EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 11, No. 4, 2018, 1108-1129 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Aluthge Transformation Of quasi n-class Q and quasi n-class Q^* operators

D.Senthilkumar¹, S. Parvatham^{2,*}

- ¹ Post Graduate and Research Department of Mathematics, Govt. Arts College, Coimbatore-641018, Tamilnadu, India
- ² Post Graduate and Research Department of Mathematics, Govt. Arts College, Coimbatore-641018, Tamilnadu, India

Abstract. In this paper, a new class of operators called quasi n-class Q and quasi n-class Q^* operators are introduced and studied some properties. Quasi n-class Q and quasi n-class Q^* composition and weighted composition operators on $L^2(\lambda)$ and $H^2(\beta)$ are characterized. Also we discuss quasi n-class Q and quasi n-class Q^* composite multiplication operator on L^2 space and Aluthge transformation of these class of operators are obtained.

2010 Mathematics Subject Classifications: Primary 47B20; Secondary 47B33, 47B38.

Key Words and Phrases: Class Q Operators, Class Q^* Operators, Composition Operators, Weighted Composition Operators, Aluthge Transformation

1. Introduction

Let H be an infinite dimensional separable Complex Hilbert space. Let B(H) be the algebra of all bounded linear operators acting on H. Let T be an operator on H. Every operator T can be decomposed into T = U|T| with a partial isometry U, where |T| is the square root of (T^*T) . If U is determined uniquely by the kernel condition N(U) = N(|T|), then this decomposition is called the polar decomposition, which is one of the most important results in operator theory.

Recall that an operator T is said to be paranormal if $||Tx||^2 \le ||T^2x|| ||x||$ for every $x \in H$ [7]. An operator T is said to be n-paranormal if $||Tx||^{n+1} \le ||T^{n+1}x|| ||x||^n$ for every $x \in H$ [16] and normaloid if r(T) = ||T||, where r(T) denotes the spectral radius of T. An operator T is of class Q [3], if $T^{*2}T^2 - 2T^*T + I \ge 0$. Equivalently $T \in Q$ if $||Tx||^2 \le \frac{1}{2}(||T^2x||^2 + ||x||^2)$ for every $x \in H$. Class Q operators are introduced and studied by R. P. Duggal et al and it is well known that every class Q operator is not necessarily

DOI: https://doi.org/10.29020/nybg.ejpam.v11i4.3329

Email addresses: senthilsenkumhari@gmail.com (D.Senthilkumar), parvathasathish@gmail.com (S. Parvatham)

^{*}Corresponding author.

normaloid and every paranormal operator is a normaloid of class Q. ie $P \subseteq Q \cap N$, where P and N denotes the class of paranormal and normaloid operators respectively. Also he showed that the restiction of T to an invariant subspace is again a class Q operator.

Devika, Suresh [5], introduced a new class of operators which we call the quasi class Q operators and it is defined as, for $T \in B(H)$

$$||T^2x||^2 \le \frac{1}{2}(||T^3x||^2 + ||Tx||^2)$$
 for every $x \in H$

In [8], A k-quasi class Q operator is defined as follows, An operator T is of k-quasi class Q if

$$||T^{k+1}x||^2 \le \frac{1}{2}(||T^{k+2}x||^2 + ||T^kx||^2)$$
 for every $x \in H$

and k is a natural number. D. Senthil Kumar, Prasad. T in [11], has defined the new class of operators which we call M-class Q operators. An operator T is of M class Q if for a fixed real number $M \geq 1$, T satisfies $M^2T^{*2}T^2 - 2T^*T + I \geq 0$ or equivalently $\|Tx\|^2 \leq \frac{1}{2}(M^2\|T^2x\|^2 + \|x\|^2)$ for every $x \in H$ and a fixed real number $M \geq 1$.

In [15], Youngoh Yang and Cheoul Jun Kim introduced a class Q^* operators. If

$$T^{*2}T^2 - 2TT^* + I \ge 0,$$

then T is called class Q^* operators. He also proved that if T is class Q^* if and only if $||T^*x||^2 \leq \frac{1}{2}(||T^2x||^2 + ||x||^2)$ for every $x \in H$. In [4], D. Senthil Kumar et. al. introduced quasi class Q^* operators. If

$$T^{*3}T^3 - 2(T^*T)^2 + T^*T > 0,$$

then T is called quasi class Q^* operators. He also proved that if T is quasi class Q^* if and only if $||T^*Tx||^2 \leq \frac{1}{2}(||T^3x||^2 + ||Tx||^2)$ for every $x \in H$

In this paper, we study some properties of quasi n-class Q and quasi n-class Q^* operators and we derive conditions for composition and weighted composition operators to be quasi n-class Q and quasi n-class Q^* . Aluthge transformation of quasi n-class Q and quasi n-class Q^* operators are derived. Conditions for Composite multiplication operators to be quasi n-class Q and quasi n-class Q^* are also obtained. A characterization of quasi n-class Q and quasi n-class Q^* composition and weighted composition operators on weighted Hardy space are obtained.

2. Quasi n class Q Operators

In this section, we define new class of operators called quasi n-class Q, which is a super class of n-class Q operators and studied some properties of this class of operators.

Definition 1. An operator $T \in B(H)$ is said to be quasi n-class Q if for every positive integer n and for every $x \in H$

$$||T^2x||^2 \le \frac{1}{1+n}(||T^{2+n}x||^2 + n||Tx||^2)$$

when n = 1 it is of quasi class Q operators.

Theorem 1. An operator T is of quasi n-class Q if and only if $T^{*2+n}T^{2+n}-(1+n)T^{*2}T^2+$ $nT^*T > 0$ for every positive integer n.

Proof. Since
$$T$$
 is quasi n class Q operator, we have $\|T^2x\|^2 \leq \frac{1}{1+n}(\|T^{2+n}x\|^2+n\|Tx\|^2)$

$$\Leftrightarrow ||T^{2+n}x||^2 - (1+n)||T^2x||^2 + n||Tx||^2) > 0$$

$$\Leftrightarrow ||T^{2+n}x||^2 - (1+n)||T^2x||^2 + n||Tx||^2) \ge 0$$

$$\Leftrightarrow \langle T^{2+n}x, T^{2+n}x \rangle - (1+n)\langle T^2x, T^2x \rangle + n\langle Tx, Tx \rangle \ge 0$$

$$\Leftrightarrow T^{*2+n}T^{2+n} - (1+n)T^{*2}T^2 + nT^*T \ge 0$$

$$\Leftrightarrow T^{*2+n}T^{2+n} - (1+n)T^{*2}T^2 + nT^*T \ge 0$$

For example: let $x=(x_1,x_2,...)\in l^2$, Define $T:l^2\to l^2$ by $T(x)=(0,x_1,x_2,...)$, $T^*(x)=(x_2,x_3,...)$. Then $T^{*2+n}T^{2+n}-(1+n)T^{*2}T^2+nT^*T\geq 0$. ie T is quasi n-class

From the definition of n class Q operator we can easily say that every n class Q operator is also an operator of quasi n class Q. Hence we have the following implication

class
$$Q \subset n$$
 class $Q \subset \text{quasi } n$ class Q .

Theorem 2. Every quasi class Q operator is quasi n class Q operator.

Proof. By using induction principle and simple calculation we get the result.

Corollary 1. If $T \in B(H)$ is of quasi n-class Q then T is of quasi n+1-class Q operator

Corollary 2. If $T \in B(H)$ is of quasi n-class Q then αT is of quasi n-class Q operator for any complex number α .

Theorem 3. Let $T \in B(H)$. If $\lambda^{\frac{-1}{2}}T$ is an operator of quasi n class Q, then T is quasi n paranormal operator for all $\lambda > 0$.

Proof. Since $\lambda^{-\frac{1}{2}}T$ is an operator of quasi n-class Q, then

$$(\lambda^{\frac{-1}{2}}T)^{*(2+n)}(\lambda^{\frac{-1}{2}}T)^{2+n}-(1+n)(\lambda^{\frac{-1}{2}}T)^{*2}(\lambda^{\frac{-1}{2}}T)^{2}+n((\lambda^{\frac{-1}{2}}T)^{*}(\lambda^{\frac{-1}{2}}T))\geq 0.$$

Hence $|\lambda^{\frac{-1}{2}}|^{2(2+n)}T^{*2+n}T^{2+n} - (1+n)|\lambda^{\frac{-1}{2}}|^4T^{*2}T^2 + n|\lambda^{\frac{-1}{2}}|^2T^*T \ge 0$. By multiplying $|\lambda|^{2+n}$ and let $|\lambda| = \mu$, then

$$T^{*2+n}T^{2+n} - (1+n)\mu^n T^{*2}T^2 + n\mu^{1+n}T^*T \ge 0.$$

Hence T is quasi n-paranormal operator for all $\lambda > 0$.

Theorem 4. If quasi n-class Q operator T doubly commutes with an isometric operator S, then TS is an operator of quasi n-class Q.

Proof. Since T is quasi n-class Q operator, then $T^*(T^{*1+n}T^{1+n}-(1+n)T^*T+nI)T\geq 0$. Suppose T doubly commutes with an isometric operator S, then $TS=ST, S^*T=TS^*$ and $S^*S=I$. Now let A=TS. So we get $A^*(A^{*(1+n)}A^{(1+n)}-(1+n)A^*A+nI)A\geq 0$. Therefore TS is a quasi n-class Q operator.

Theorem 5. If a quasi n-class Q operator $T \in B(H)$ is unitarily equivalent to operator S, then S is an operator of quasi n-class Q.

Proof. Assume T is unitarily equivalent to operator S. Then there exists an unitary operator U such that $S = U^*TU$ and T is quasi n-class Q operator, then $S^*(S^{*1+n}S^{1+n} - (1+n)S^*S + nI)S = (U^*TU)^*((U^*TU)^{*1+n}(U^*TU)^{1+n} - (1+n)(U^*TU)^*(U^*TU) + nI)(U^*TU) > 0$. Therefore S is quasi n-class Q operator.

Theorem 6. Let $T \in B(H)$ be an invertible operator and N be an operator such that N commutes with T^*T . Then operator N is quasi n class Q if and only if operator TNT^{-1} is of quasi n class Q.

Proof. Let N be quasi n class Q operator, then $N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N \ge 0$. Since operator N commutes with operator T^*T , we have $(TNT^{-1})^*((TNT^{-1})^{*1+n}(TNT^{-1})^{1+n}-(1+n)(TNT^{-1})^*(TNT^{-1})+nI)(TNT^{-1})=T(N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N)T^{-1}$. Since N is quasi n class Q operator, then $T(N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N)T^*\ge 0$. Which implies (TT^*) commutes with $T(N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N)T^*$. Also $(TT^*)^{-1}$ is also commutes with $TN^*((N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N)T^*$. Then $T(N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N)T^{-1}\ge 0$. Hence TNT^{-1} is quasi n class Q operator. Conversely suppose that (TNT^{-1}) is quasi n class Q operator, then $N^*(N^{*1+n}N^{1+n}-(1+n)N^*N+nI)N\ge 0$.

