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Abstract. In this paper we present a comprehensive survey and developments of existing literature
of non-associative rings and enumerate some of their various applications in different directions to
date. These applications explain the voluminous work in different fields of non-associative rings
and through which various algebraic structures in theoretical point of view could be developed.
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1. Introduction

One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have a
way of blooming into beautiful theories. Pure mathematics is, in its way the poetry of logical
ideas. Today mathematics especially pure mathematics is not the same as it was hundred
years ago. Many revolutions have occurred and it has taken new shapes with the due course
of time. Until recently the theory of rings and algebras was regarded exclusively as the theory
of associative rings and algebras. This was a result of the fact that the first rings encountered
in the course of the development of mathematics were associative (and commutative) rings of
numbers and rings of functions, and also associative rings of endomorphisms of abelian groups,
in particular, rings of linear transformations of vector spaces. This survey of one part of the
theory of rings: precisely, the theory of rings, which although non-associative, are more or less
connected with the theory of associative rings. More precise connections will be mentioned
during the discussion of particular classes of rings.
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A major change took place in the mid of 19th century when the concept of non-associative
rings and non-associative algebras were introduced. The theory of non-associative rings and
algebras has evolved into an independent branch of algebra, exhibiting many points of contact
with other fields of mathematics and also with physics, mechanics, biology, and other sciences.
The central part of the theory is the theory of what are known as nearly-associative rings and
algebras: Lie, alternative, Jordan, loop rings and algebras, and some of their generalizations.

We briefly describe the origins of the theory of non-associative rings. The oldest non-
associative operation used by mankind was plain subtraction of natural numbers. The first
ever example of a ring that is non-associative is Octonions, constructed by John T. Graves in
1843. On the other hand the first example of an abstract non-associative system was Cayley
numbers, constructed by Arthur Cayley in 1845. Later they were generalized by Dickson to
what we know as Cayley-Dickson algebras. Later in 1870 a very important non-associative
class known as Lie Theory was introduced by the Norwegian mathematician Sophus Lie. He
employed a novel approach, combining transformations that preserve a type of geometric
structure (specifically, a contact structure) and group theory to arrive at a theory of continuous
transformation groups [189]. Since then, Lie Theory has been found to have many applications
in different areas of mathematics, including the study of special functions, differential and
algebraic geometry, number theory, group and ring theory, and topology [99, 103, 109]. It
has also become instrumental in parts of physics, for some Lie algebras arise naturally from
symmetries in physical systems, and is a powerful tool in such areas as quantum and classical
and mechanics, , solid state physics, atomic spectroscopy and elementary particles [34, 99,
109]. No doubt Lie theory is a fundamental part of mathematics. The areas it touches
contain classical, differential, and algebraic geometry, topology, ordinary and partial differential
equations, complex analysis and etc. And it is also an essential chapter of contemporary
mathematics. A development of it is the Uniformization Theorem for Riemann surface. The
final proof of such theorem is the invention from Einstein to the special theory of relativity
and the Lorentz transformation. The application of Lie theory is astonishing. Moreover, in
1890’s the concept of hyperbolic quaternion was given by Alexander Macfarlane which forms
a non-associative ring that suggested the mathematical footing for space time theory that
followed later.

Furthermore, to the best of our knowledge the first detailed discussion about Alternative
rings was started in 1930 by the German author Zorn [268–271]. For more study about this non-
associative structure we refer the readers to study [2, 42, 110, 205–207]. Another important
class of non-associative structures was introduced in 1932-1933 by German specialist Pasqual
Jordan in his algebraic formulation of quantum mechanics. Jordan structures also appear
in quantum group theory, and exceptional Jordan algebras play an important role in recent
fundamental physical theories, namely, in the theory of super-strings [107]. The systematic
study of general Jordan algebras was started by Albert in 1946. In addition, the study of loops
started in 1920’s and these were introduced formally first time in 1930’s [200]. The theory
of loops has its roots in geometry, algebra and combinatorics. This can be found in non-
associative products in algebra, in combinatorics it is presented in latin squares of particular
form and in geometry it has connection with the analysis of web structures [199]. A detailed
study of theory of the loops can be found in [3, 4, 21–23, 199]. Historically, the concept of
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a non-associative loop ring was introduced in a paper by Bruck in 1944 [20]. Non-associative
loop rings appear to have been little more than a curiosity until the 1980s when the author
found a class of non-associative Moufang loops whose loop rings satisfy the alternative laws.

After the concept of loop rings (1944), a new class of non-associative ring theory was given
by Yusuf in 2006 [265]. Although the concept of LA-ring was given in 2006, but the systematic
study and further developments was started in 2010 by Shah and Rehman in their paper [215].
It is worth mentioning that this new class of non-associative rings named Left almost rings
(LA-ring) is introduced after a huge gap of 6 decades since the introduction of loop rings. Left
almost rings (LA-ring) is actually an off shoot of LA-semigroup and LA-group. It is a non-
commutative and non-associative structure and gradually due to its peculiar characteristics
it has been emerging as useful non-associative class which intuitively would have reasonable
contribution to enhance non-associative ring theory. By an LA-ring, we mean a non-empty set
R with at least two elements such that (R,+) is an LA-group, (R, .) is an LA-semigroup, both
left and right distributive laws hold. In [215], the authors have discussed LA-ring of finitely
nonzero functions which is in fact a generalization of a commutative semigroup ring. On the
way the first ever definition of LA-module over an LA-ring was given by Shah and Rehman in
the same paper [215]. Moreover, Shah and Rehman [216] discussed some properties of LA-
rings through their ideals and intuitively ideal theory would be a gate way for investigating the
application of fuzzy sets, intuitionistics fuzzy sets and soft sets in LA-rings. For example, Shah
et al., [248] have applied the concept of intuitionistic fuzzy sets and established some useful
results. In [106] some computational work through Mace4 has been done and some interesting
characteristics of LA-rings have been explored. Further Shah et al., [247] have promoted the
concept of LA-module and established some results of isomorphism theorems and direct sum
of LA-modules. Recently, in 2014, Alghamdi and Sahraoui [8] have defined and constructed a
tensor product of LA-modules and they extended some simple results from the ordinary tensor
to the new setting. In 2014, Yiarayong [263] have given the new concept of left primary and
weakly left primary ideals in LA-rings. Some characterizations of left primary and weakly left
primary ideals are obtained. Moreover, in 2015 Hussain and Khan [104] have characterized
LA-rings by congruence relations. They proved that each homomorphism of left almost rings
defines a congruence relation on left almost rings. For some more study of LA-rings, we refer
the readers to see [202, 213, 217, 246].

