we assume that 7' is quasi n class @) operator and 7' = U|T| is the
polar decomposition of T, then we have that
T*(T*HnTiHn — (1 4 n)T*T + nI)T > 0 for every positive integer n.

& (UIT)* (T W) = 1+ ) UIT])*(UIT]) +nZ)(UT]) > 0.
& 7|20z (T U T O Tz — (14 )

I T|2U|T*|U*|T|2 + nI)|T|2U|T|2 > 0.

& T (T - (1 )T + )T > 0

for every positive integer n. Hence T is quasi n class () operator.

Corollary 26. If T is quasi n class Q if and only if T* is quasin class Q operator.

Theorem 55. Let T = U|T| be the polar decomposition ~of quasi n class Q operator T
and U is unitary, then T is quasi n class Q if and only if T is quasi n class Q) operator.

Theorem 56. Let T'= U|T| be the polar decomposition of quasi n class Q operator T' and
~ ~ %
U is unitary, then T* is quasi n class Q if and only if T* is quasi n class QQ operator.

Theorem 57. An operator T is quasi n class Q* if and only if (1 + n)T*|T**T <
T*]T(H")\QT + nT*T for all x € H and for every positive integer n.

Theorem 58. If ' = U|T)| is the polar decomposition of quasi n class Q* operator T,
then T is quasi n class Q* operator.

Theorem 59. If T is quasi n class Q* operator T' and S is unitary such that TS = ST
then A =TS is also quasi n class Q* operator.

Theorem 60. If T is quasi n class Q* if and only if T* is quasin class Q* operator.

Theorem 61. If T* is quasi n class Q* if and only if T is quasi n class Q* operator.
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