Corollary 3. Let S be quasi n class Q operator and A any positive operator such that $A^{-1} = A^*$. Then $T = A^{-1}SA$ is quasi n class Q operator.

Theorem 7. Let T be quasi n class Q operator. Then the tensor product $T \otimes I$ and $I \otimes T$ are both quasi n class Q operators.

Proof. By the definition of quasi n class Q and tensor product and by the simple calculation we get the result.

Theorem 8. If $T \in B(H)$ is a quasi n-class Q operator for a positive integer n, the range of T does not have dense range then T has the following 2×2 matrix representation $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \overline{ran(T)} \oplus \ker T^*$, if and only if T_1 is also quasi n-class Q operator on $\overline{ran(T)}$ and $T_3 = 0$. Further more $\sigma(T) = \sigma(T_1) \cup \{0\}$ where $\sigma(T)$ denotes the spectrum of T.

Proof. Let P be an orthogonal projection of H onto $\overline{ran(T)}$. Then $T_1 = TP = PTP$. By Theorem 1 we have that

$$P(T^{*2+n}T^{2+n} - (1+n)T^{*2}T^2 + nT^*T)P \ge 0$$

Hence
$$\begin{pmatrix} T_1^{*2+n}T_1^{2+n} - (1+n)T_1^{*2}T_1^2 + nT_1^*T_1 & 0 \\ 0 & 0 \end{pmatrix} \ge 0$$

This implies $T_1^{*2+n}T_1^{2+n} - (1+n)T_1^{*2}T_1^2 + nT_1^*T_1 \ge 0$
So T_1 is quasi n -class Q operator on $\overline{ran(T)}$

So T_1 is quasi n-class Q operator on ran

Also for any $x = (x_1, x_2) \in H$,

$$\langle T_3^k x_2, x_2 \rangle = \langle T^k (I - P) x, (I - P) x \rangle$$
$$= \langle (I - P) x, T^{*k} (I - P) x \rangle$$
$$= 0$$

This implies $T_3 = 0$

Since $\sigma(T) \cup \tau = \sigma(T_1) \cup \sigma(T_3)$ where τ is the union of certain holes in $\sigma(T)$, which happens to be a subset of $\sigma(T_1) \cap \sigma(T_3)$ [by corollary 7, [10]]. $\sigma(T_3) = 0$ and $\sigma(T_1) \cap \sigma(T_3)$ has no interior points we have $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Suppose that $T=\begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H=\overline{ran(T)}\oplus\ker T^*$ where T_1 is quasi n-class Q

$$T^{2+n} = \begin{pmatrix} T_1^{2+n} & \sum_{j=0}^{1+n} T_1^j T_2 T_3^{n+1-j} \\ 0 & T_3^{2+n} \end{pmatrix} and \ T^{*2+n} = \begin{pmatrix} T_1^{*2+n} & 0 \\ (\sum_{j=0}^{n+1} T_1^j T_2 T_3^{n+1-j})^* & T_3^{*2+n} \end{pmatrix}$$

$$T^{*2+n}T^{2+n} - (1+n)T^{*2}T^2 + nT^*T$$

$$= \begin{pmatrix} T^{*2+n}T_1^{2+n} - (1+n)T_1^{*2}T_1^2 + nT_1^*T_1 & X \\ X^* & Y \end{pmatrix} \ge 0$$

Where
$$X = T_1^{*2+n} T_1^{1+n} T_2 - (1+n) T_1^{*2} T_1 T_2 + n T_1^* T_2$$

 $Y = (T_2^* T_1^{*1+n} T_1^{2+n}) (T_1^{*2+n} T_1^{1+n} T_2) - (1+n) T_2^* T_1^* T_1 T_2 + n T_2^* T_2$

We know that," If A is a matrix of the form $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \ge 0$ if and only if $A \ge 0, C \ge 0$

and $B=A^{\frac{1}{2}}WC^{\frac{1}{2}}$ for some contraction W. Since T_1 is quasi n-class Q operator, then we have $T^{*2+n}T^{2+n}-(1+n)T^{*2}T^2+nT^*T\geq 0$. Hence T is quasi n-class Q operator.

Theorem 9. Let M be a closed T-invariant subspace of H. Then the restriction $T|_{M}$ of a quasi n-class Q operator T to M is quasi n-class Q operator.

Proof. Let $T=\begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H=M\oplus M^\perp.$ Since T is quasi n-class Q operator then by Theorem 8, we have $T|_{M}$ is also quasi n-class Q operator.

Theorem 10. Let T be a regular quasi n class Q operator, then the approximate point spectrum lies in the disc

$$\sigma_{ap}(T) \subseteq \{\lambda \in C : \frac{(1+n)^{\frac{1}{2}}}{\|T^{-2}\|(\|T^{1+n}\|^2 + n)^{\frac{1}{2}}} \le |\lambda| \le \|T\|$$

Proof. Suppose T is regular quasi n class Q operator, then for every unit vector x in H, we have $||x||^2 \le ||T^{-2}||^2 ||T^2x||^2 \le \frac{||T^{-2}||^2}{1+n} (||T^{1+n}||^2 ||Tx||^2 + n||Tx||^2)$.

Hence
$$||Tx||^2 \ge \frac{(1+n)||x||^2}{||T^{-2}||^2(||T^{1+n}||^2+n)}$$
.

Now assume that $\lambda \in \sigma_{ap}(T)$. Then there exists a sequence $\{x_m\}$, $\|x_m\| = 1$ such that $\|(T - \lambda)x_m\| \to 0$ when $m \to \infty$ we have $\|Tx_m - \lambda x_m\| \ge \|Tx_m\| - |\lambda| \|x_m\| \ge \frac{(1+n)^{1/2}}{\|T^{-2}\|(\|T^{1+n}\|^2+n)^{1/2}} - |\lambda|$. Now, when $m \to \infty$, $|\lambda| \ge \frac{(1+n)^{1/2}}{\|T^{-2}\|(\|T^{1+n}\|^2+n)^{1/2}}$

3. Quasi n-class Q^* Operators

In this section we define operators of quasi n-class Q^* and consider some basic properties and examples.

Definition 2. An operator T is said to be quasi n-class Q^* (quasi *- n-class Q) if

$$||T^*Tx||^2 \le \frac{1}{1+n}(||T^{2+n}x||^2 + n||Tx||^2)$$

for every $x \in H$ and every positive integer n. When n = 1, it is of quasi class Q^* (quasi *-class Q) operator.

Theorem 11. For each positive integer n, T is of quasi n-class Q^* operator if and only if $T^*(T^{*1+n}T^{1+n}-(1+n)TT^*+nI)T \ge 0$.

For example: let $x = (x_1, x_2, ...) \in l^2$, Define $T : l^2 \to l^2$ by $T(x) = (0, x_1, x_2, ...)$, $T^*(x) = (x_2, x_3, ...)$. Then $T^{*2+n}T^{2+n} - (1+n)(T^*T)^2 + nT^*T \ge 0$. ie T is quasi n-class Q^* .

From the definition of n-class Q^* operator, we can easily say that every operator of n-class Q^* is also an operator of quasi n-class Q^* . Hence we have the following implications

class
$$Q^* \subset n$$
-class $Q^* \subset \text{quasi } n$ -class Q^*

Also every quasi class Q^* is quasi n-class Q^* , but the converse is not true and every quasi n-class Q^* is quasi n-class Q^* operator. Again, if $T \in B(H)$ is quasi n-class Q^* then αT is of quasi n-class Q^* operator for any complex number α .

Theorem 12. Let $T \in B(H)$. If $\lambda^{\frac{-1}{2}}T$ is an operator of quasi n-class Q^* , then T is quasi *-n-paranormal operator for all $\lambda > 0$.

Proof. Since $\lambda^{\frac{-1}{2}}T$ is an operator of quasi n-class Q^* then

$$(\lambda^{\frac{-1}{2}}T)^{*(2+n)}(\lambda^{\frac{-1}{2}}T)^{2+n} - (1+n)((\lambda^{\frac{-1}{2}}T)^*(\lambda^{\frac{-1}{2}}T))^2 + n(\lambda^{\frac{-1}{2}}T)^*(\lambda^{\frac{-1}{2}}T) \ge 0$$

By multiplying $|\lambda|^{2+n}$ and letting $|\lambda| = \mu$, we have T is quasi *-n-paranormal operator for all $\lambda > 0$.

Theorem 13. If quasi n-class Q^* operator T doubly commutes with an isometric operator S, then TS is an operator of quasi n-class Q^* .

Theorem 14. If a quasi n-class Q^* operator $T \in B(H)$ is unitarily equivalent to operator S, then S is an operator of quasi n-class Q^* .

Theorem 15. Let $T \in B(H)$ be an invertible operator and N be an operator such that N commutes with T^*T . Then operator N is quasi n class Q^* if and only if operator TNT^{-1} is quasi of n class Q^* .

Corollary 4. Let S be quasi n class Q^* operator and A any positive operator such that $A^{-1} = A^*$. Then $T = A^{-1}SA$ is quasi n class Q^* operator.

Theorem 16. Let T be quasi n class Q^* operator. Then the tensor product $T \otimes I$ and $I \otimes T$ are both quasi n class Q^* operators.

Theorem 17. If $T \in B(H)$ is of quasi n class Q^* operator for any positive integer n, a non zero complex number $\lambda \in \sigma_p(T)$ and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \ker(T - \lambda) \oplus \overline{ran(T - \lambda)}^*$, then

- 1. $T_2 = 0$ and
- 2. T_3 is quasi n-class Q^* operator.

Proof. Let $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \ker(T - \lambda) \oplus \overline{ran(T - \lambda)}^*$. Without the loss of generality assume that $\lambda = 1$, then by Theorem 11, $T^{*2+n}T^{2+n} - (1+n)(T^*T)^2 + nT^*T \ge 0$. Now,

$$T^{2+n} = \begin{pmatrix} 1 & \sum_{j=0}^{1+n} T_2 T_3^{n+1-j} \\ 0 & T_3^{2+n} \end{pmatrix} and$$

$$T^{*2+n} = \begin{pmatrix} 1 & 0 \\ (\sum_{j=0}^{2+n} T_2 T_3^{n+1-j})^* & T_3^{*2+n} \end{pmatrix}$$

$$T^{*2+n}T^{2+n} = \begin{pmatrix} 1 & \sum_{j=0}^{1+n} T_2 T_3^{1+n-j} \\ (\sum_{j=0}^{1+n} T_2 T_3^{1+n-j})^* & 2(\sum_{j=0}^{1+n} T_2 T_3^{1+n-j})^* (\sum_{j=0}^{1+n} T_2 T_3^{1+n-j}) + T_3^{2+n} T_3^{*1+n} \end{pmatrix}$$
So, $T^{*2+n}T^{2+n} - (1+n)(T^*T)^2 + nT^*T > 0$ gives

$$\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \ge 0$$

Where $A = 1 - (1+n)(1+T_2T_2^*) + n$, $B = \sum_{j=0}^{1+n} T_2T_3^{1+n-j} - (1+n)[T_2 + T_2(T_2^*T_2 + T_3^*T_3)] + nT_2$ and $C = (\sum_{j=0}^{1+n} T_2T_3^{1+n-j})^* \sum_{j=0}^{1+n} T_2T_3^{1+n-j} + T_3^{*2+n}T_3^{2+n} - (1+n)T_2^*T_2 + T_2^*T_2 + T_3^*T_3^2 + n(T_2^*T_2 + T_3^*T_3)$

But, we know that, " If A is a matrix of the form $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \ge 0$ if and only if $A \ge 0$,

C > 0 and $B = A^{\frac{1}{2}}WC^{\frac{1}{2}}$ for some contraction W.