2. Historical Perspective and Developments

It is impossible in a short space to convey the full compass of the subject, but we will
site some literature on non-associative rings from different decades. Here we tried to give the
literature survey of all non-associative rings and their developments in different time periods
including LA-rings (a class of non-associative rings), recently introduced in 2006.

2.1. Octonions

In order to solidify the non-associative ring theory, the origin of the non-associative ring
could be traced to the work of John T. Graves who discovered Octonions in 1843, which is
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considered to be the first ever example of non-associative ring. It is an 8-dimensional algebra
over R which is non-associative as well as being non-commutative. These were rediscovered
by cayley in 1845 and are also known sometimes as the cayley numbers. Each nonzero element
of octonion still has an inverse so that it is a division ring, albeit a non-associative one. For a
most comprehensive account of the octonions see [9]. The process of going from R to C, from
C to H, and from H to O, is in each case a kind of doubling process. At each stage something
is lost from R to C it loosed the property that R is ordered, from C to H loosed commutativity
and from H to O loosed associativity. This process has been generalized to algebras over fields
and indeed over rings. It is called Dickson doubling or Cayley-Dickson Doubling see [33, 198].
If we apply the Cayley-Dickson doubling process to the octonions we obtain a structure called
the sedenions, which is a 16-dimensional non-associative algebra. In physics community much
work is currently focused on octonion models see [39, 74, 190, 255]. Historically speaking, the
inventors or discoverers of the quaternions, octonions and related algebras (Hamilton, Cayley,
Graves, Grassmann, Jordan, Clifford and others) were working from a physical point-of-view
and wanted their abstractions to be helpful in solving natural problems [105].

2.2. Lie Rings (1870-2015)

In 1870 a very important non-associative class known as Lie Theory was introduced by the
Norwegian mathematician Sophus Lie. The theory of Lie algebras is an area of mathematics in
which we can see a harmonious between the methods of classical analysis and modern algebra.
This theory, a direct outgrowth of a central problem in the calculus, has today become a
synthesis of many separate disciplines, each of which has left its own mark. The importance
of Lie algebras for applied mathematics and for applied physics has also become increasingly
evident in recent years. In applied mathematics, Lie theory remains a powerful tool for studying
differential equations, special functions and perturbation theory. Lie theory finds applications
not only in elementary particle physics and nuclear physics, but also in such diverse fields as
continuum mechanics, solid-state physics, cosmology and control theory. Lie algebra is also
used by electrical engineers, mainly in the mobile robot control. For the basic information of
Lie algebras, the readers are referred to [10, 31, 102].

It is well known that Lie algebra can be viewed as a Lie ring. So, the theory of Lie ring
can be used in the theory of Lie algebra. A Lie ring is defined as a non-associative ring
with multiplication that is anti-commutative and satisfies the Jacobi identity i.e.[a, [b, c]] +
[b, [c, a]] + [c, [a, b]] = 0

Although the Lie theory was introduced in 1870 but the major developments were made
in the 20th century with the paper of Hausdorff [81] in 1906. In (1934-35), Ado [1] proved
that any finite dimensional Lie algebra over the field of complex numbers can be represented
in a finite dimensional associative algebra. Moreover, in 1937, Birkhoff [12] and Witt [260]
independently examined that every Lie algebra is isomorphic to sub-algebra of some algebra of
the form A(−), where A(−) is a Lie ring defined by x.y = xy− yx. They also found a formula
for computing the rank of the homogeneous modules in a free Lie algebra on a finite number
of generators. Also in 1937, Magnus [166] proved that the elements yi = 1 + xi of the ring
H generate a free subgroup G of the multiplicative group of the ring H, and every element of
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the subgroup Gn (the n-th commutator subgroup) has the form 1 + ln+w, where ln is some
homogeneous Lie polynomial (with respect to the operations x.y and x+ y of degree n in the
generators ai, and w is a formal power series in which all the terms have degree greater than
n.

In 1947, Dynkin [43] gave the criteria to determine whether the given polynomial is a Lie
polynomial. Later in (1948-49), Harish Chandra [78] and Iwasawa [108] proved that Ado’s
theorem holds for any finite dimensional Lie algebra. Moreover, an important role in the
theory of Lie rings is played by free Lie rings. In contrast to free alternative rings and free
J-rings (free Jordan-rings), free Lie rings have been thoroughly studied. In that context, in
1950, Hall [75] pointed out a method for constructing a basis of a free Lie algebra. In addition,
analogous theorems about embedding of arbitrary algebras and of associative rings were proved
respectively by Zhukov [267] in 1950 and by Malcev [174] in 1952.

