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Some estimates below the modulus of integrals of some
polynomials in the complex plane
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Abstract. In this paper, we make some estimates below the modulus of some integrals in the
complex plane. Our aim is to prove the Conjecture1, which we could see in [2–4]. The proof of the
conjecture appears the Corollary.
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1. Introduction

In papers [2–4], we consider the Conjecture 1: If ak ≥ 0, ak ∈ R, Then we assert∣∣∣∣∣∣∣
eiϕ∫
0

n∏
k=1

(x+ ak) dx

∣∣∣∣∣∣∣ ≥
1

n+ 1
,

for arbitrary natural n, ϕ ∈
[
0, π2

]
. There exists a connection between this conjecture and

Conjecture2: If φk ∈
[
π
2 , π

]
, then∣∣∣∣∣∣

0∫
−1

(x+ 1)
n∏
k=1

(
x− eiφk

)
dx

∣∣∣∣∣∣ ≥ 1

n+ 2
.

Both conjectures are very important for the proofs of some famous conjectures, like
Sendov’s and Obreshkoff’s ones. A possible connection between both conjctures appears
[5]. Here we shall extend this problem (Conjecture1): what kind of set L satisfies this
assertion, i.e. if ak belongs to the set L, then the upper inequality is true. The results
related with the Conjecture 1, we observe in Theorem 1 , Theorem 2. In Theorem 4 we
generalize and prove the extended conjecture. We can see the results of Theorem 1 in
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[2, 4]. Such one of Theorem 2 could be seen in [3]. Many authors use some modulus of
some integrals in the complex plane for various estimates in their works. For example we
can see how Bojanov and Rahman in [1] use this method. These estimates are explored
for the localization of the zeros of some polynomials. The results are useful in the (open)
problems of [6–9].

2. Related Results

Theorem 1. Let k = 1, 2, ...n, n ∈ N, ak ∈ [0, 1]ϕ ∈
[
0, π2

]
. Then the function∣∣∣∣∣∣∣

eiϕ∫
−1

x
n
Π
k=1

(x+ ak) dx

∣∣∣∣∣∣∣ ≥
1

n+ 2

for n = 1, 2, 3.

Theorem 2. let k ∈ N, a ∈ R, a ∈ [0, 1] . Then the function∣∣∣∣∣∣
i∫
0

x (x+ a)k dx

∣∣∣∣∣∣ ≥ 1

n+ 2
.

3. Preliminaries

We note:
D (a, r) = {z ∈ C : |z − a| < r} is the open disk with center a and radius r.
D (0, r) = {z ∈ C : |z − a| ≤ r} is the closed disk with center a and radius r.
A = {z ∈ C, Rez ≤ 0} is the left semiplane.

4. Main Results

Theorem 3. We consider a polynomial r(z) = zn−1 + rn−1z
n−1 + ... + r1z + r0. where

rk ∈ R, n ≥ 1, n ∈ N, k = 0, n− 1. The zeros zk of r (z) satisfy the condition Rezk ≤ 0. If

a ≥ 0, then I = n
a∫
0

r (z) dz ≥ an.

Proof. Let r (z) = (z + a1) (z + a2) ... (z + a1) (z − b1)
(
z − b1

)
... (z − bs)

(
z − bs

)
, where

1+2s = n−1, ak ≥ 0, bm ∈ C, k = 1, l,m = 1, s, ak ∈ R, k,m ∈ N. and bm = ρme
iϕm, ρm ≥

0, ϕm ∈
[
π
2 , π

]
, (z − bm)

(
z − bm

)
= z2 − 2ρm cosϕmz + ρ2m ≥ z2. Then

n
a∫
0

r (z) dz = n
a∫
0

(z + a1) (z + a2) ... (z + a1) (z − b1)
(
z − b1

)
... (z − bs)