Therefore $1 + n - (1 + n)(1 + T_2T_2^*) + n \ge 0$, which implies that $(1 + n)(-T_2T_2^*) \ge 0$. This gives $T_2 = 0$, since n is a positive integer. Also T_3 is quasi n-class Q^* operator.

Corollary 5. If $T \in B(H)$ is of quasi n class Q^* operator for a positive integer n, then T is of the form $T = \begin{pmatrix} \lambda & 0 \\ 0 & T_3 \end{pmatrix}$ on $H = \ker(T - \lambda) \oplus \overline{ran(T - \lambda)}^*$, where T_3 is quasi n-class Q^* operator and $\ker(T - \lambda) = \{0\}$.

Theorem 18. If $T \in B(H)$ is a quasi n-class Q^* operator for a positive integer n, T does not have dense range and T has the following 2×2 matrix representation

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{ran(T)} \oplus \ker T^*$,

if and only if $T_1^{*1+n}T_1^{1+n}-(1+n)(T_1T_1^*+T_2T_2^*)+nI\geq 0$ and $T_3=0$. Further more $\sigma(T)=\sigma(T_1)\cup\{0\}$ where $\sigma(T)$ denotes the spectrum of T.

Proof. Let $T \in B(H)$ be quasi n class Q^* operator and P be an orthogonal projection onto $\overline{ran(T)}$. Then $T_1 = TP = PTP$. By Theorem 11 we have that

$$P(T^{*1+n}T^{1+n} - (1+n)(TT^*) + nI)P \ge 0$$

$$T_1^{*1+n}T_1^{1+n} - (1+n)(T_1T_1^* + T_2T_2^*) + nI \ge 0$$

Also for any $x = (x_1, x_2) \in H$,

$$\langle T_3 x_2, x_2 \rangle = \langle T(I - P)x, (I - P)x \rangle$$

= $\langle (I - P)x, T^*(I - P)x \rangle = 0$

This implies $T_3 = 0$

Since $\sigma(T) \cup \tau = \sigma(T_1) \cup \sigma(T_3)$ where τ is the union of the holes in $\sigma(T)$, which happens to be a subset of $\sigma(T_1) \cap \sigma(T_3)$ [by corollary 7, [10]]. $\sigma(T_3) = 0$ and $\sigma(T_1) \cap \sigma(T_3)$ has no interior points we have $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Suppose that $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \overline{ran(T)} \oplus \ker T^*$, $T_1^{*1+n} T_1^{1+n} - (1+n)(T_1 T_1^* + T_2 T_2^*) + nI \ge 0$ and $T_3 = 0$. Then we have

$$\begin{split} T^{*2+n}T^{2+n} - & (1+n)(T^*T)^2 + nT^*T \\ &= \begin{pmatrix} T_1^{*2+n} & 0 \\ (T_2^*T_1^{*1+n}) & 0 \end{pmatrix} \begin{pmatrix} T_1^{2+n} & T_1^{1+n}T_2 \\ 0 & 0 \end{pmatrix} \\ & - & (1+n) \begin{pmatrix} (T_1^*T_1)^2 + T_1^*T_2T_2^*T_1 & T_1^*T_1T_1^*T_2 + T_1^*T_2T_2^*T_2 \\ T_2^*T_1T_1^*T_1 + T_2^*T_2T_2^*T_1 & T_2^*T_1T_1^*T_2 + (T_2^*T_2)^2 \end{pmatrix} \end{split}$$

$$+ n \begin{pmatrix} T_1^* T_1 & T_1^* T_2 \\ T_2^* T_1 & T_2^* T_2 \end{pmatrix}$$
$$= \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \ge 0$$

Where
$$A = T_1^* (T_1^{*1+n} T_1^{1+n} - (1+n)(T_1 T_1^* + T_2 T_2^*) + nI)T_1$$

 $B = T_1^* (T_1^{*1+n} T_1^{1+n} - (1+n)(T_1 T_1^* + T_2 T_2^*) + nI)T_2$
 $C = T_2^* (T_1^{*1+n} T_1^{1+n} - (1+n)(T_1 T_1^* + T_2 T_2^*) + nI)T_2$.
Hence T is quasi n class Q^* operator.

Theorem 19. Let M be a closed T-invariant subspace of H. Then the restriction $T|_{M}$ of a quasi n class Q^* operator T to M is quasi n class Q^* operator.

Proof. By Theorem 18, $T|_M$ is also quasi n class Q^* operator.

Theorem 20. Let T be a regular quasi n class Q^* operator, then the approximate point spectrum lies in the disc

$$\sigma_{ap}(T) \subseteq \{\lambda \in C : \frac{(1+n)^{(\frac{1}{2})}}{\|T^{-1}\| \|T^{*-1}\| (\|T^{1+n}\|^2 + n)^{\frac{1}{2}}} \le |\lambda| \le \|T\|$$

Proof. Suppose T is regular quasi n class Q^* operator, then for every unit vector x in H, we have

$$||Tx||^2 \ge \frac{(1+n)||x||^2}{||T^{-1}||^2||T^{*-1}||^2(||T^{1+n}||^2+n)}$$

Now assume that $\lambda \in \sigma_{ap}(T)$. Then there exists a sequence $\{x_m\}$, $||x_m|| = 1$ such that $||(T - \lambda)x_m|| \to 0$ when $m \to \infty$ we have

$$||Tx_m - \lambda x_m|| \ge ||Tx_m|| - |\lambda|||x_m||$$

$$\ge ||T|| - |\lambda||$$

$$\ge \frac{(1+n)^{1/2}}{||T^{*-1}|| ||T^{-1}|| (||T^{1+n}||^2 + n)^{1/2}} - |\lambda|$$

Now when $m \to \infty$, $|\lambda| \ge \frac{(1+n)^{1/2}}{\|T^{-1}\| \|T^{*-1}\| (\|T^{1+n}\|^2 + n)^{1/2}}$

4. Quasi n-class Q and Quasi n-class Q* Composition Operators

Let $L^2(\lambda) = L^2(X, \Sigma, \lambda)$, where (X, Σ, λ) be a sigma-finite measure space. A bounded linear operator $C_T f = f \circ T$ on $L^2(X, \Sigma, \lambda)$ is said to be a composition operator induced by T, a non-singular measurable transformation from X into itself, when the measure λT^{-1} is absolutely continuous with respect to the measure λ and the Radon-Nikodym

derivative $\frac{d\lambda T^{-1}}{d\lambda}=f_0$ is essentially bounded. The Radon-Nikodym derivative of the measure $\lambda(T^k)^{-1}$ with respect to λ is denoted by $f_0^{(k)}$, where T^k is obtained by composing T- k times. Every essentially bounded complex-valued measurable function f_0 induces the bounded operator M_{f_0} on $L^2(\lambda)$, which is defined by $M_{f_0}f = f_0f$ for every $f \in L^2(\lambda)$. Further $C_T^*C_T = M_{f_0}$, $C_T^{*2}C_T^2 = M_{f_0^{(2)}}$ and $C_T^{*1+n}C^{1+n}2_T = M_{f_0^{(1+n)}}$. The following lemma due to Harrington and Whitley [9] is well known.

Lemma 1. Let P denote the projection of L^2 on $\overline{R(C)}$

- (i) $C_T^*C_Tf = f_0f$ and $C_TC_T^*f = (f_0 \circ T)Pf$ for all $f \in L^2$, where P is the projection of L^2 onto $\overline{R(C)}$.
- (ii) $\overline{R(C)} = \{ f \in L^2 : f \text{ is } T^{-1}\Sigma \text{ measurable} \}.$

In this section quasi n-class Q and quasi n-class Q^* composition operator on L^2 space are characterized as follows.

Theorem 21. Let $C_T \in B(L^2(\lambda))$. Then C_T is of quasi n-class Q if and only if $f_0^{(2+n)}$ – $(1+n)f_0^{(2)} + nf_0 \ge 0$ a.e.

Proof. Let $C_T \in B(L^2(\lambda))$ is of quasi n-class Q if and only if $C_T^{*2+n}C_T^{2+n} - (1 + C_T^{*2+n}C_T^{2+n})$

 $n)C_T^{*2}C_T^2 + nC_T^*C_T \ge 0$. By Theorem 1 Thus $\langle (C_T^{*2+n}C_T^{2+n} - (1+n)C_T^{*2}C_T^2 + nC_T^*C_T)\chi_E, \chi_E \rangle \ge 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. Since $C_T^*C_T = M_{f_0}$ and $C_T^{*2+n}C_T^{2+n} = M_{f_0^{(2+n)}}$, then $\langle (M_{f_0^{(2+n)}} - (1+n)M_{f_0^{(2)}} + nM_{f_0})\chi_E, \chi_E \rangle \ge 0$. Hence $\int_E (f_0^{(2+n)} - (1+n)f_0^{(2)} + nf_0)d\lambda \ge 0$ 0 for every E in Σ . Hence C_T is of quasi n class Q if and only if $f_0^{(2+n)} - (1+n)f_0^{(2)} + nf_0 \ge 0$

Example 1. Let X = N, the set of all natural numbers and λ be the counting measure on it. Define $T: N \to N$ by T(1) = 1, T(4p + q - 2) = p + 1 for q = 0, 1, 2, 3 and $p \in N$. We have $f_0(p) = f_0^{(2)}(p) = \dots = f_0^{(n)}(p) = 1$ for p = 1. $f_0(p) = 4$, $f_0^{(2)}(p) = 16$, $\dots = f_0^{(2+n)}(p) = 4^{2+n}$ for $p \in N - \{1\}$. Since $f_0^{(2+n)}(p) - (1+n)f_0^{(2)}(p) + nf_0(p) \ge 0$ for every p, Hence C_T is of quasi n class Q operator.

Theorem 22. [14] If $C_T \in B(L^2(\lambda))$ has dense range then $f_0 = g_0 \circ T$ a.e.

Corollary 6. If C_T is quasi n-class Q with dense range on $L^2(\lambda)$ then $(g_0 \circ T)^{(2+n)}$ – $(1+n)(g_0 \circ T)^{(2)} + n(g_0 \circ T) \ge 0$ a.e.