In (1953-54), Lazard [158] and Witt [261] studied representations of
∑

-operator Lie rings
in

∑
-operator associative rings. The existence of such a representation was proved by them

in the case of
∑

-principal ideal rings and in particular for Lie rings without operators. The
example constructed by Shirshov in [219] shows that there exist non-representable

∑
-operator

Lie rings which do not have elements of finite order in the additive group. Also in 1954, Higgins
[94] investigated that solvable rings satisfying the n-th Engel condition are nilpotent and in
continuation, Lazard [159] studied nilpotent groups using large parts of the apparatus of Lie
ring theory.

In 1955, Cohn [32] constructed an example of a solvable Lie ring, with additive p-group
(in characteristic p) and satisfying the p-th Engel condition, which is not nilpotent. Lie rings
with a finite number of generators and some restrictions on the additive group. Also in 1955,
Malcev [175] considered a class of binary-Lie rings, which are related to lie rings in a way
analogous to the way alternative rings are related to associative rings. In (1955-56), Herstein
[85–87] discussed associative rings which are dedicated to studying the rings A(−) with different
assumptions on the ring A. In 1956, Witt [262] proved that any sub-algebra of a free Lie algebra
is again free. This theorem is analogous to the theorem of Kurosh for sub-algebras of free
algebras. In the year 1957, many authors work on Lie algebra. For example, Higman [96]
proved nilpotency of any Lie ring which has an automorphism of prime order without nonzero
fixed points. This statement allowed him to prove nilpotency of finite solvable groups which
have an automorphism satisfying the analogous condition. Gainov [52], investigated that in
the case of a ring for which the additive group has no elements of order two, for a ring to be
binary-Lie it is sufficient that these identities hold: a2 = [(ab)b]a + [(ba)a]b = 0. The author
proposed that on the set of elements of some alternative ring D, we can define the above
described operation x.y = xy − yx and then it implies that in the ring D(−), these relations
hold identically: a2 = [(a.b).c].a + [(b.c).a].a + [(c.a).a].b − (a.b).(a.c) = 0. Rings satisfying
these identities are called Moufang-Lie rings. He showed that the class of Moufang-Lie rings
without elements of additive order 6 is properly contained in the class of binary-Lie rings.
In (1957-58), Kostrikin [147] proved that the Engel condition implies nilpotency. This result
is especially interesting because from it follows the positive solution of the group-theoretical
restricted Burnside problem for p-groups with elements of prime order [145, 146].

Herstein and Kleinfeld [93] in 1960, discussed that the mappings φ onto a simple ring
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of characteristic 2 which preserve commutators and cubes. This situation is of interest for
in characteristic 2 Jordan homomorphisms are the same thing as Lie homomorphisms, that
is, mappings which preserve commutators. In 1961, Macdonald [164] established analogous
results that are valid for some varieties of Lie rings. It is natural to bring some methods in
finite group theory into the study of Lie algebras. Herstein [89] in 1961 gave us the idea of
Lie and Jordan structures in simple associative rings. In 1963, Kreknin [148] examined that if
a Lie ring L admits a regular automorphism φ of finite order k, that is, such that φk = 1 and
CL(φ) = 0, then L is soluble of derived length bounded by a function of k, actually, by 2k−2.
He also discussed the bounded solubility of a Lie ring with a fixed-point-free automorphism,
but the existing Lie ring methods cannot be used for bounding the derived length in general.
Moreover, Kreknin and Kostrikin [150] in 1963 suggested that a Lie ring with a fixed-point-free
automorphism of prime order p is nilpotent of p-bounded class. In continuation Kreknin and
Kostrikin also investigated that a Lie ring (algebra) admitting a regular (i.e., without nontrivial
fixed points) automorphism of prime order p is nilpotent of class bounded by a function h(p)
depending only on p. Kreknin [149] in 1967 projected that a Lie ring (algebra) admitting a
regular automorphism of finite order n is soluble of derived length bounded by a function of
n. In 1969, Herstein [91] focused his study on the structures of the Jordan and Lie rings of
simple associative rings. In the latter case the approach is via the study of the structure of
I(R), the Lie ring of inner derivations of R, or, equivalently, the Lie structure of R/Z.

In 1970, Herstein [92] studied lie structure of associative rings and proved some important
results regarding lie structure of R/Z. In 1972, Lanski and Montgomery [157] studied Lie
structure of prime rings of characteristic 2. Results on Lie ideals were obtained. These results
were then applied to the group of units of the ring, and also to Lie ideals of the symmetric
elements when the ring has an involution. This work extends recent results of Herstein, Lanski
and Erickson on prime rings whose characteristic is not 2, and results of S. Montgomery on
simple rings of characteristic 2. In 1974, Kawamoto [128] discussed prime and semiprime ideals
of Lie rings and showed that in a Lie algebra satisfying the maximal condition for ideals, any
semi-prime ideal is an intersection of finite number of prime ideals and the unique maximal
solvable ideal is equal to the intersection of all prime ideals. Jordan et al.[120] in 1978, studied
that how the ideal structure of the Lie ring of derivations of R, is determined by the ideal
structure of R. Moreover, the authors were interested in extending these results to the case
where R is a prime or semi-prime ring. Hartley et al., [79], in 1981 and Khukhro [129] in 1986
proposed that the results on Lie rings with regular or almost regular automorphisms of prime
order have consequences for nilpotent (or even finite, or residually locally nilpotent-by-finite,
etc.) groups with such automorphisms.

