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Abstract. This manuscript is concerning to investigate numerical solutions for different classes
including parabolic, elliptic and hyperbolic partial differential equations of arbitrary order (PDEs).
The proposed technique depends on some operational matrices of fractional order differentiation
and integration. To compute the mentioned operational matrices, we apply shifted Jacobi poly-
nomials in two dimension. Thank to these matrices, we convert the PDE under consideration to
an algebraic equation which is can be easily solved for unknown coefficient matrix required for the
numerical solution. The proposed method is very efficient and need no discretization of the data
for the proposed PDE. The approximate solution obtain via this method is highly accurate and
the computation is easy. The proposed method is supported by solving various examples from well
known articles.
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1. Introduction

Many phenomenons and problems in biology, physics, chemistry, dynamics, fluid me-
chanics, optical technology,etc and in engineering disciplines are modeled by partial dif-
ferential equations. The mentioned equations arise in numbers of scientific models like
propagation of water waves, long waves and chemical reaction diffusion equations, for de-
tail see [7, 29, 36, 40, 41, 41].

Recently, considerable attention has been given to study partial differential equations with
non-integer order rather than classical order. Because in many situations, fractional order
partial differential equations (FPDEs) modeled real worlds phenomenons more accurately
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as compared to classical order partial differential equations. It has been proved that many
interesting process of electromagnetic, acoustics, viscoelasticity, electrochemistry and ma-
terial sciences are well described by using fractional order partial differential equations,
see [6, 14, 17, 35]. The present work is related to study the following linear FPDE given

as
0" w(z,y) Daﬁw(fmy)

( 0%w(x,y) o°w(x,y)
A oz +B 8x%y% +C 8ya 8@3
0 w(z,y)

corresponding to the initial conditions
w(xay)|:c:0 = (z)(y)a wa:(x7y)’$:0 = 1/1(9)

Where A, B,C, D, E,F are real constants and w(z,y) is the solution of the system to
be computed and also w(z,y), g(z,y),€ C([0,6] x [0,4]). Under the classical order o =
2,8 =1, the class (1) of FPDEs represents different classes of integer order PDE such
as parabolic, ecliptic and hyperbolic partial differential equations. The concerned PDE
is parabolic corresponding to integer order if B? — 4AC = 0, ecliptic if B> — 4AC < 0
and hyperbolic, if B2 — 4AC > 0, where each category describes different phenomena in
various disciplines of science and engineering. The aforesaid classes of partial differential
equations have many applications in various field of science and technology. As Laplace
and Poisson equations are ecliptic partial differential equations which have many applica-
tions in electromagnetic theory, and other branches of physics, mechanics, etc. Similarly,
Heat equation is parabolic and wave equation is hyperbolic partial differential equations.
For the importance and uses of these equations, we refe[l, 15, 30, 38]. The area which
has greatly attracted the attention of researches is devoted to the existence theory and
numerical solution of fractional order partial differential equations. Since the differential
equations involved fractional order are not easy to solve for theirs exact solutions in many
situations, therefore a strong motivation has been found to find the approximate solutions.
In general there does not exist a method which produce exact solutions of FPDEs. In many
situations for linear partial differential equations it is quite difficult task to find exact solu-
tions. Therefore, numerous techniques were developed to find approximate solutions to the
aforementioned equations. In [8, 18], authors applied Homotopy analysis method(HAM)
and He’s variation iteration method(VIM) to calculate approximate solutions of nonlinear
FPDEs. In same line, authors, used Adomain decomposition method(ADM)[16], homo-
topy perturbation method(HPM)|[21], Fourier transform method(FTM)[49], Laplace and
Natural transform methods[42, 43] to solve fractional order partial differential equation.
Also, some authors used fractional differential transform (FDTM)[2, 3, 37], to find numeri-
cal solutions of FPDEs. But all these method have their own advantages and disadvantages
in application point of view, as homotopy methods depend on small parameters which re-
stricted these methods. Similarly the methods that are involving integral transform are
also limited in applications.