Proof. By Theorem 21 and Theorem 22, we obtain the result.

Theorem 23. Let $C_T \in B(L^2(\lambda))$. Then C_T^* is of quasi n-class Q operator if and only if $(f_0^{(2+n)} \circ T^{2+n})P_{2+n} - (1+n)(f_0^{(2)} \circ T^{(2)})P_2 + n(f_0 \circ T)P_1 \ge 0$ a.e., where $P_1, P_2, ..., P_{2+n}$ are the projections of L^2 onto $\overline{R(C)}, \overline{R(C^2)}, ..., \overline{R(C^{2+n})}$ respectively.

Proof. Suppose $C_T \in B(L^2(\lambda))$ and C_T^* is of quasi n-class Q if and only if $C_T^{2+n}C_T^{*2+n} - (1+n)C_T^2C_T^{*2} + nC_TC_T^* \ge 0$. By Theorem 1. then $\langle (C_T^{2+n}C_T^{*2+n} - (1+n)C_T^2C_T^{*2} + nC_TC_T^*)f, f \rangle \ge 0$ for every $f \in L^2(\lambda)$. Since $\langle CC^*f, f \rangle = \langle (f_0 \circ T)P_1f, f \rangle$ By [9]. Hence $\langle (f_0^{(2+n)} \circ T^{2+n}) P_{2+n} f, f \rangle - (1+n) \langle (f_0^{(2)} \circ T^2) P_2 f, f \rangle + n \langle (f_0 \circ T) P_1 f, f \rangle \ge 0 \text{ for every } f \in L^2(\lambda). \text{ Hence } \langle ((f_0^{(2+n)} \circ T^{2+n}) P_{2+n} - (1+n) (f_0^{(2)} \circ T^2) P_2 + n (f_0 \circ T) P_1) f, f \rangle \ge 0 \Leftrightarrow (f_0^{(2+n)} \circ T^{2+n}) P_{2+n} - (1+n) (f_0^{(2)} \circ T^2) P_2 + n (f_0 \circ T) P_1 \ge 0 \text{ a.e.}$

Corollary 7. Let $C_T \in B(L^2(\lambda))$ with dense range. Then C_T^* is of quasi n-class Qoperator if and only if $(f_0^{(2+n)} \circ T^{2+n}) - (1+n)(f_0^{(2)} \circ T^2) + n(f_0 \circ T) \ge 0$ a.e.

Theorem 24. Let $C_T \in B(L^2(\lambda))$. Then C_T is of quasi n-class Q^* if and only if $f_0^{(2+n)}$ – $(1+n)(f_0)^2P + nf_0 \ge 0$ a.e.

Proof. Let $C_T \in B(L^2(\lambda))$ is of quasi n-class Q^* if and only if $C_T^{*2+n}C_T^{2+n} - (1 + C_T^{*2+n}C_T^{2+n})$

 $n)(C_T^*C_T)^2 + nC_T^*C_T \ge 0.$ Thus $\langle (C_T^{*2+n}C_T^{2+n} - (1+n)(C_T^*C_T)^2 + nC_T^*C_T)\chi_E, \chi_E \rangle \ge 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. Since $C_T^*C_T = M_{f_0}$, $C_T^{*2+n}C_T^{2+n} = M_{f_0^{(2+n)}}$, then $\langle (M_{f_0^{(2+n)}} - (1+n)(M_{f_0})^2 + nM_{f_0})\chi_E, \chi_E \rangle \ge 0$. Hence $\int_E (f_0^{(2+n)} - (1+n)(f_0)^2 + nM_{f_0})\chi_E = 0$. $nf_0)d\lambda \geq 0$ for every E in Σ . Hence C_T is quasi n class Q^* if and only if $f_0^{(2+n)} - (1+1)$ $n)(f_0)^2 + nf_0 \ge 0$ a.e.

Example 2. Let X = N, the set of all natural numbers and λ be the counting measure on it. Define $T: N \to N$ by T(1) = T(2) = T(3) = 1, T(4p+q) = p+1 for q = 0, 1, 2, 3and $p \in N$. Since $f_0^{(2+n)} - (1+n)(f_0)^2 + nf_0 \ge 0$ for every p, Hence C_T is of quasi nclass Q^* operator.

Corollary 8. If C_T is quasi n-class Q^* with dense range on $L^2(\lambda)$ if and only if $f_0^{(2+n)}$ – $(1+n)(f_0)^2 + nf_0 \ge 0$ a.e.

Theorem 25. Let $C_T \in B(L^2(\lambda))$. Then C_T^* is quasi n-class Q^* if and only if $(f_0^{(2+n)} \circ P_0^{(2+n)})$ $(T^{2+n})P_{2+n} - (1+n)(f_0 \circ T)^2 P_1 + n(f_0 \circ T) P_1 \ge 0$ a.e. where P_i 's are the projections of L^2 onto $R(C^i)$, respectively.

Proof. Let $C_T^* \in B(L^2(\lambda))$ is of quasi n-class Q^* if and only if $C_T^{2+n}C_T^{*2+n} - (1 + C_T^{*2+n})$

 $n)(C_TC_T^*)^2 + nC_TC_T^* \ge 0.$ Thus $\langle (C_T^{2+n}C_T^{*2+n} - (1+n)(C_TC_T^*)^2 + nC_TC_T^*)\chi_E, \chi_E \rangle \ge 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. Since $C_T^*C_T = M_{f_0}$, $C_T^{*1+n}C_T^{1+n} = M_{f_0^{(1+n)}}$ and $C_T C_T^* = (f_0 \circ T)P$, then $\int_E ((f_0^{(2+n)} \circ T^{2+n})P_{2+n} - (1+n)(f_0 \circ T)^2 P_1 + n(f_0 \circ T)P_1)d\lambda \ge 0$ for every E in Σ . Hence C_T is of quasi n class Q^* if and only if $(f_0^{(2+n)} \circ T^{2+n})P_{2+n}$ $(1+n)(f_0 \circ T)^2 P_1 + n(f_0 \circ T) P_1 \ge 0$ a.e.

Corollary 9. Let $C_T \in B(L^2(\lambda))$ with dense range. Then C_T^* is quasi n-class Q^* if and only if $(f_0^{(2+n)} \circ T^{2+n}) - (1+n)(f_0 \circ T)^2 + n(f_0 \circ T) \ge 0$ a.e.

5. Quasi n-class Q and quasi n-class Q^* Weighted Composition Operators

A weighted composition operator is a linear transformation acting on the set of complex valued Σ measurable functions f of the form $W_T f = w(f \circ T)$, where w is a complex valued Σ measurable function. In the case that w = 1 a.e., we say that W_T is a composition operator. Let w_k denote $w(w \circ T)(w \circ T^2)...(w \circ T^{k-1})$ so that $W_T^k f = w_k (f \circ T)^k$ [13].

To examine the weighted composition operators efficiently, Alan Lambert [12], associated conditional expectation operator E with each transformation T as $E(\bullet|T^1\Sigma) = E(\bullet)$.

- E(f) is defined for each non-negative measurable function $f \in L^p(1 \leq p)$ and is uniquely determined by the conditions
 - (i) E(f) is $T^{-1}\Sigma$ measurable and
- (ii) If B is any $T^{-1}\Sigma$ measurable set for which $\int_B f d\lambda$ converges, then we have $\int_B f d\lambda = \int_B E(f) d\lambda$.

As an operator on L^p , E is the projection onto the closure range of C. E_n the identity on L^p if and only if $T^{-1}\sigma = \sigma$. Now we are ready to derive the characterization of quasi n-class Q and quasi n-class Q^* weighted composition operator as follows.

Theorem 26. Let W_T be a weighted composition operator on $B(L^2(\lambda))$. Then W_T is of quasi n-class Q if and only if $(f_0^{(2+n)}E(w_{2+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0^{(2)}E(w_2^2) \circ T^{-2}) + nf_0E(w^2) \circ T^{-1} \geq 0$ a.e.

Proof. Since $W_T \in B(L^2(\lambda))$ is of quasi n-class Q if and only if

$$W_T^{*2+n}W_T^{2+n} - (1+n)W_T^{*2}W_T^2 + nW_T^*W_T \ge 0$$
. By Theorem 1.

Thus $\langle (W_T^{*2+n}W_T^{2+n}-(1+n)W_T^{*2}W_T^2+nW_T^*W_T)\chi_E,\chi_E\rangle \geq 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E)<\infty$. Since $W_T^*W_T=f_0E(w^2)\circ T^{-1}f$, $W_T^kf=w_k(f\circ T)^k,W_T^{*k}f=f_0^{(k)}E(w_kf)\circ T^{-k}$ and $W_T^{*k}W_T^kf=f_0^{(k)}E(w_k^2)\circ T^{-k}f$. Hence $\langle (f_0^{(2+n)}E(w_{2+n}^2)\circ T^{-(2+n)}-(1+n)f_0^{(2)}E(w_2^2)\circ T^{-2}+nf_0E(w^2)\circ T^{-1})\chi_E,\chi_E\rangle \geq 0$. Hence $\int_E (f_0^{(2+n)}E(w_{2+n}^2)\circ T^{-(2+n)}-(1+n)f_0^{(2)}E(w^2)^2\circ T^{-2}+nf_0E(w^2)\circ T^{-1})d\lambda \geq 0$ for every E in Σ . Hence W is of quasi n class Q if and only if $f_0^{(2+n)}E(w_{2+n}^2)\circ T^{-(2+n)}-(1+n)f_0^{(2)}E(w_2^2)\circ T^{-2}+nf_0E(w_2^2)\circ T^{-(2+n)}-(1+n)f_0^{(2)}E(w_2^2)\circ T^{-2}+nf_0E(w_2^2)\circ T^{-2}+nf_0E(w_2^2)\circ T^{-2}$

Corollary 10. Let W_T be a weighted composition operator in $B(L^2(\lambda))$ and assume that $T^{-1}\Sigma = \Sigma$. Then W_T is of quasi n-class Q if and only if $f_0^{(2+n)}w_{2+n}^2 \circ T^{-(2+n)} - (1+n)f_0^{(2)}w_2^2 \circ T^{-2} + C(1+n)f_0^{(2)}w_2^2 \circ T^{-2}$

 $nf_0(w^2) \circ T^{-1} \ge 0$ a.e.