In 1992, Khukhro [130] has generalized the work of Kreknin and Kostrikin [148, 150] on
regular automorphisms; (almost) regularity of an automorphism of prime order implied (almost)
nilpotency of the Lie ring (algebra), with corresponding bounds for the nilpotency class and the
index (co-dimension). He also showed that a Lie ring (algebra) L admitting an automorphism
φ of prime order p with finite fixed-point sub-ring of order m (with finite-dimensional fixed-
point sub-algebra of dimension m) has a nilpotent sub-ring (sub-algebra) K of class bounded
by a function of p with the index of the additive subgroup |L : K| (the co-dimension of K)
bounded by a function of m and p. Moreover, Khukhro proved that if a periodic (locally)
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nilpotent group G admits an automorphism φ of prime order p with m = |CG(φ)| fixed points
then G has a nilpotent subgroup of (m, p)- bounded index and of p-bounded class and on
the way this group result was also based on a similar theorem on Lie rings. The result given
in [130], was later extended by Medvedev [180] in 1994 to not necessarily periodic locally
nilpotent groups. In 1996 and in 1998, the authors [169–171] developed a method of graded
centralizers given in [130] to study the almost fixed-point-free automorphisms of Lie rings and
nilpotent groups. Medvedev [181] in 1999 Zapirain [266] in 2000 and Makarenko [167] in 2001
established the most successful case regarding the nilpotent (or finite) p-groups with an almost
regular automorphism of order pn, where theorems on regular automorphisms of Lie rings were
used.

Great progress has been made to date in Lie rings (algebras) with almost regular auto-
morphisms. The history of this area of research started with the classical theorem of Kreknin.
In 2003, Khukhro and Makarenko [131] proved that if a Lie ring admits an automorphism of
prime-power order that is almost regular then L is almost soluble. Moreover, in 2003 and
in 2004 Makarenko and Khukhro [172, 173], have succeeded in investigating the most gen-
eral case of a Lie ring (algebra) with almost regular automorphism of arbitrary finite order.
Makarenko and Khukhro [173] in 2004 analyzed that almost solubility of Lie rings and alge-
bras admitting an almost regular automorphism of finite order, with bounds for the derived
length and co-dimension of a soluble sub-algebra, but for groups even the fixed-point-free case
remains open. In 2005, Kuzucuoglu [153] proved isomorphisms between finitary unitriangular
groups and those of associated Lie rings are studied. The author also investigated its excep-
tional cases. Makarenko [168] in 2005, improved the conclusion in Khukhro’s theorem stating
that a Lie ring (algebra) L admitting an automorphism of prime order p with finitely many m
fixed points (with finite-dimensional fixed-point sub-algebra of dimension m) has a sub-ring
(sub-algebra) H of nilpotency class bounded by a function of p such that the index of the
additive subgroup |L : H| (the co-dimension of H) is bounded by a function of m and p. He
proved that there exists an ideal, rather than merely a sub-ring (sub-algebra), of nilpotency
class bounded in terms of p and of index (co-dimension) bounded in terms of m and p.

In 2008, Suanmali [243] used an analogous idea in the theory of group varieties to investi-
gate the varieties of Lie algebras. She considered the exponent bound problem for some varieties
of nilpotent Lie algebras and extended [164, 165] Macdonald’s results to finite-dimensional Lie
algebras over a field of characteristic not 2 and 3. Paul and Sabur Uddin [194] in 2010 worked
on Lie and Jordan structure in simple gamma rings. They obtained some remarkable results
concerning to Lie and Jordan structure. In 2010, Paul and Sabur Uddin [195] focused their
discussion to the study Lie structure in simple gamma rings. They gave us some structural
results of simple gamma rings with Lie ideals.

In 2011, Khukhro, Makarenko and Shumyatsky [45] developed a Lie ring theory which is
used for studying groups G and Lie rings L with a metacyclic Frobenius group of automorphisms
FH. Wilson [258] in 2013 introduced three families of characteristic subgroups that refined
the traditional verbal subgroup filters, such as the lower central series, to an arbitrary length.
It was proved that a positive logarithmic proportion of finite p-groups admit at least five such
proper nontrivial characteristic subgroups whereas verbal and marginal methods explained only
one. The placement of these subgroups in the lattice of subgroups is naturally recorded by
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a filter over an arbitrary commutative monoid M and induces an M -graded Lie ring. These
Lie rings permit an efficient specialization of the nilpotent quotient algorithm to construct
automorphisms and decide isomorphism of finite p-groups. In 2013, Khukhro and Makarenko
[132] discovered that the representation theory arguments are used to bound the index of the
fitting subgroup. Lie ring methods are used for nilpotent groups. A similar theorem on Lie
rings with a metacyclic Frobenius group FH of automorphisms was also proved. In 2014, Horn
and Zandi [98] the aim in their paper is to gave an explicit description of the cohomology group
H2(L,A) and to show how its elements correspond one-to-one to the equivalence classes of
central extensions of the Lie algebra L with the module A, where we regard A as abelian Lie
ring. More recently in 2015, Wilson [259] generalized the common notion of descending and
ascending central series. The descending approach determines a naturally graded Lie ring and
the ascending version determines a graded module for this ring. He link derivations of these
rings to the automorphisms of a group.

2.3. Alternative Rings (1930-2015)

To the best of our knowledge the first detailed discussion about alternative rings was
started in 1930 by the German author Zorn. An alternative ring R is defined by the system of
identities: (ab)b = a(bb) (right alternativeness) and (aa)b = a(ab) (left alternativeness) for all
a, b ∈ R.