In last few decades some interesting numerical schemes based on radial basis functions(RBF's)
and meshless techniques depend on collocation and (RBFs) for solving (PDEs), see[31, 47].
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Recently, numerical schemes based on operational matrices have attracted the attention
of many researches. The mentioned techniques provide highly accurate numerical solu-
tions to both linear and nonlinear ordinary as well as partial differential equations of
classical and fractional order. In the concerned schemes some operational matrices of
fractional order integration and differentiation are constructed which play central rules
in approximation of solutions. In [32, 50|, authors used Haar wavelets and Legendre
wavelets to solve linear FPDEs. With the same line some operational matrices based
on Chebyshev wavelets were also used to find numerical solutions to FPDEs, see [28]. In
[4, 5,9, 26, 33, 48, 51], authors constructed operational matrices based on Lagendre, Bern-
stein and Jacobi, Chebyshev polynomials for numerical solutions of fractional differential
equations. The concerned method used Tau-collocation method to form the mentioned
matrices. As in these methods discretization of date is required which need extra mem-
ory but provided best approximate solutions to (FPDEs). To overcome this difficulty,
in[22, 23] authors constructed the operational matrices from the afore mentioned poly-
nomial directly without discretizing the polynomials and obtained excellent solutions to
(FPDESs). The spectral methods based on operational matrices are the best tools to find
approximate solutions for both ordinary and partial fractional differential equations, for
detail see[10, 12, 20, 25, 27, 45, 46].

Motivated by the aforesaid work, in this paper we have considered a general multi-terms
fractional order partial differential equations which represents different classes of partial
differential equations by assigning various values to the constants involved in (1) to satis-
fied the specific conditions. The operational matrices involved in this paper are based on
shifted Jacobi polynomials. With the the help of these matrices of fractional order inte-
gration and differentiation, the considered equation is converted to an algebraic equation
which is easily soluble for unknown coefficient matrix needed in the approximate solution.
All the computations are done by using Matlab. For the demonstration, we solve different
examples of physical interest and also the comparison of our method with other method
is provided.

2. Preliminaries

Some auxiliary results and notions needed throughout in this paper are provided as
[14]:

Definition 2.1. The Riemann-Liouville integral of arbitrary order o € R of a function
w(x) is defined by
1 x
T%w(x :/ z — 1) Lw(r)dr,
@) = Fa7 [, @= 7))

such that the integral on right hand side converges pointwise on [0,00). Also the aforesaid
integral satisfies the following relations

(1) Z°TPw(z) = IPTw(x);

(2) 7°TPw(z) = T Pw(x);
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o _ TG a
(3) %7 = rlaimrne™™-

Definition 2.2. Let w(z) € C2[0,00), the arbitrary order a € (0,00) derivative is recalled

as
_ T)a+1fn

“w(x) = z(m—w(")x T, a€(n—1,n]; n=l«
Do) = [ @), a € (= Ll n =[] +1.

where the integral on the right is converges on [0,00). Further, the operator D satisfies
the following properties in particular for any constant ¢, D%c =0 and

0, i€ N, i< [a],
D% = (1 +14)
I(l+i—a)

1—a

The following relations are necessary throughout this paper.
Theorem 2.3. For any function w(x), the following results hold.
(a) D*I%w(z) = w(x);

(b) T°Dw(x) = w(x) — S0y wl) s

(¢) D*(Au(zx) + pv(x)) = A\DY(x) + uDv(x).

2.1. The shifted Jacobi polynomials
The famous Jacobi polynomials with two parameters say p, ¢ are defined on [0, ] as

)

(-1)"*0(k+q+)l(i+k+p+q+1)

(p,9) k-
= =0,1,2,3....
For (@) kZOF(i—HH—1)F(k+p~l—q+1)F(i—k+1)1“(k+l)5’fx , 1=0,1,2,3
(2)
The orthogonality condition is
1
/ F0 @) E (@)W (z)de = RED Ay, (3)
0
where
WD (z) = (8 — z)Pat (4)
is the weight function,
FPravil(i+p+ 1)+ g+ 1