Theorem 27. Let W_T be a weighted composition operator in $B(L^2(\lambda))$. Then W_T^* is of quasi n-class Q if and only if

 $w_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w_{2+n}) - (1+n)w_2(f_0^{(2)} \circ T^2)E(w_2) + nw(f_0 \circ T)E(w) \ge 0 \text{ a.e.}$

Proof. Since $W_T^* \in B(L^2(\lambda))$ is of quasi n-class Q if and only if

$$W_T^{2+n}W_T^{*2+n} - (1+n)W_T^2W_T^{*2} + nW_TW_T^* \ge 0$$
. By Theorem 1

Thus $\langle (W_T^{2+n}W_T^{*2+n} - (1+n)W_T^2W_T^{*2} + nW_TW_T^*)\chi_E, \chi_E \rangle \geq 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. Since $W_TW_T^*f = w(f_0 \circ T)E(wf), W_T^kf = w_k(f \circ T)^k, W_T^{*k}f = f_0^k E(w_kf) \circ T^{-k}$ and $W_T^kW_T^{*k}f = w_k(f_0^{(k)} \circ T^{(k)})E(w_kf)$. Then $\langle (w_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w_{2+n}) - (1+n)w_2(f_0^{(2)} \circ T^2)E(w_2) + nw(f_0 \circ T)E(w))\chi_E, \chi_E \rangle \geq 0$. which gives $\int_E (w_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w_{2+n}) - (1+n)w_2(f_0^{(2)} \circ T^2)E(w_2) + nw(f_0 \circ T)E(w))d\lambda \geq 0$ for every E in Σ . Hence W_T^* is quasi n class Q if and only if $(w_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w_{2+n}) - (1+n)w_2(f_0^{(2)} \circ T^2)E(w_2) + nw(f_0 \circ T)E(w)) \geq 0$ a.e.

Corollary 11. Let W_T be a weighted composition operator in $B(L^2(\lambda))$ and $T^{-1}(\Sigma) = \Sigma$. Then W_T^* is of n-class Q if and only if $w_{2+n}^2(f_0^{(2+n)} \circ T^{2+n}) - (1+n)w_2^2(f_0^{(2)} \circ T^2) + nw^2(f_0 \circ T) \geq 0$ a.e.

Theorem 28. Let W_T be a weighted composition operator on $B(L^2(\lambda))$. Then W_T is quasi n-class Q^* if and only if $(f_0^{(2+n)}E(w_{2+n}^2)\circ T^{-(2+n)})-(1+n)w(f_0E(w^2)\circ T^{-1})^2+nf_0E(w^2)\circ T^{-1}\geq 0$ a.e.

Proof. Since $W_T \in B(L^2(\lambda))$ is quasi n-class Q^* if and only if

$$W_T^{*2+n}W_T^{2+n} - (1+n)(W_T^*W_T)^2 + nW_T^*W_T \ge 0$$
 a.e.

Thus $\langle (W_T^{*2+n}W_T^{2+n} - (1+n)(W_T^*W_T)^2 + nW_T^*W_T)\chi_E, \chi_E \rangle \geq 0$ for every characteristic function χ_E of E in Σ such that $\lambda(E) < \infty$. Since $W_T^*W_T = f_0E(w^2) \circ T^{-1}f$, $W_T^k f = w_k (f \circ T)^k, W_T^{*k} f = f_0^{(k)} E(w_k f) \circ T^{-k}$ and $W_T^{*k}W_T^k f = f_0^{(k)} E(w_k^2) \circ T^{-k}f$. Then $\langle (f_0^{(2+n)}E(w_{2+n}^2) \circ T^{-(2+n)} - (1+n)(f_0E(w^2) \circ T^{-1})^2 + nf_0E(w^2) \circ T^{-1})\chi_E, \chi_E \rangle \geq 0$. Which implies $\int_E (f_0^{(2+n)}E(w_{2+n}^2) \circ T^{-(2+n)} - (1+n)(f_0E(w^2) \circ T^{-1})^2 + nf_0E(w^2) \circ T^{-1})d\lambda \geq 0$ for every E in Σ . Hence W is quasi n class Q^* if and only if $(f_0^{(2+n)}E(w_{2+n}^2) \circ T^{-(2+n)} - (1+n)(f_0E(w^2) \circ T^{-1})^2 + nf_0E(w^2) \circ T^{-1}) \geq 0$ a.e.

Corollary 12. Let W_T be a weighted composition operator in $B(L^2(\lambda))$ and assume that $T^{-1}\Sigma = \Sigma$. Then W_T is quasi n-class Q^* if and only if $(f_0^{(2+n)}(w_{2+n}^2) \circ T^{-(2+n)} - (1+n)(f_0(w^2) \circ T^{-1})^2 + nf_0(w^2) \circ T^{-1}) \geq 0$ a.e.

Theorem 29. Let W_T be a weighted composition operator on $B(L^2(\lambda))$. Then W_T^* is quasi n-class Q^* if and only if $w_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w_{2+n}) - (1+n)[w(f_0 \circ T)E(w)]^2 + nw(f_0 \circ T)E(w) \ge 0$ a.e.

Corollary 13. If W_T is a weighted composition operator in $B(L^2(\lambda))$ and assume that $T^{-1}\Sigma = \Sigma$. Then W_T^* is quasi n-class Q^* if and only if $w_{2+n}^2(f_0^{(2+n)} \circ T^{2+n}) - (1+n)w^4(f_0 \circ T)^2 + nw^2f_0 \circ T \geq 0$ a.e.

The Aluthge transform of T is the operator \tilde{T} given by $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ was introduced in [1] by Aluthge. The idea behind the Aluthge transform is to convert an operator into another operator which shares with the first one some spectral properties but it is closed to being a normal operator. More generally we may form the family of operators $T_r: 0 < r \le 1$ where $T_r = |T|^T U|T|^{1-r}$ [2]. For a composition operator C, the polar decomposition is given by C = U|C| where $|C|f = \sqrt{f_0}f$ and $Uf = \frac{1}{\sqrt{f_0 c T}}f \circ T$.

In [12] Lambert has given more general Aluthge transformation for composition operators as $C_r = |C|^r U |C|^{1-r}$ and $C_r f = \left(\frac{f_0}{f_0 \circ T}\right)^{\frac{r}{2}} f \circ T$. That is C_r is weighted composition operator with weight $\pi = \left(\frac{f_0}{f_0 \circ T}\right)^{\frac{r}{2}}$ where 0 < r < 1. Since C_r is a weighted composition operator it is easy to show that $|C_r|f = \sqrt{f_0(E(\pi)^2 \circ T^{-1})}f$ and $|C_r^*|f = vE(vf)$ where $v = \frac{\pi\sqrt{f_0 \circ T}}{(E(\pi)^2 \circ T^{-2})^{\frac{1}{2}}}$. Also we have

 $v = \frac{\pi \sqrt{f_0 \circ T}}{(E(\pi \sqrt{f_0 \circ T})^2)^{\frac{1}{4}}}. \text{ Also we have}$ $C_r^k f = \pi_k (f \circ T)^k$ $C_r^{*k} f = f_0^k E(\pi_k f) \circ T^{-k}$ $C_r^{*k} C_r^k f = f_0^k E(\pi_k^2) \circ T^{-k} f$

Theorem 30. Let $C_r \in B(L^2(\lambda))$. Then C_r is of quasi n-class Q if and only if $(f_0^{(2+n)}E(\pi_{2+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0^{(2)}E(\pi_2^2) \circ T^{-2}) + n(f_0E(\pi^2) \circ T^{-1}) \geq 0$ a.e.

Proof. Since C_r is a weighted composition operator with weight $\pi = (\frac{f_0}{f_0 \circ T})^{\frac{r}{2}}$, it follows from Theorem 26 that C_r is quasi n-class Q if and only if $(f_0^{(2+n)}E(\pi_{2+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0^{(2)}E(\pi_2^2) \circ T^{-2}) + n(f_0E(\pi^2) \circ T^{-1}) \geq 0$ a.e.

Corollary 14. If $T^{-1}\Sigma = \Sigma$ and $C_r \in B(L^2(\lambda))$. Then C_r is of quasi n-class Q if and only if $(f_0^{(2+n)}(\pi_{2+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0^{(2)}(\pi_2^2) \circ T^{-2}) + n(f_0(\pi^2) \circ T^{-1}) \geq 0$ a.e.

Theorem 31. Let $C_r \in B(L^2(\lambda))$. Then C_r^* is of quasi n-class Q if and only if $\pi_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(\pi_{2+n}) - (1+n)\pi_2(f_0^{(2)} \circ T^2)E(\pi_2) + n\pi(f_0 \circ T)E(\pi) \ge 0$ a.e.

Proof. Since C_r^* is a weighted composition operator with weight $\pi = (\frac{f_0}{f_0 \circ T})^{\frac{r}{2}}$, it follows from Theorem 27 that C_r^* is of quasi n-class Q if and only if $\pi_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(\pi_{2+n}) - (1+n)\pi_2(f_0^{(2)} \circ T^2)E(\pi_2) + n\pi(f_0 \circ T)E(\pi) \geq 0$ a.e.

Corollary 15. Let $C_r \in B(L^2(\lambda))$ and $T^{-1}\Sigma = \Sigma$. Then C_r^* is of quasi n-class Q if and only if $\pi_{2+n}^2(f_0^{(2+n)} \circ T^{2+n}) - (1+n)\pi_2^2(f_0^{(2)} \circ T^2) + n\pi^2(f_0 \circ T) \geq 0$ a.e.

Theorem 32. Let $C_r \in B(L^2(\lambda))$. Then C_r is of quasi n-class Q^* if and only if $(f_0^{(2+n)}E(\pi_{1+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0E(\pi^2) \circ T^{-1})^2 + n(f_0E(\pi^2) \circ T^{-1}) \ge 0$ a.e.

Proof. Since C_r is a weighted composition operator with weight $\pi = (\frac{f_0}{f_0 \circ T})^{\frac{r}{2}}$, it follows from Theorem 46 that C_r is of quasi n-class Q^* if and only if $(f_0^{(2+n)}E(\pi_{1+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0E(\pi^2) \circ T^{-1})^2 + n(f_0E(\pi^2) \circ T^{-1}) \geq 0$ a.e.

Corollary 16. If $T^{-1}\Sigma = \Sigma$ and $C_r \in B(L^2(\lambda))$. Then C_r is of quasi n-class Q^* if and only if $(f_0^{(2+n)}(\pi_{1+n}^2) \circ T^{-(2+n)}) - (1+n)(f_0(\pi^2) \circ T^{-1})^2 + n(f_0(\pi^2) \circ T^{-1}) \ge 0$ a.e.

Theorem 33. Let $C_r \in B(L^2(\lambda))$. Then C_r^* is of quasi n-class Q^* if and only if $\pi_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(\pi_{2+n}) - (1+n)(\pi(f_0 \circ T)E(\pi))^2 + n\pi(f_0 \circ T)E(\pi) \ge 0$ a.e.

Corollary 17. If $T^{-1}\Sigma = \Sigma$ and $C_r^* \in B(L^2(\lambda))$ is quasi n-class Q^* if and only if $\pi_{2+n}^2(f_0^{(2+n)} \circ T^{2+n}) - (1+n)(\pi^2(f_0 \circ T))^2 + n\pi^2(f_0 \circ T) \geq 0$ a.e.