In 1930, Zorn [268] mentioned the theorem of Artin which states that every two elements
of an alternative ring generate an associative sub-ring. By a result of Zorn [268], it was
observed that the only not associative summands permitted are merely finite Cayley-Dickson
algebras (which is the first example of alternative rings) with divisors of zero. In 1933, Zorn
[269] discussed also the finite-dimensional case in alternative rings. In 1935, Moufang [186]
proved a generalization for alternative division rings: if (a, b, c) = 0, then a, b, c generate
a division sub-ring which is associative. For more details regarding finite dimensional case
the readers are referred to the contribution of Jacobson [110], Albert [2], Schafer [206, 207]
Dubisch and Perlis [42]. In 1943, Schafer [205] studied the alternative division algebras of
degree two which is independent of Zorn’s results. In 1946, Forsythe and McCoy [51] gave an
approach that an associative regular ring without nonzero nilpotent elements is a sub-direct
sum of associative division rings is easily extendable to alternative rings. In 1947, Smiley [237]
studied alternative regular rings without nilpotent elements and proposed an approach that
every alternative algebraic algebra which has no nilpotent elements is the sub-direct sum of
alternative division algebras. Kaplansky [126] in 1947 presented many of the preliminary results
which were valid at least for special alternative rings. Smiley [238] in 1948 studied the concept
of radical of an alternative ring and discussed the radicals of infinite order algebras and was
also able to show that the Jacobson’s definition of the radical of an associative ring is applied
to alternative ring. In 1948, Kaplansky [125] also obtained the Cayley numbers as the only
not associative alternative division ring which was both connected and locally connected, and
he gave a conjecture that a similar result holds in the totally disconnected, locally compact
case. A ring is defined to be right alternative in case ab.b− a.bb = 0 is an identical relation in
the ring. Right alternative algebras were first studied by Albert [6] in 1949 he showed that a
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semi-simple, right alternative algebra over a field of characteristic 0 is alternative.
In 1950, Brown and McCoy [17] suggested that every alternative ring has a greatest regular

ideal. Also in 1950, in the work of Skornyakov [221, 222] provided a full description of
alternative but not associative division rings. He showed that each such division ring is an
algebra of dimension 8 over some field. Later in 1951, Bruck and Kleinfeld [24] proved the
result of Skornyakov [221], independently. In 1951, Skornyakov [223] proposed that the study
of alternative rings in general began with the study of alternative division rings, which in the
theory of projective planes play the role of the so-called natural division rings of alternative.
Another result concerns right alternative division rings, which are of geometrical interest since
they arise as coordinate systems of certain projective planes in which a configuration weaker
than desargue’s is assumed to hold. In this connection Skorniakov [225] in 1951 has made
known that a right alternative division ring of characteristic not 2 is alternative. Some attention
had been given to right alternative rings when Skornyakov [224] in 1951 established the result
that every right alternative division ring is alternative.

In 1952, Albert [7] proved the results for simple alternative rings and his proposed results
were based on the properties which were given by Zorn [268]. Kleinfeld [134] in 1953 proved
that for the alternativity of a right alternative ring it is sufficient that [x, y, z]2 = 0 implies
[x, y, z] = 0. Kleinfeld [135] in 1953 proved that even simplicity (that is, not having two-sided
ideals) of an alternative but not associative ring implies that the ring is a Cayley-Dickson al-
gebra. In 1953, Kleineelo [133] proved that right alternative rings without nilpotent elements
are known to be alternative it follows that free right alternative rings with two or more gen-
erators have non-zero nilpotent elements. In 1955, Kleinfeld [136] strengthened his results
by proving that any alternative but not associative ring, in which the intersection of all the
two-sided ideals is not a nil ideal, is Cayley-Dickson algebra over some field. Hence the class
of alternative rings is much larger than the class of associative rings. San Soucie [241, 242]
in 1955 studied alternative and right alternative rings in characteristic 2 (2x = 0) and also
proved that if R is right alternative division ring of characteristic two. Then R is alternative if
and only if R satisfies w(xy−x) = (wx−y)x. In 1957, Kleinfeld [240] proved very interesting
identity: [(ab − ba)2, c, d](ab − ba) = 0 and he also showed that in the free alternative ring
there are zero divisors. Smiley [239] in 1957 analyzed the proof of Kleinfeld and noticed that
it is sufficient to check only these cases: x = y, x = yz − zy, x = (yz − zy)y, x = [y, y, z], or
z = wy and x = [y, y, w] for some w. To study of free right alternative rings he said that it
was one of the main tasks of the theory of alternative rings.