2i+p+q+ )G+ 1)I(i+p+qg+1)

Thus any any function w(z) which is square integrable in [0,d] may be approximated
interm of shifted Jacobi polynomials as

w(z) = > Dy (@), (6)
=0
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as n — oo the approximation is converging to the exact function. Inview of (3) (4),(5),
we can easily find the constant D;. Writing(6) in matrix form as

w(z) ~ Hy (), (7)

such that N = n+1, Ky is the coefficient matrix and &y (z) is matrix of vectors function.
Extending the notation from uni-dimension to two dimension space in order to define two
dimensional shifted Jacobi polynomials of order N over the region [0, 4] x [0, d] as

FE(y) = (FE@)FEP), n=Nk+i+1, ki=012...n (8

The orthogonality condition for F gp ﬁq) (z,y) can be computed as

/ / N LD @IE LD @)(F LD @)WED @)W () drdy = RED A RV,

5 m T »S
(9)
An integrable function over the region [0,0] x [0,0] is approximated interms of the two-

dimensional shifted Jacobi polynomials f ((Sp;lq) (z,y) as

Z Z Din(F 59 (@) (F P2 (), (10)

=0 m=0

where Dy, can be computed as
D= o [ [ S GO @0 S iy, (1)
tm RmPDRPD o fo ’ 5l o,m 0 ’ ’
5,1

while
WD (@, y) = WD @)W (y). (12)

Writing the notation D,, = Dg,, then (10) implies

ZD F0(@,y) = KR ®pe(2,y), (13)

where H 2 is N2 x 1 coefficient matrix and ® y2(z, y) is N2 x 1 column matrix of functions
given by

<I>N2(a:,y):(q§11(x,y) ¢1N($,y) (bgl((l?,y) ¢2N(x7y) ¢NN<377:U) ()T;
14

where ¢p41i41(2,9) = (FHD@)(FE? (), ik =0,1,2,...,n

Theorem 2.4. [10, 12, 51] If a continuous function w(x,y) defined over a region [0,0] X
(z.y)

[0, 9] has bounded mized fourth order partial derivative a;;;agy , then the Jacobi expansion
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of the function converges uniformly to the function. Moreover the error of the approxima-
tion for sufficiently smooth function w(x,y) over the region [0,d] x [0, 9] is given by

N+ gN+1
JpNFT Y w(z, )‘+4‘8 Nt W (:Cay>}
(15)

1
lw(e,y) = Foom (@ vl < 75 sup [4
(z,y)€]0,1]%x[0,1]

82N+2 1

+ axN+18yN+1w(x7y) Nn+1:| Nnt+L

3. Operational matrices of integrations and differentiations

This section is devoted to construct and recall some operational matrices based on
shifted Jacobi polynomials, which are needed throughout in this paper. For the proof of
the required operational matrices, see [24].

Theorem 3.1. Consider ®py2(x,y) as in given (14), then the a-the order integration of
O 2 (x,y) corresponding to ‘x’ is provided by

T (@ pa(2,y)) = S LBy (2, y) (16)

with S(a m)NQ is the operational matriz given by

Nk Rige -0 RNipgp oo Ry noy
Noqpp  Noop o0 Nopp o0 Nonoy
S(OC ) — :
N2xN2 ™ z\zv,l,k N’L},2,k cee Nv,r,k T NU7N2,k ’
| Ny2qr Ny2op o0 Ry2pp o0 Ny2yep |

andr=Ni+j+1L,v=Na+b+1, R, = .p% fori, jab=0,1,2....m

,]abk E Aaka ,5,b

K

Z )™ l21+p+q+1)F(i+1)I‘(i+l+p+q+1)F(k:+a—|—l—|—p+1)I‘(p+1)5°‘
Gijo = Ti+p+ )T +q+ DG — I DI+ D)D(k+a+1+p+q+2) '
Where
(-1)** a4+ g+ D) (a+k+p+q+ D)I(1+k) (17)
a,k,a =