B. P Duggal [6] described the second Aluthge Transformation of T by $\tilde{T} = |\hat{T}|^{\frac{1}{2}}V|\hat{T}|^{\frac{1}{2}}$, where $\hat{T} = V|\hat{T}|$ is the polar decomposition of \hat{T} . Now we consider $\tilde{C} = |C_r|^{\frac{1}{2}}V|C_r|^{\frac{1}{2}}$, where $C_r = V|C_r|$ is the polar decomposition of the generalized Aluthge transformation $C_r: 0 < r < 1$. We have $|C_r|f = \sqrt{J}f$, where $J = f_0E(\pi^2) \circ T^{-1}$.

 $\tilde{C} = |C_r|^{\frac{1}{2}}V|C_r|^{\frac{1}{2}} = \sqrt{J^{\frac{1}{2}}}V(\sqrt{J^{\frac{1}{2}}}f)| = \sqrt{J^{\frac{1}{2}}}\pi(\frac{\chi_{supJ}}{\sqrt{J}}J^{\frac{1}{4}}f) \circ T = J^{\frac{1}{4}}\pi((\frac{\chi_{supJ}}{J^{\frac{1}{4}}}) \circ T)(f \circ T).$

We see then that \tilde{C} is a weighted composition operator with weight $w' = J^{\frac{1}{4}}\pi((\frac{\chi_{supJ}}{J^{\frac{1}{4}}})\circ T)$.

Theorem 34. If \tilde{C} is of quasi n-class Q if and only if $f_0^{(2+n)}E(w_{2+n}'^2) \circ T^{-(2+n)} - (1+n)(f_0^{(2)}E(w_2'^2) \circ T^{-2}) + n(f_0E(w'^2) \circ T^{-1}) \ge 0$ a.e.

Proof. Since \tilde{C} is a weighted composition operator with weight $w' = J^{\frac{1}{4}}\pi((\frac{\chi_{supJ}}{J^{\frac{1}{4}}}) \circ T)$, then by Theorem 26 we obtain the result.

Corollary 18. If $T^{-1}\Sigma = \Sigma$ and $\tilde{C} \in B(L^2(\lambda))$ is of quasi n-class Q if and only if $f_0^{(2+n)}(w_{2+n}'^2) \circ T^{-(2+n)} - (1+n)(f_0^{(2)}(w_2'^2) \circ T^{-2}) + n(f_0(w'^2) \circ T^{-1}) \geq 0$ a.e.

Theorem 35. Let $\tilde{C} \in B(L^2(\lambda))$. Then \tilde{C}^* is of quasi n-class Q if and only if $w'_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w'_{2+n}) - (1+n)w'_2(f_0^{(2)} \circ T^2)E(w'_2) + nw'(f_0 \circ T)E(w') \ge 0$ a.e.

Proof. Since \tilde{C}^* is a weighted composition operator with weight $w' = J^{\frac{1}{4}}\pi((\frac{\chi_{supJ}}{J^{\frac{1}{4}}}) \circ T)$, then by from Theorem 27 we obtain the result.

Corollary 19. Let $\tilde{C} \in B(L^2(\lambda))$ and $T^{-1}\Sigma = \Sigma$. Then \tilde{C}^* is quasi n-class Q if and only if $w_{2+n}'^2(f_0^{(2+n)} \circ T^{2+n}) - (1+n)w_2'^2(f_0^{(2)} \circ T^2) + nw'^2(f_0 \circ T) \geq 0$ a.e.

Theorem 36. If \tilde{C} is quasi n-class Q^* if and only if $f_0^{(2+n)}E(w_{2+n}'^2) \circ T^{-(2+n)} - (1+n)(f_0E(w'^2) \circ T^{-1})^2 + n(f_0E(w'^2) \circ T^{-1}) \ge 0$ a.e.

Corollary 20. If $T^{-1}\Sigma = \Sigma$ and $\tilde{C} \in B(L^2(\lambda))$ is of n-class Q^* if and only if $f_0^{(2+n)}(w_{2+n}'^2) \circ T^{-(2+n)} - (1+n)(f_0(w'^2) \circ T^{-1})^2 + n(f_0(w'^2) \circ T^{-1}) \geq 0$ a.e.

Theorem 37. Let $\tilde{C} \in B(L^2(\lambda))$. Then \tilde{C}^* is of quasi n-class Q^* if and only if $w'_{2+n}(f_0^{(2+n)} \circ T^{2+n})E(w'_{2+n}) - (1+n)(w'(f_0 \circ T)E(w'))^2 + n(w'(f_0 \circ T)E(w')) \geq 0$ a.e.

Corollary 21. Let $\tilde{C} \in B(L^2(\lambda))$ and $T^{-1}\Sigma = \Sigma$. Then \tilde{C}^* is of n-class Q^* if and only if $w_{2+n}^{'2}(f_0^{(2+n)} \circ T^{2+n}) - (1+n)(w^{'2}(f_0 \circ T))^2 + n(w^{'2}(f_0 \circ T)) \geq 0$ a.e.

6. Quasi n-class Q and Quasi n-class Q^* Weighted Composition Operators on Weighted Hardy Space

The set $H^2(\beta)$ of formal complex power series $f(z) = \sum_{m=0}^{\infty} a_m z^m$ such that $||f||_{\beta}^2 = \sum_{m=0}^{\infty} |a_m|^2 \beta_m^2 < \infty$ is a Hilbert space of functions analytic in the unit disc with the inner product.

 $\langle f,g\rangle_{\beta}=\sum_{m=0}^{\infty}a_{m}\overline{b_{m}}\beta_{m}^{2}$ for an analytic map f on the open unit disc D and $g(z)=\sum_{m=0}^{\infty}b_{m}z^{m}$.

Let $\phi: D \to D$ be an analytic self map of the unit disc and consider the corresponding composition operator C_{ϕ} acting on $H^2(\beta)$. That is $C_{\phi}(f) = f \circ \phi$ for $f \in H^2(\beta)$. The operators C_{ϕ} are not necessarily defined on all of $H^2(\beta)$. They are everywhere defined in some special cases on the classical Hardy Space H^2 (the case when $\beta_n = 1$ for all n) and on a general space $H^2(\beta)$ if the function ϕ is analytic on some open set containing the closed unit disc having supremum norm strictly smaller than one. The weighted composition operator W_{ϕ} is defined as $(W_{\phi}f)(z) = \pi f(\phi(z))$ and $(W_{\phi}^*f)(z) = \bar{\pi}f(\phi(z))$ for every $z \in D$

Let w be a point on the open disc. Define $k_w^{\beta}(z) = \sum_{m=0}^{\infty} \frac{z^m \overline{w}^{-m}}{\beta_m^2}$. Then the function k_w^{β} is a point evaluation for $H^2(\beta)$. Then k_w^{β} is in $H^2(\beta)$ and $||k_w^{\beta}||^2 = \sum_{m=0}^{\infty} \frac{|w|^{2m}}{\beta_m^2}$. Thus $||k_w||$ is an increasing function of |w|. If $f(z) = \sum_{m=0}^{\infty} a_m z^m$ then $\langle f, k_w^{\beta} \rangle = f(w)$ for all f and k_w^{β} . Hence we can easily seen that $C_{\phi}^* k_w^{\beta} = k_{\phi(w)}^{\beta}$, $W_{\phi}^* k_w^{\beta} = \bar{\pi} k_{\phi(w)}^{\beta}$ and $k_0^{\beta} = 1$ (the function identically equal to 1).

Now we characterize quasi n class Q and quasi n-class Q^* composition operators on this space as follows.

Theorem 38. If C_{ϕ} is of quasi n-class Q operator in $H^2(\beta)$, then $C_{\phi}^{*2+n}C_{\phi}^{2+n}-(1+n)C_{\phi}^{*2}C_{\phi}^2+nC_{\phi}^*C_{\phi}\geq 0$

Proof. For $f \in H^2(\beta)$, consider

$$\begin{split} \langle (C_{\phi}^{*2+n}C_{\phi}^{2+n}-(1+n)C_{\phi}^{*2}C_{\phi}^{2}+nC_{\phi}^{*}C_{\phi})f,f\rangle \\ &=\langle C_{\phi}^{*2+n}C_{\phi}^{2+n}f,f\rangle-(1+n)\langle C_{\phi}^{*2}C_{\phi}^{2}f,f\rangle+n\langle C_{\phi}^{*}C_{\phi}f,f\rangle \\ &=\langle C_{\phi}^{2+n}f,C_{\phi}^{2+n}f\rangle-(1+n)\langle C_{\phi}^{2}f,C_{\phi}^{2}f\rangle+n\langle C_{\phi}f,C_{\phi}f\rangle \\ &=\|C_{\phi}^{2+n}f\|^{2}-(1+n)\|C_{\phi}^{2}f\|^{2}+n\|C_{\phi}f\|^{2} \end{split}$$

Let $f = k_0^{\beta}$ then

$$\begin{split} \langle (C_{\phi}^{*2+n}C_{\phi}^{2+n} - (1+n)C_{\phi}^{*2}C_{\phi}^{2} + nC_{\phi}^{*}C_{\phi})f, f \rangle \\ &= \|C_{\phi}^{2+n}k_{0}^{\beta}\|^{2} - (1+n)\|C_{\phi}^{2}k_{0}^{\beta}\|^{2} + n\|C_{\phi}k_{0}^{\beta}\|^{2} \\ &= \|k_{0}^{\beta}\|^{2} - (1+n)\|k_{0}^{\beta}\|^{2} + n\|k_{0}^{\beta}\|^{2} = 0 \end{split}$$

Hence C_{ϕ} is quasi *n*-class Q operator.

Theorem 39. If C_{ϕ}^{*} is quasi n-class Q operator in $H^{2}(\beta)$, then $C_{\phi}^{2+n}C_{\phi}^{*2+n} - (1 + n)C_{\phi}^{2}C_{\phi}^{*2} + nC_{\phi}C_{\phi}^{*} \geq 0$

Proof. For $f \in H^2(\beta)$, consider

$$\begin{split} \langle (C_{\phi}^{2+n}C_{\phi}^{*2+n} - (1+n)C_{\phi}^{2}C_{\phi}^{*2} + nC_{\phi}C_{\phi}^{*})f, f \rangle \\ &= \langle C_{\phi}^{2+n}C_{\phi}^{*2+n}f, f \rangle - (1+n)\langle C_{\phi}^{2}C_{\phi}^{*2}f, f \rangle + n\langle C_{\phi}C_{\phi}^{*}f, f \rangle \\ &= \langle C_{\phi}^{*2+n}f, C_{\phi}^{*2+n}f \rangle - (1+n)\langle C_{\phi}^{*2}f, C_{\phi}^{*2}f \rangle + n\langle C_{\phi}^{*}f, C_{\phi}^{*}f \rangle \\ &= \|C_{\phi}^{*2+n}f\|^{2} - (1+n)\|C_{\phi}^{*2}f\|^{2} + n\|C_{\phi}^{*}f\|^{2} \end{split}$$

Let $f = k_0^{\beta}$ and $\phi(0) = 0$ then we have

$$\begin{split} \langle (C_{\phi}^{2+n}C_{\phi}^{*2+n} - (1+n)C_{\phi}^{2}C_{\phi}^{*2} + nC_{\phi}C_{\phi}^{*})f, f \rangle \\ &= \|C_{\phi}^{*2+n}k_{0}^{\beta}\|^{2} - (1+n)\|C_{\phi}^{*2}k_{0}^{\beta}\|^{2} + n\|C_{\phi}^{*}k_{0}^{\beta}\|^{2} \\ &= \|k_{0}^{\beta}\|^{2} - (1+n)\|k_{0}^{\beta}\|^{2} + n\|k_{0}^{\beta}\|^{2} = 0 \end{split}$$

Hence C_{ϕ}^{*} is quasi *n*-class Q operator.