In 1960, Hashimoto [80] introduced the notion of ∗- modularity of right ideals of an
alternative rings and showed a connection between the intersection of all the ∗- modular
maximal right ideals and the radical SR(A) in an alternative ring A. In 1963, it was shown by
Kleinfeld [137] that in an arbitrary alternative ring the fourth power of every commutator lies in
the nucleus. Also Dorofeev [41] in 1963 proved that in a free alternative ring with six or more
generators there exist elements a, b, c, d, r, s such that ((a, b)(c, d) + (c, d)(a, b), r, s) 6= 0. In
1965, Slater [226] asserted that a prime alternative ring R of characteristic not 3 that is not
associative can be embedded in a Cayley-Dickson algebra over the quotient field of the center
of R. In 1967, Humm [100] discussed a necessary and sufficient condition for a simple right
alternative ring to be alternative. He assumed that the characteristic is not 2 or 3 in all that
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follows. The treatment required an idempotent e in R and used the subspaces R1(e) and R0(e)
of the Albert decomposition [5]. In 1967, Humm and Kleinfeld [101] investigated that with the
help of an example that square of every commutator need always lie in the nucleus. Also, they
showed the existence of specific nilpotent elements in the free alternative ring on four or more
generators, and proved abstractly the existence of an ideal I 6= 0, and I2 = 0. Slater [227] in
1967 in his paper on nucleus and center in Alternative rings considered R is any alternative
ring, N its Nucleus and Z its center. Moreover, he investigated the natural conditions on R
which were the weakest possible to ensure. Also applied the results to amplify comments by
Humm and Kleinfeld work on free alternative rings and contained examples of alternative rings.
Slater [228] in 1968 discussed the ideals in semiprime alternative rings and also the results of
the paper, so far concerned that a given right ideal A, did not require semiprimeness of R. In
1969, Kleinfeld [139] worked on right alternative rings without proper right ideals he showed
that a right alternative ring R without proper right ideals, of characteristic not two, containing
idempotents e and 1,e 6= 1, such that ex = e(ex) for all x ∈ R must be alternative and hence
a cayley vector matrix algebra of dimension 8 over its center. Moreover, Slater [229] in 1969,
proved the natural extension to arbitrary rings of the classical Wedderburn-Artin theorem for
associative ones. Also considered the special case where R is in addition purely alternative;
that is, has no nonzero nuclear ideals. He also listed virtually all the radicals that have been
proposed for (alternative) rings in the literature, and showed that on the class of rings with
D.C.C. they all coincide. Also he discussed analogous for arbitrary rings with D.C.C. of the
classical results concerning idempotents in associative rings with D.C.C.

In 1970, Slater [231] discussed the class of admissible models. Since a prime ring need
not be algebra over a field, so keeping in view, the author intended to extend the class of
admissible models at least slightly. For example, the Cayley integers are a prime ring that
is not Cayley-Dickson algebra, much as an integral domain is prime but need not be a field.
Moreover, he defined a Cayley-Dickson ring (CD ring) R to be a ring that can be imbedded
in a certain natural way in CD algebra R over the quotient field Z of the (nonzero) center
Z of R. He then later said that if R is cancellative alternative but not associative (and of
char 6= 2) then R is a CD ring such that R is a CD division algebra. The added generality in
the paper comes from the fact that a prime ring may have zero divisors. If R is prime with zero
divisors [and not associative, and 3R 6= (0)] then R will be a split CD algebra, instead of a CD
division algebra. Again in 1970, Slater [232] discussed localization results on ideals and right
ideals of prime and weakly prime rings. Also he showed that if some exceptional weakly prime
ring exists, then there exists an exceptional prime ring having a collection of properties which
taken together. Finally, he gave examples to show that if some exceptional ring exists, then the
restrictions on characteristic imposed in most of the results were not excessive. Slater [230]
in 1970 proved the natural extension to alternative rings of the classical Wedderburn-Artin
theorem for semiprime associative rings, considered the extension to arbitrary alternative rings
of the classical methods, as well as the secondary results of the classical associative theory. Also
he discussed some parallel conditions in alternative theory to the classical connection between
primitive idempotents and minimal right ideals. He also examined the relation between the
present results and the classical structure theory established by Zorn. In 1970, Slater [233]
discussed that the main facts about the minimal ideals and minimal right ideals of an associative
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ring are well known. In this paper he also proved corresponding results for an alternative ring
R. He made no restriction on the characteristic of R, but will often impose restrictions of
semiprimeness type.

Slater [234] in 1971 were concerned mainly with the extension to arbitrary (alternative)
rings of Hopkins theorem [97] that in an associative ring with D.C.C. on right ideals the (say,
nil) radical is nilpotent. He also reworked and modified Zhevlakov’s arguments to obtain
nilpotence of S(R) without restriction on characteristic. It turns out that much of the work
was done more simply by working with two-sided ideals, as opposed to the right ideals used by
Zhevlakov. As a consequence, a substantial part of the work was done with the assumption
of D.C.C. only on two-sided ideals, and the result on S(R) appeared as an easy corollary of
this work. On the way he also improved the result that a ring R with D.C.C. on two-sided
ideals any solvable ideal is nilpotent by allowing Baer-radical ideals in place of solvable ideals.
In 1971, Hentzel [82] discussed the characteristics of right alternative rings with idempotents,
he also assumed that all the rings to have characteristic prime to 2 and 3. In his paper
he also used the Albert decomposition for idempotents for right alternative rings. In 1971,
Kleinfeld [141] discussed that alternative as well as Lie rings satisfy all of the following four
identities : (i) (x2, y, z) = x(x, y, z) + (x, y, z)x,(ii) (x, y2, z) = y(x, y, z) + (x, y, z)y,(iii)
(x, y, z2) = z(x, y, z) + (x, y, z)z, (iv)(x, x, x) = 0, where the associator (a, b, c) is defined by
(a, b, c) = (ab)c − a(bc). He also proved that if R is a ring of characteristic different from
two and satisfies (iv) and any two of the first three identities, then a necessary and sufficient
condition for R to be alternative is that whenever a, b, c are contained in a sub-ring S of R
which can be generated by two elements and whenever (a, b, c)2 = 0, then (a, b, c) = 0. Also
all such division rings must be alternative and hence either Cayley-Dickson division algebras or
associative. Also Kleinfeld [140] in 1971 investigated rings R of characteristic different from
two. The main results were concerned that either rings which have an idempotent e 6= 1,
or those which have no nilpotent elements. He also proved that whenever R is simple and
contains an idempotent e 6= 1, then R must be alternative and hence either a cayley vector-
matrix algebra or associative.