Mk+q+1)l(a+p+q+1)(a—k+1)0(k+ 1)1+ k+ a)dk
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Theorem 3.2. The fractional order differentiation of ® n2(x,y) as defined in (14) corre-
sponding to ‘y’ as

DY (@2 (2, y) = HGY o P xa (2, 7) (18)

where Hg\%yx) N2 s the operational matriz given as

Nite  Nigp -0 Nypp o0 Ryneyg
No1k Nooggr 0 Nopp o0 Nypnoy
N'u,l,lc N”U,Q,k T Nv,r,k t NU,NQ,k

| Ny2qp Ny2op o0 Ry2pp o0 Ry2yop |

andv=Ni+j+1,r=Na+b+1, R, p = a0k fori,ja,b=0,1,2,...,n,

a
Qi7j7a7b,k = Z Aa7k70Ai7j7b’ (20)

Z )™ l2z—|—p—|-q—|—1)F(7L+1)F(i—|—l—|—p+q+1)F(k—a+l+q+1)F(p+1)6"‘
Z]b ]b

FG+p+1)I'(l+q+1)IGE—1+D)II+ 1D k—a+l+p+qg+2)
(21)
and
(-1)**(a+qg+D)l(a+k+p+q+1DI(1+k)
Fk+g+1)T(a+p+q+1)(a—k)KTQ+k—a)dk
In the same line, the fractional order differentiation of ® n2(x,y) corresponding to ‘@’ as
provided as

Aa,k,a =

(22)

DY (@2 () = H e (2,), (23)
where HE\?Q’Q;)NQ is the operational matrixz defined as

Nite  Nior -0 Nypp o0 Ryneg
Nopp  Noop -+ Nopp -0 RNonoyp
H(agx) . : : : : : : . (24)
NExN z\zv,l,k Nv,2,k cee Nv,r,k T NU,NQ,k
| Ny23, Nyzop o0 Ry, o0 Ny2 e |

Theorem 3.3. The fractional order derivative of ® n2(z,y) is constructed in (14) corre-
sponding to 'z’ and 'y’ as

o0 a,r,
W(‘I’m(%y)) &~ HE\[QX?J@Z@]\/Q (z,y), (25)
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where H'™Y) is the operational matriz of given as

N2x N2
Nite  Nior -0 Nypp o0 Ryneg
Nopp  Noop -+ Nopp -0 RNonop
o) _ : : : : : : (26)
)
NEXN z\zv,l,k N'L},2,k ce Nv,r,k: T NU,NQ,k
L Ry2 e Ny2op oo Ry, oo Ny2 n2p |

andr=Ni+j+1L,v=Na+b+ 1,8, . =Q; .0k forijab=01,2,...,n

a
Qijabk =Y NakaOijp (27)
k=0

Z )= l2z+p—|—q+1)F(i—|—1)F(i+l+p+q+1)f‘(k‘—a+l+q+1)F(p—|—1)50‘
ng— 7,b

Fi+p+1)I'(l+q+1)IGE—-1+1D)II+ 1) (kE—a+l+p+qg+2)
(28)

and

N (-1)** a4+ g+ D) (a+k+p+q+ D)I(1+k)

WP T+ g+ Dl(a+p+q+ D(a—k+ D0k + DI(1+ k — a)ok”
(c oz z,y)
N2
two operational matrices, H( v) N2 and H( ) )N2 given in Theorem 3.2.

(29)

Proof. The operational matrix H can be easily obtain by using the product of

4. Numerical procedure based on the operational matrices for FPDE (1)

With the help of operational matrices constructed in section 3, the considered class of
FPDEs (1) is converted to simple algebraic equations which is easily soluble. Assume that

the following hold
O w(z,y)

agja = KN2q)N2 (.’I’,y) (30)
Then inview of Definition 2.1, we have
U)(I‘,y) C1 _CQy_KNQSN2xN2(bN2(‘T’y) (31)

which on using initial conditions of (1) yields that
w(z,y) = Kn2SVs, ne@rz(z, ) + 0(y) + y(y)
= Kpn2SYs, pe®az(2,y) + L2 ®n2(2,y), where ¢(y) 4+ yo(y) = Liy2®p2(z,y)

= Ky ngzx)]\p + Liy2|® 2 (7, y).
(32)
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Now inview of the relation obtained in (32), we have
VD) S+ L)
P S + Dl et )
W = (Kn2Syilye + L HGE R va(,9),

g(z,y) = Mpy2®p2(z,y).