Theorem 40. If C_{ϕ} is quasi n-class Q^* operator in $H^2(\beta)$ if and only if $||k_0^{\beta}||^2 \ge ||k_{\phi(0)}^{\beta}||^2$.

Theorem 41. If C_{ϕ}^{*} is of quasi n-class Q^{*} operator in $H^{2}(\beta)$ if and only if $\|k_{\phi^{2+n}(0)}^{\beta}\|^{2} \geq \|k_{\phi(0)}^{\beta}\|^{2}$.

Next we characterize the quasi n class Q and quasi n class Q^* weighted composition operator on weighted hardy space as follows

Theorem 42. An operator $W_{\phi} \in H^2(\beta)$ is quasi n class Q if and only if $\|\pi^{2+n}\|^2 - (1 + n)\|\pi^2\|^2 + n\|\pi\|^2 \ge 0$.

Proof. Since W_{ϕ} is quasi n class Q operator, then for any $f \in H^2(\beta)$, we have

$$\begin{split} \langle (W_{\phi}^{*2+n}W_{\phi}^{2+n} - (1+n)W_{\phi}^{*2}W_{\phi}^{2} + nW_{\phi}^{*}W_{\phi})f, f \rangle &\geq 0 \\ &\Leftrightarrow \|W_{\phi}^{2+n}f\|^{2} - (1+n)\|W_{\phi}^{2}f\|^{2} + n\|W_{\phi}f\|^{2} \geq 0 \\ &\Leftrightarrow \|W_{\phi}^{2+n}k_{0}^{\beta}\|^{2} - (1+n)\|W_{\phi}^{2}k_{0}^{\beta}\|^{2} + n\|W_{\phi}k_{0}^{\beta}\|^{2} \geq 0 \quad when \ f = k_{0}^{\beta} \\ &\Leftrightarrow \|\pi^{2+n}k_{0}^{\beta}\|^{2} - (1+n)\|\pi^{2}k_{0}^{\beta}\|^{2} + n\|\pi k_{0}^{\beta}\|^{2} \geq 0 \\ &\Leftrightarrow \|\pi^{2+n}\|^{2}\|k_{0}^{\beta}\|^{2} - (1+n)\|\pi^{2}\|^{2}\|k_{0}^{\beta}\|^{2} + n\|\pi\|^{2}\|k_{0}^{\beta}\|^{2} \geq 0 \\ &\Leftrightarrow \|\pi^{2+n}\|^{2} - (1+n)\|\pi^{2}\|^{2}\|k_{0}^{\beta}\|^{2} + n\|\pi\|^{2}\|k_{0}^{\beta}\|^{2} \geq 0 \end{split}$$

Theorem 43. An operator $W_{\phi}^* \in H^2(\beta)$ is quasi n class Q if and only if $\|\overline{\pi}^{2+n}\|^2 - (1+n)\|\pi^2\|^2 + n\|\overline{\pi}\|^2 \ge 0$.

Proof. Since W_{ϕ}^* is quasi n class Q operator, we have

$$\langle (W_{\phi}^{2+n}W_{\phi}^{*2+n} - (1+n)(W_{\phi}W_{\phi}^*)^2 + nW_{\phi}W_{\phi}^*)f, f \rangle \geq 0 \text{ for any } f \in H^2(\beta)$$

$$\begin{split} \langle (W_{\phi}^{2+n}W_{\phi}^{*2+n} - (1+n)(W_{\phi}W_{\phi}^{*})^{2} + nW_{\phi}W_{\phi}^{*})f, f \rangle &\geq 0 \\ \Leftrightarrow \|W_{\phi}^{*2+n}f\|^{2} - (1+n)\|W_{\phi}^{*2}f\|^{2} + n\|W_{\phi}^{*}f\|^{2} &\geq 0 \\ \Leftrightarrow \|\overline{\pi}^{2+n}k_{0}^{\beta}\|^{2} - (1+n)\|\pi^{2}k_{0}^{\beta}\|^{2} + n\|\overline{\pi}k_{0}^{\beta}\|^{2} &\geq 0 \quad for \ f = k_{0}^{\beta}and\phi(0) = 0 \\ \Leftrightarrow \|\overline{\pi}^{2+n}\|^{2} - (1+n)\|\pi^{2}\|^{2} + n\|\overline{\pi}\|^{2} &\geq 0 \end{split}$$

Hence the theorem.

Theorem 44. An operator W_{ϕ} is of quasi n-class Q^* operator in $H^2(\beta)$ if and only if $(\|\pi^{2+n}\|^2 + n\|\pi\|^2)\|k_0^{\beta}\|^2 \ge (1+n)|\pi|^2\|k_{\phi(0)}^{\beta}\|^2$.

Theorem 45. An operator $W_{\phi}^* \in H^2(\beta)$ is of quasi n-class Q^* if and only if $\|\overline{\pi}^{2+n}\|^2 \geq (1+n)|\pi|^2 - n\|\overline{\pi}\|^2$.

7. quasi n-class Q and quasi n-class Q^* Composite Multiplication operator

As composite multiplication operator to a linear transformation acting on a set of complex value Σ measurable functions f of the form $M_{u,T}(f) = C_T M_u f = u \circ T f \circ T$ where u is a complex valued Σ measurable function. In the case u = 1 a.e, $M_{u,T}$ becomes a composition operator denoted by C_T .

Proposition 1. Let the composite multiplication operator $M_{u,T}(f) \in B(L^2(\lambda))$ then for $u \geq 0$

(i)
$$M_{u,T}^* M_{u,T} f = u^2 f_0 f$$
.

(ii)
$$M_{u,T}M_{u,T}^*f = (u^2 \circ T)(f_0 \circ T).E(f).$$

Since
$$M_{u,T}(f) = C_T M_u f = u \circ T f \circ T$$
 $M_{u,T}^n(f) = (C_T M_u)^n(f) = u^n (f \circ T)^2$ and $M_{u,T}^*(f) = u f_0.E(f) \circ T^{-1}$ $M_{u,T}^{*n}(f) = u f_0.E(u f_0) \circ T^{-(n-1)}.E(f) \circ T^{-n}$ where $E(u f_0) \circ T^{-(n-1)} = E(u f_0) \circ T^{-1}, E(u f_0) \circ T^{-2}, ..., E(u f_0) \circ T^{-(n-1)}$ $E(u f_0) \circ T^{n-1} = E(u f_0) \circ T^1, E(u f_0) \circ T^2, ..., E(u f_0) \circ T^{n-1}$

In this section, we study quasi n-class Q and quasi n-class Q^* composite multiplication operator as follows.

Theorem 46. Let the composite multiplication operator $M_{u,T} \in B(L^2(\lambda))$. Then $M_{u,T}$ is quasi n class Q if and only if $uf_0.E(uf_0) \circ T^{-(1+n)}.E(u_{2+n}) \circ T^{-(2+n)} - (1+n)uf_0.E(uf_0) \circ T^{-1}.E(u_2) \circ T^{-2} + nu^2f_0 \geq 0$. a.e.

Proof. Suppose $M_{u,T}$ is quasi n class Q operator, then $M_{u,T}^{*2+n}M_{u,T}^{2+n}-(1+n)M_{u,T}^{*2}M_{u,T}^2+nM_{u,T}^*M_{u,T}\geq 0$ Then for any $f\in L^2(\lambda)$, we have

$$\langle (M_{u,T}^{*2+n}M_{u,T}^{2+n} - (1+n)M_{u,T}^{*2}M_{u,T}^2 + nM_{u,T}^*M_{u,T})f, f \rangle \ge 0$$
$$\langle M_{u,T}^{*2+n}M_{u,T}^{2+n}f, f \rangle - (1+n)\langle M_{u,T}^{*2}M_{u,T}^2f, f \rangle + n\langle M_{u,T}^*M_{u,T}f, f \rangle \ge 0$$

Since $M_{u,T}^{*k}M_{u,T}^k = uf_0.E(uf_0) \circ T^{-(k-1)}.E(f) \circ T^{-n}$ $M_{u,T}^kM_{u,T}^{*k} = u_k.u \circ T^k.f_0 \circ T^k.E(uf_0) \circ T^{k-1}.E(f)$ where $u_k = u \circ T.u \circ T^2...u \circ T^k$

$$\Leftrightarrow \langle (uf_0.E(uf_0) \circ T^{-(1+n)}.E(u_{2+n}) \circ T^{-(2+n)})f, f \rangle -$$

$$(1+n)\langle (uf_0.E(uf_0) \circ T^{-1}.E(u_2) \circ T^{-2})f, f \rangle + n\langle (u^2f_0)f, f \rangle \ge 0$$

$$\Leftrightarrow \int_E (uf_0.E(uf_0) \circ T^{-(1+n)}.E(u_{2+n}) \circ T^{-(2+n)} - (1+n)uf_0.E(uf_0) \circ T^{-1}$$

$$.E(u_2) \circ T^{-2} + nu^2f_0)d\lambda \ge 0$$

$$\Leftrightarrow uf_0.E(uf_0) \circ T^{-(1+n)}.E(u_{2+n}) \circ T^{-(2+n)} - (1+n)uf_0.E(uf_0) \circ T^{-1}$$

$$.E(u_2) \circ T^{-2} + nu^2f_0 \ge 0 \text{ a.e.}$$

Corollary 22. If the composition operator $C_T \in B(L^2(\lambda))$ then C_T is quasi n class Q if and only if $f_0.E(f_0) \circ T^{-(1+n)} - (1+n)f_0.E(f_0) \circ T^{-1} + nf_0 \ge 0$. a.e.

Proof. By putting u = 1 in Theorem 46, we get the result.

Theorem 47. Let the composite multiplication operator $M_{u,T} \in B(L^2(\lambda))$. Then $M_{u,T}^*$ is quasi n class Q if and only if $u_{2+n}.u \circ T^{2+n}.f_0 \circ T^{2+n}.E(uf_0) \circ T^{1+n}.E(f) - (1+n)u_2(u \circ T^2)(f_0 \circ T^2).E(uf_0) \circ TE(f) + n(u^2 \circ T)(f_0 \circ T).E(f) \geq 0$. a.e.