In 1975, Thedy in his paper [250] analyzed the two natural concepts in a right alternative
algebra R, the sub-module M generated by all alternators (x, x, y), and a new nucleus N .
The later sections of his study dealt mainly with results on simple right alternative algebras. A
simple 2-torsion free right alternative algebra is either alternative, hence associative or Cayley
algebra over its center. Also in 1975, the work of Hentzel [83] was dealt with a GRA (generalized
right alternative) ring R. It was shown that I is an ideal of R, that I is commutative, and
that I is the sum of ideals of R whose cube is zero. This means that if R is simple, or even
nil-semisimple, and then R is right alternative. Since all the hypotheses on R are consequences
of the right alternative law, showing that R is right alternative is as strong a result. Also he
considered that the ideal generated by each associator of the form (a, b, b) is a nilpotent ideal
of index at most three. Miheev [183] in 1975 constructed a finite-dimensional, prime, right
alternative nil algebra with nilpotent heart. Thus a prime right alternative ring need not be
s-prime. In 1976, Rich [203] discussed the characterization by Levitzkiin 1951 of the prime
radical of an associative ring R as the set of strongly nilpotent elements of R was adapted
to apply to a wide class of non-associative rings. As a consequence it was shown that the
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prime radical is a hereditary radical for the class of alternative rings and that the prime radical
of an alternative ring coincides with the prime radical of its attached Jordan ring. In 1978,
Rose [204] first gave the brief introduction of Cayley-Dickson algebra. He then axiomatized
split Cayley-Dickson algebras over algebraically closed fields and showed that this theory is
ℵ1-categorical, model complete, and the model completion of the theory of Cayley-Dickson
algebras and stability in alternative rings. He also generalized ℵ0-categoricity in associative
rings to ℵ0-categoricity in alternative rings.

In 1980, Wene in his paper [256] characterized those associative rings with involutions
in which each symmetric element is nilpotent or invertible. Analogous results were obtained
for alternative rings. The restriction was further relaxed to require only that each symmetric
element is nilpotent or some multiple is a symmetric idempotent. Widiger [257] in 1983 con-
sidered the class of all alternative rings in which every proper right ideal is maximal. Moreover,
he used the theory of artinian rings for his study. Kleinfeld [142] in 1983 examined that a
semiprime alternative ring can have no nonzero anti-commutative elements. However, this
was not so for prime right alternative rings in general. In 1988, Essannouni and Kaidi [47]
proved the natural extension to alternative rings of the classical Goldie theorem for semiprime
associative rings.

In 1994, Essannounia and Kaidi [48] discovered that the socle of a semiprime Goldie ring
is generated by a central idempotent and that a prime Goldie ring with a nonzero socle is a
simple artinian ring. They also extended these results to alternative rings. They had given an
analogue of Goldie’s theorem for alternative rings. A Goldie like theorem was obtained earlier
by the authors for noetherian alternative rings by a quite different method. Also in 1994,
Kleinfeld and Smith [143] discussed that a ring is called s-prime if the 2-sided annihilator of a
nonzero ideal must be zero. In particular, any simple ring or prime (−1, 1) ring is s-prime. Also,
a nonzero s-prime right alternative ring, with characteristic6= 2, cannot be right nilpotent.

In 2000, Goodaire [59] developed that for a right alternative ring R, the magma (R, ◦)
is right alternative, that is, (x ◦ y) ◦ y = x ◦ (y ◦ y), and if R is strongly right alternative,
then (R, ◦) is a Bol magma with neutral element 0. Moreover, in 2001, Goodaire [60] showed
that in a strongly right alternative ring with unity, it was known that if U(R) is closed under
multiplication, then U(R) is a Bol loop. Kenneth Kunen and Phillips [163] in 2005 partially
answered two questions of Goodaire by showing that in a finite, strongly right alternative ring,
the set of units (if the ring is with unity) is a Bol loop under ring multiplication, and the set of
quasi-regular elements is a Bol loop under circle multiplication. Again in 2005, Cárdenas et.al.,
[154] studied the notion of a (general) left quotient ring of an alternative ring and showed the
existence of a maximal left quotient ring for every alternative ring that is a left quotient ring
of itself. In 2007, Lozano and Molina [162] developed a fountain Gould-like Goldie theory for
alternative rings. They characterized alternative rings which were Fountain-Gould left orders in
semiprime alternative rings coinciding with their socle, and those which were Fountain-Gould
left orders in semiprime artinian alternative rings.

Furthermore, Bharathi et al., [35] in 2013 proved that if R is a semiprime and purely
non-associative right alternative ring, then N = C. They also showed that the right nucleus
Nr = C if R is purely non-associative provided that either R has no locally nilpotent ideals
or R is semi-prime and finitely generated mod Nr. In 2014, Cárdenas et al., [155] introduced
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a notion of left non-singularity for alternative rings and proved that an alternative ring is
left non-singular if and only if every essential left ideal is dense, if and only if its maximal
left quotient ring is von Neumann regular. Finally, they obtained a Gabriel-like Theorem for
alternative rings. Ferreira and Nascimento [50] in 2014 proved the relationship between the
multiplicative and the additive structures of a ring that became an interesting and active topic
in ring theory. They focused their discussion on the special case of an alternative ring. In
this they investigated the problem of when a derivable map must be an additive map for
the class of alternative rings. Recently, in 2015, Satyanarayana et al., [264] proved that the
peculiar property of nucleus N in an alternative ring R i.e. nucleus contracts to centre C when
alternative ring is octonion and nucleus expands to whole algebra when the alternative ring
is associative. Also in 2015, Jayalakshmi and Latha [117] presented some properties of the
right nucleus in generalized right alternative rings. Also they showed that in a generalized right
alternative ring R which is finitely generated or free of locally nilpotent ideals, the right nucleus
Nr equals the center C. They also considered the ring to be generalized right alternative ring
and tried to prove the results of Ng Seong-Nam [212]. On the way they gave an example to
show that the generalized right alternative ring is not right alternative.