Therefore, with the help of (30), (31),(32) and (33), our considered class of FPDEs (1)
becomes

AK 2P y2 (7, y) + B[Kye2 SE?&“QNZ + LN?]H%Z’%Q Q2 (2, y)

+ C[KNQSg\%:i)NQ + LNQ]HE\%?QNZ(I)N2 ('Ia y) + D[KNQSg\%:i)NQ + LNQ]HE\féi)NZ(I)NQ (.ZE, y)

+ E[K 2 SE&’”QNQ + LN?]HS\?QZQNQ Dy2(7,y) + FKn2 SE@E’?NQ + L2 | @2 (7, y) = Mpy2 @2 (2, y),
(34)

which on simplification yields

AKNZ_i_KNQS(OhI) [BH(CV@,Z/)E_FCH(Q,ZI) 2—|—DH(B’I) 2—|—EH(B’y) 2+FIN2><N2}

N2xN?2 N2xN N2xN N2xN N2xN
+ Ly [BHGY, + cH Y, + DHGY L+ EHGY ) + Flye,ne] — My2 = Ope.
(35)

On writing

Q=5G" L BHGY, + B, + DEYY  + EHY L+ Flye, vl

P =1Ly:Q— My,

we, have from (35)

It is obvious that (36) is an algebraic equation of matrices. Solving the (36), for Kz,
plugging its value in (32), we can get the numerical solution of the problem under consid-
eration.

5. Numerical Examples

This section is concerning to test the above techniques by some well known problems
of physical interest given bellow.
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a | Locat N=6 | Lo at N=8 | Lo at N=10 | Lo at N =12
1.5 5.707(=5) 5.3325(—6) 1.6826(—7) 1.6009(—38)
1.6 5.956(—5) 4.0196(—6) 7.0638(—8) 7.5009(—9)
1.7 7.236(—6) 7.1703(—8) 8.9126(—9) 9.9998(—12)
1.8 | 2.0873(-7) 6.0386(—8) 5.9451(—10) 2.7945(—12)
1.9 | 9.0002(-8) 1.0158(—9) 3.0781(—11) 1.0520(—14)
2.0 | 2.5000(—11) | 1.0019(—13) 1.0933(—15) 2.0251(—16)

Table 1: Absolute error in w(z,y) of Example 1 for (p,q) =

(0,0) and at various values of N

and «.

Example 1. Consider the Helmholtz equation [34]

aaw(ﬂc,y) 0%w(z,y)
ox™ oy™

w(0,y) = sin(2y), wz(0,y) = 0.

At o = 2 the ezact solution of (37) is w(x,y) = cos(2x)sin(2y). Here A=1,B=0,C =
1,D=FE =0,F =8, clearly B> — 4AC < 0, the given FPDE is ecliptic. We plot the
approximate solution corresponding to the exact solution at o = 2. We see from the Figure
1, that the proposed scheme provides close agreement to that of exact solution at very small
scale level. Further, we compared the absolute error Lo, = ||w—wn |00 at various fractional
order corresponding to different scale level N in the following Table 1.

+8w(x,y) =0, 1 <a <2,
(z,9) (37)

(a)

Figure 1. (a) Comparison between exact and approximate solutions at
N =6,p=q=0,a =2 for Example 1. (b) Absolute error at N =6,p=q =0,a =2 for
Example 1.

From the Table 1, we see that as the fractional order approaches to its integer values the
absolute error decreasing and vice versa and on the other hand enlarging the scale level,
the accuracy also increases even for fractional order.

Example 2. Taking FPDE consider in [19]
Ow(z,y) | Ow(z,y)  O%w(z,y)
ox® axgay% 8y0‘
w(0,y) = 2y, we(0,y) = y°.