Proof. Suppose $M_{u,T}^*$ is quasi n class Q operator, then $M_{u,T}^{2+n}M_{u,T}^{*2+n}-(1+n)M_{u,T}^2M_{u,T}^{*2}+nM_{u,T}M_{u,T}^*\geq 0$ Then for any $f\in L^2(\lambda)$, we have

$$\langle (M_{u,T}^{2+n}M_{u,T}^{*2+n} - (1+n)M_{u,T}^2M_{u,T}^{*2} + nM_{u,T}M_{u,T}^*)f, f \rangle \ge 0$$

$$\Leftrightarrow \int_E (u_{2+n}.u \circ T^{2+n}.f_0 \circ T^{2+n}.E(uf_0) \circ T^{1+n}.E(f) - (1+n)$$

$$u_2(u \circ T^2)(f_0 \circ T^2).E(uf_0) \circ TE(f) + n(u^2 \circ T)(f_0 \circ T).E(f))d\lambda \ge 0$$

$$\Leftrightarrow u_{2+n}.u \circ T^{2+n}.f_0 \circ T^{2+n}.E(uf_0) \circ T^{1+n}.E(f) - (1+n)$$

$$u_2(u \circ T^2)(f_0 \circ T^2).E(uf_0) \circ TE(f) + n(u^2 \circ T)(f_0 \circ T).E(f) \ge 0 \text{ a.e.}$$

Corollary 23. If the composition operator $C_T \in B(L^2(\lambda))$ then C_T^* is quasi n class Q if and only if $f_0 \circ T^{2+n}.E(f_0) \circ T^{1+n}.E(f) - (1+n)(f_0 \circ T^2).E(f_0) \circ TE(f) + n(f_0 \circ T).E(f) \geq 0$. a.e.

Theorem 48. Let the composite multiplication operator $M_{u,T} \in B(L^2(\lambda))$. Then $M_{u,T}$ is quasi n class Q^* if and only if $uf_0.E(uf_0) \circ T^{-(1+n)}.E(uf_0) \circ T^{-(2+n)} - (1+n)(u^4)(f_0^2) + n(u^2)(f_0) \geq 0$. a.e.

Corollary 24. If the composition operator $C_T \in B(L^2(\lambda))$. Then C_T is quasi n class Q^* if and only if $f_0.E(f_0) \circ T^{-(1+n)} - (1+n)(f_0^2) + n(f_0) \ge 0$. a.e.

Theorem 49. Let the composite multiplication operator $M_{u,T} \in B(L^2(\lambda))$. Then $M_{u,T}^*$ is quasi n class Q^* if and only if $u_{2+n}u \circ T^{2+n}f_0 \circ T^{2+n}.E(uf_0) \circ T^{1+n}.E(f) - (1+n)(u^2f_0 \circ TE(f))^2 + n(u^2f_0 \circ T)E(f) \geq 0$. a.e.

Corollary 25. If the composition operator $C_T \in B(L^2(\lambda))$. Then C_T^* is quasi n class Q^* if and only if $f_0 \circ T^{2+n}.E(f_0) \circ T^{1+n}.E(f) - (1+n)(f_0 \circ TE(f))^2 + n(f_0 \circ T)E(f) \geq 0$. a.e.

8. Aluthge transformation of quasi n-class Q and quasi n class Q^* operator

Let T=U|T| be the polar decomposition of T. Then the Aluthge transformation $\tilde{T}=|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ was introduced by Aluthge[1]. An operator T is called w hyponormal if $|\tilde{T}|\geq |T|\geq |\tilde{T}^*|$ and he defined $\tilde{\tilde{T}}=|\tilde{T}|^{\frac{1}{2}}\tilde{T}|\tilde{T}|^{\frac{1}{2}}$ where $\tilde{T}=\tilde{U}|\tilde{T}|$. Also the adjoint of aluthge transformation is defined as $\tilde{T}^*=|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}$, *-Aluthge transformation is $\tilde{T}^*=|T^*|^{\frac{1}{2}}U|T^*|^{\frac{1}{2}}$ and adjoint of *-Aluthge transformation is given by $\tilde{T}^{**}=|T^*|^{\frac{1}{2}}U^*|T^*|^{\frac{1}{2}}$.

Theorem 50. An operator T is quasi n class Q if and only if $(1+n)T^*|T|^2T \leq T^*|T^{(1+n)}|^2T + nT^*T$ for all $x \in H$ and for every positive integer n.

Proof. Since T is quasi n class Q operator, then $T^*(T^{*1+n}T^{1+n}-(1+n)T^*T+nI)T \ge 0$ for every positive integer n. By simple calculation we get the result.

Theorem 51. If T = U|T| is the polar decomposition of quasi n class Q operator T, then T is quasi n class Q operator.

Theorem 52. If T is quasi n class Q operator T and S is unitary such that TS = ST then A = TS is also quasi n class Q operator.

Theorem 53. Let T = U|T| be the polar decomposition of quasi n class Q operator T, where U is unitary if and only if \tilde{T} is quasi n class Q operator.

Proof. Suppose we assume that T is quasi n class Q operator and T = U|T| is the polar decomposition of T, then we have that $T^*(T^{*1+n}T^{1+n} - (1+n)T^*T + nI)T \ge 0$ for every positive integer n.

$$\Leftrightarrow (U|T|)^*((U|T|)^{*1+n}(U|T|)^{1+n} - (1+n)(U|T|)^*(U|T|) + nI)(U|T|) \ge 0.$$

$$\Leftrightarrow |T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}(|T^{(1+n)}|^{\frac{1}{2}}U^{*(1+n)}|T^{*(1+n)}|U^{(1+n)}|T^{(1+n)}|^{\frac{1}{2}} - (1+n)$$

$$|T|^{\frac{1}{2}}U^*|T^*|U|T|^{\frac{1}{2}} + nI)|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} \ge 0.$$

$$\Leftrightarrow \tilde{T}^*(\tilde{T}^{*1+n}\tilde{T}^{1+n} - (1+n)\tilde{T}^*\tilde{T} + nI)\tilde{T} \ge 0$$

for every positive integer n. Hence \tilde{T} is quasi n class Q operator.

Theorem 54. Let T = U|T| be the polar decomposition of quasi n class Q operator T and U is unitary, then T is quasi n class Q if and only if \tilde{T}^* is quasi n class Q operator.

Proof. Suppose we assume that T is quasi n class Q operator and T = U|T| is the polar decomposition of T, then we have that $T^*(T^{*1+n}T^{1+n} - (1+n)T^*T + nI)T \ge 0$ for every positive integer n.

$$\begin{split} \Leftrightarrow (U|T|)^*[(U|T|)^{*1+n}(U|T|)^{1+n} - (1+n)(U|T|)^*(U|T|) + nI](U|T|) &\geq 0. \\ \Leftrightarrow |T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}(|T^{(1+n)}|^{\frac{1}{2}}U^{(1+n)}|T^{*(1+n)}|U^{*(1+n)}|T^{(1+n)}|^{\frac{1}{2}} - (1+n) \\ & |T|^{\frac{1}{2}}U|T^*|U^*|T|^{\frac{1}{2}} + nI)|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} &\geq 0. \\ \Leftrightarrow \tilde{T}^*(\tilde{T}^{1+n}\tilde{T}^{*1+n} - (1+n)\tilde{T}\tilde{T}^* + nI)\tilde{T} &\geq 0 \end{split}$$

for every positive integer n. Hence \tilde{T}^* is quasi n class Q operator.

Corollary 26. If \tilde{T} is quasi n class Q if and only if \tilde{T}^* is quasi n class Q operator.

Theorem 55. Let T = U|T| be the polar decomposition of quasi n class Q operator T and U is unitary, then T is quasi n class Q if and only if $\tilde{T^*}$ is quasi n class Q operator.

Theorem 56. Let T = U|T| be the polar decomposition of quasi n class Q operator T and U is unitary, then \tilde{T}^* is quasi n class Q if and only if \tilde{T}^* is quasi n class Q operator.

Theorem 57. An operator T is quasi n class Q^* if and only if $(1+n)T^*|T^*|^2T \leq T^*|T^{(1+n)}|^2T + nT^*T$ for all $x \in H$ and for every positive integer n.

Theorem 58. If T = U|T| is the polar decomposition of quasi n class Q^* operator T, then T is quasi n class Q^* operator.

Theorem 59. If T is quasi n class Q^* operator T and S is unitary such that TS = ST then A = TS is also quasi n class Q^* operator.

Theorem 60. If \tilde{T} is quasi n class Q^* if and only if \tilde{T}^* is quasi n class Q^* operator.

Theorem 61. If \tilde{T}^* is quasi n class Q^* if and only if \tilde{T}^{*} is quasi n class Q^* operator.

REFERENCES 1129

References

- [1] A. Aluthge. On p-hyponormal operators for 0 . Integr. Equat. Oper. Th., <math>13:307-315, 1990.
- [2] A. Aluthge. Some generalized theorems on p-hyponormal operators for 0 . Integr. Equat. Oper. Th., <math>24:497 502, 1996.
- [3] C. S Kubrusly B.P. Duggal and N. Levan. Contractions of class Q and invariant subspaces. *Bull. Korean Mathematical Society*, 42:169–177, 2005.
- [4] P. Maheswari Naik D. Senthilkumar and D. Kiruthika. Quasi class Q* composition operators. *International J. of Math. Sci. and Engg. Appls. (IJMSEA)*, 4:1–9, 2011.
- [5] A. Devika and G. Suresh. Some properties of quasi class Q operators. *International Journal of Applied Mathematics and Statistical Sciences (IJAMSS)*, 1:63–68, 2013.
- [6] B.P. Duggal. Quasi Similar p hyponormal operators. *Integr. Equat.oper*, 26:338–345, 1996.
- [7] T. Furuta. On the class of paranormal operators. Proc. Japan. Acad., 43:594-598, 1967.
- [8] V.R. Hamiti. on k-quasi class Q operators. Bulletin of Mathematical Analysis and Applications, 6:31–37, 2014.
- [9] D. J. Harrington and R. Whitley. Seminormal composition operators. *J. Operator Theory.*, 11:125–135, 1984.
- [10] H. Y. Lee J. K. Han and W. Y. Lee. Invertible completions of 2×2 upper triangular operator matrices. *Proc. Amer. Math. Soc.*, 128:119–123, 2000.
- [11] D. Senthil Kumar and T. Prasad. M class Q composition operators. *Scientia Magna.*, 6:25–30, 2010.
- [12] A Lambert. Hyponormal composition operators. Bull. London. Math. Soc., 18:395–400, 1986.
- [13] S. Panayappan. Non-hyponormal weighted composition operators. *Indian J. Pure Appl. Math.*, 27:979–983, 1996.
- [14] T. Veluchamy and S.Panayappan. paranormal composition operators. *Indian Journal of pure and applied math.*, 24:257–262, 1993.
- [15] Y. Yang and Cheoul Jun Kim. Contractions of class Q*. Far East. J.Math.Sci.(FJMS), 27:649–657, 2007.
- [16] J. Yuan and Z. Gao. Weyl spectrum of class A(n) and n-paranormal operators. *Integr. Equ. Oper. Theory.*, 60:289–298, 2008.