(
z − bs

)
d ≥

n
a∫
0

zn−1dz = an.
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Theorem 4. We consider a polynomial r (z) = zn−1 + rn−1z
n−2 + ... + r1z + r0, where

rk ∈ R, n ≥ 1, n ∈ N, k = 0, n− 1. The zeros zk of r (z) satisfy the condition zk ∈
A \D (z0, a) \D (z0, a) , z0 = aeiθ0 , where a ≥ 0, θ0 ∈

[
0, π2

]
. Then

I =

∣∣∣∣∣∣n
z0∫
0

r (z) dz

∣∣∣∣∣∣ ≥ an.
Proof. Let us put v (θ) = aeiθ, θ ∈ [0, θ0] , I + 2s = n− 1,

r (z) =
l
Π
p=1

(z + ap)
s
Π
p=1

(z − bp)
(
z − bp

)
,

l, s ∈ N (one of the factors could be not existing, i.e.,l = 0 or s = 0).

We put f (θ) = n
v(θ)∫
0

r (z) dz, g (θ) = f (θ) .f (θ) .

Let us calculate

dg

dθ
= n

[
r (v (θ))

dv

dθ
f (θ) + r (v (θ))

dv

dθ
f (θ)

]
,

dv

dθ
=
daeiθ

dθ
= iaeiθ,

and if we put

U0 = v (θ) = aeiθ, Up = v (θ) + ap, p = 1, l, Ul+2p+1 = v (θ)− bp,

Ul+2p+2 = v (θ)− bp, p = 0, s− 1.

Knowing
df

dθ
.Πn−1

p=0Up =
df

dθ
.Πn−1

p=0Up,

we have
dg

dθ
= in

[
f (θ)

n−1
Π
p=0

Up − f (θ)
n−1
Π
p=0

Up

]
,

d2g

dθ2
= n

[
2
df

dθ

n−1
Π
p=0

Up + i
dΠn−1

p=0Up

dθ
f (θ)− i

dΠn−1
p=0Up

dθ
f (θ)

]
,

d2g

dθ2
= n

[
2n

n−1
Π
p=0
|Up|2 −

(
U0

n−1
Σ
p=0

Π
j 6=p

Uj

)
f (θ)−

(
U0

n−1
Σ
p=0

Π
j 6=p

Uj

)
f (θ)

]
,

d2g

dθ2
= 2n

[
n
n−1
Π
p=0
|Up|2 −Re

(
U0

n−1
Σ
p=0

Π
j 6=p

Uj

)
f (θ)

]
,
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and consequently

d2g

dθ2
≥ 2n

n−1
Π
p=0
|Up|

nn−1Π
p=0
|Up| −

∣∣∣∣U0

n−1
Σ
p=0

Π
j 6=p

Uj

∣∣∣∣ . ∣∣f (θ)
∣∣

Πn−1
p=0Up

 .
If we note

B = {A \D (z, a) \D (z, a)} , B0 = {A \D (z0, a) \D (z0, a)}

and since
θ ∈ [0, θ0] =⇒ B0 ⊂ B, i.e., |Up (θ)| ≥ a, p = 1, n− 1.

If we assume
|f (θ)| =

∣∣f (θ)
∣∣ ≤ an,

then
d2g

dθ2
≥ 2n

n−1
Π
p=0
|Up|

[
naan−1 −

(
1 +

∣∣∣∣U0

U1

∣∣∣∣+ ...+

∣∣∣∣ U0

Un−1

∣∣∣∣) .an]

≥ 2na.Πn−1
p=0 |Up|

[
nan−1 −

(
1 +

a (n− 1)

a

)
.an−1

]
= 0.

Then
d2g

dθ2
≥ 0.

Hence
dg

dθ
(θ) ≥ dg

dθ
(0) = 0.

Consequently g (θ0) > g (0) , i.e., |f (θ0)| > an, according to the proof of Theorem 3.
Therefore an < |f (θ0)| ≤ an, which is impossible. The contradiction proves the Theorem
4.

Corollary. If in the condition of Theorem 4, we put a=1, and s=0, i.e., all the zeros of
r(z) are real and negative, then we get that the Conjecture 1 is true.
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