=g(z,y), 1<a <2,
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a | Locat N=6 | Lo at N=8 | Lo at N=10 | Lo at N =12
1.5 | 1.0707(—6) 5.3325(—8) 6.0826(—10) 1.6009(—12)
1.6 | 9.9056(—7) 9.0196(—9) 7.0638(—11) 9.5009(—13)
1.7 | 6.2036(—7) 7.1703(—-9) 8.9126(—12) 1.0998(—13)
1.8 | 9.0073(-9) 1.0386(—10) 3.0457(—12) 1.0945(—14)
1.9 | 2.0002(—10) | 2.0158(—11) 5.0081(—12) 6.4520(—15)
2.0 | 1.0000(—11) | 1.0019(—12) 3.7935(—15) 1.0001(—16)

Table 2: Absolute error in w(z,y) of Example 2 for (p,q) = (0,0) and at various values of N
and a.

At o = 2 the exact solution of (39) is w(x,y) =2y +xy?. Here A=1,B=1,C=1,D =
E =F =0, clearly B> — 4AC = 0, the given FPDE is parabolic. Also g(x,y) = 2(x + y).
We plot the approrimate solution corresponding to the exact solution at o = 2. We see
from the Figure 2, that the approximate solution obtained via adapting procedure gives
close agreement to that of exact solution at very small scale level. We also compute
the absolute error Lo, = ||lw — wn||e for different fractional order using various wval-
ues of N in the given Table 2. We observe from the Table 2 that as o approaches to
its integer value, the absolute error decreasing. Similarly, on the other hand increas-
ing the scale level, the accuracy also increases for using different fractional order a.
(a ®)

~ ZjApproximate solution at N=

w(z,y)

Figure 2. (a) Comparison between exact and approximate solutions at
N =5p=q=0,a0 =2 for Example 2. (b) Absolute error at N =5,p=q=0,a =2 for
Ezample 2.

Example 3. Consider the following fractional partial differential equation

fe) e} (62 B
uey) | ey | Puy) |0 u,y)
Ox™ o2 dy? oy~ 0xP
Pw(x,y) - (39)
+ 837?45 +9w(z,y) = g(z,y),

w(0,y) =0, wy(0,y) = 0.
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a | Locat N=6 | Lo at N=8 | Lo at N=10 | Lo at N =12
1.5 | 8.0707(—7) 6.7325(—9) 8.7826(—10) 8.3459(—11)
1.6 | 8.6056(—8) 9.0196(—10) 7.0638(—11) 8.5009(—12)
1.7 | 9.2036(—9) 9.1703(—10) 8.9126(—12) 1.0998(—13)
1.8 | 7.3073(—10) | 1.0386(—11) 5.0457(—13) 9.0945(—14)
1.9 | 5.9002(—10) | 2.0145(—11) 8.1081(—12) 9.4520(—15)
2.0 | 3.0000(—11) | 1.9019(—12) 1.7035(—15) 9.0001(—16)

Table 3: Absolute error in w(z,y) of Example 3 for (p,q) = (0,0) and at various values of N
and a.

At a = 2,8 =1 the exact solution of (39) is w(x,y) = (zy)* — (zy)>. Here
A=5 B=6,C=—-4, D=7, E=8, F=9. As B> —4AC > 0, the given FPDE is
hyperbolic.

In the Figure 77, we have plotted the approximate solution corresponding to the exact
solution at o = 2. We see that the approximate solution obtained via proposed method
has the close agreement to that of exact solution at sufficiently small scale level. Further,
we compute the absolute error Lo, = ||lw — wn||o for different fractional order and using
various values of N in the given Table 3. We observe from the Table 3 that as «
approaches to its integer value, the absolute error decreasing. Similarly, by increasing the

scale level, the accuracy also increases for taking different fractional order.
@ ®

%\

[—_JApproximate solution at N=6
L _IExact sol
o

\DAbsolute error at N=6 /7
7, '/

Figure 3. (a)Absolute error at N = 6,p =q =0, =2,8=1 for Example 3. (b)
Comparison between exact and approrimate solutions at N =6,p=q=0,a=2,8=1
for Example 3.

Remark 1. The numerical solutions of FPDEs by using shifted Jacobi polynomials are
also depending on the values of the parameters of the considered polynomials. Therefore
the absolute error also depends upon on the values of the Jacobi polynomials parameters.
We give the following Table 4, for all three examples and the absolute error at scale level
N =6 and taking fractional order o = 1.8. We see that as the values of parameters (p,q)
tends to its integer values the absolute error decreases and vice versa.
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(p,q) L of Example 1 | Ly of Example 2 | Lo, of Example 3
0,0) 2.0025(—11) 1.0000(—10) 3.000(—11)
(0.5,0.5) 9.2455(—T7) 9.0638(—6) 1.8999(—8)
(1,1) 1.9703(—10) 7.0126(—9) 9.0998(—10)
(1,0.5) 1.0386(—8) 8.0457(—8) 8.9945(—9)
(15,1.5) | 9.0145(—7) 9.1081(—7) 7.9520(—8)
2,2) 9.9019(—10) 9.7035(—9) 1.9901(—10)

Table 4: Absolute error in w(z,y) of Example 3 at various values of N and «a.

6. Comparison of the proposed method with some already existing
Haar wavelet method

The Shifted Legendre polynomials are the special case of Shifted Jacobi polynomials
and they can be obtained by p = ¢ = 0, § = 1 in the relation (2). We compared
our technique with the existing methods available in [39], where the authors constructed
the procedure by discretizing the data and using the Haar wavelet method, which need
extra memory to obtained the operational matrices of fractional derivative and integration
because data need discretization and collocation. While in our prosed method, we have
obtained the operational matrices without discretization of data and using any collocation
method. In the following examples we provide the comparison of the proposed method
with the existing some methods.

Example 4. Consider the given equation as

O w(z,y) 0" lw(z,y) _ Pw(z,y)
Ox® + Oxo—1 wiw,y) = Oy?
'2a+1) x ol 2a (40)
— <
[F(a—l—l) <1 a+x> :c}r cos(7y), 1 <a <2,

w(0,y) =0, wy(0,y) =0, w(0,z) = 2%, w(l,x) = 0.7539022z>.
The exact solution of the problem (40) is

w(z,y) = x> cos(Ty).
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Comparison between our proposed method and that given in [39]
(x,y) o L., of Proposed | Lo of
method wavelet method

(0.5,0.5) 1.30 2.0025(—04) 1.8000(—03)
1.50 8.2455(—05) 7.0638(—04)
1.75 7.0003(—06) 8.8126(—05)
1.85 1.1936(—06) 9.1234(—06)
1.95 3.9141(—07) 9.2087(—07)
2.00 1.0001(—12) 2.0012(—10)
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Table 5: Comparison of the absolute errors for the solution w(z,y) of Example 4 at various

values of « and N = 10.

w(z,y)

Figure 3. (a) Comparison between exact and approximate solutions at
N =6,p=q=0,a=1.9, for Ezample 4. (b) Absolute error at
N =6,p=q=0,a=1.9, for Example 4

Similarly, we can also bring out comparison for other problems of FDEs and FPDEs.
From the Table 5, it is clear that the proposed method provides powerful tools to obtain

approximate solutions which is closely related with the exact solution of the problem.

Conclusion

In this study, we have successfully applied the operational matrices methods of Shifted
Jacobi polynomials to various classes of FPDEs in two dimensions. Thank to these ma-
trices, the concerned FPDE is converted to a simple algebraic equations which is further
solved for coefficient matrix needed in the approximate solutions of the considered equa-
tion. The method provides an excellent agreement to the exact solutions a very small scale
level. The important point in the method proposed in this study need no extra parame-
ter like perturbation method neither required discretization of the data which need extra
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memory and waste of time and suffers from computational complexity some times. All
these mentioned things are avoided in this method and a direct computational procedure
has been adopted. In future this method, we can easily extended to nonlinear FPDEs.
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