2.4. Jordan Rings(1933-2011)

In modern mathematics, an important notion is that of non-associative structure. This kind
of structures is characterized by the fact the product of elements verifies a more general law than
the associativity law. Jordan structures were introduced in 1932-1933 by the German physicist
Pasqual Jordan (1902-1980) in his algebraic formulation of quantum mechanics. The study
of Jordan structures and their applications is at present a wide-ranging field of mathematical
research. The systematic study and more developments of general Jordan algebras were started
by Albert in 1946. One can define a Jordan ring as a commutative non-associative ring that
respects the Jordan identity i.e. (xy)(xx) = x(y(xx)).

In 1948, Jacobson [111] observed that semi-isomorphisms were nothing more or less than
ordinary isomorphisms of the non-associative Jordan ring determined by the given associative
ring. In his paper he introduced the Jordan multiplication a.b = 1/2(ab + ba), he observed
that if ordinary multiplication is replaced by this identity then one can obtained Jordan ring
determined by the associative ring. He also determined the isomorphisms between any two
simple Jordan rings. Jacobson [112] in 1948 in his paper discussed about the centre of non-
associative ring i.e.; If < is any non-associative ring one can defined the center of < to be the
totality of elements c that commute, c.a = a.c. It was also observed that if a ring contains
a nilpotent element in its center then it contains a nilpotent two-sided ideal.

In 1950, Jacobson and Rickart [115] defined a special Jordan ring to be a subset of an
associative ring which is a subgroup of the additive group and which is closed under the
compositions a→ a2 and (a, b)→ aba. Such systems are also closed under the compositions
(a, b) → ab + ba = {a, b} and (a, b, c) → abc + cba. The simplest instances of special
Jordan rings were the associative rings themselves. The authors also studied the (Jordan)
homomorphism of these rings. Jacobson and Rickart [116] in 1952 considered the set H of
self- adjoint elements h = h∗. Then that set H is a special Jordan ring. In this paper they
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studied the homomorphism of the rings of this type. They also obtained an analogue of the
matrix method for the rings H. Authors proved that any Jordan homomorphism of H can be
extended to an associative homomorphism of U . They also examined that this result can be
extended to locally matrix rings and in this form it is applicable to involutorial simple rings with
minimal one-sided ideals. On the way they obtained the Jordan isomorphisms of the Jordan
ring of self-adjoint elements of an involutorial primitive ring with minimal one-sided ideals
onto a second Jordan ring of the same type. However, comparatively Schafer [208] in 1955
began the study of the class of so-called non-commutative J-rings (Jordan rings). The study
of this class of rings is contained in the theory of algebras of finite dimension. For more details
readers were referred to study [144, 209, 210]. In 1956, Hall and Jr [76] established the identity
{aba}2 = {a{ba2 b}a} which hold in abstract Jordan rings. This was immediate for special
Jordan rings. They examined that the identity is proved by finding a partial basis for the free
Jordan ring with two generators, the basis being found for all elements of degree at most 5
and for elements of degree 4 in a and degree 2 in b. Herstein [88] in 1957 gave us the idea of
derivation of Jordan ring. He mentioned that for any associative ring A, from its operations
and elements a new ring can be obtained, that is the Jordan ring of A, by defining the product
in the ring to be a o b = ab + ba for all a, b ∈ A. In 1958, Shirshov [220] has made a
detailed discussion of non-associative structures including Jordan rings. He also constructed
some special Jordan rings.

In 1963, Brown [19] pointed out a problem of interest in non-associative algebras, regarding
the study of generalized Cayley algebras and exceptional simple Jordan algebras which were
closely related to the exceptional simple Lie algebras. In his work, he defined a new class
of simple non-associative algebras of dimension 56 over their centers and possessing non-
degenerate trace forms, such that the derivations and left multiplications of elements of trace
zero generate Lie algebras of type E7. Moreover, in 1964, Kleinfeld [138] gave the concept
of middle nucleus and center in simple Jordan ring. He established the result that in a simple
Jordan ring of characteristic 6= 2 the middle nucleus and center coincide. McCrimmon [176]
in 1966 discussed about the structure, characteristics and general theory of Jordan rings. A
Jordan ring (i.e., algebra over the ring of integers) is called non-degenerate if it has no proper
absolute zero divisors. He also described that a Jacobson ring is a Jordan ring such that, the
descending chain condition holds for Peirce quadratic ideals, and each nonzero Peirce quadratic
ideal contains a minimal quadratic ideal. These rings play a role in the Jordan theory analogous
to that played by the artinian rings in the associative theory. In 1968, Tsai [251] pointed up that
there were several definitions of radicals for general non-associative rings given in literature.
The u-prime radical of Brown-McCoy which was given in [18] was similar to the prime radical
in an associative ring. However, it depends on the particular chosen element u. The purpose of
the paper was to project a definition for the Brown-McCoy type prime radical for Jordan rings
so that the radical will be independent from the element chosen. Tsai [252] in 1969 proved
that in any Jordan ring J there exists a maximal Von Neumann regular ideal M . The existence
of such an ideal in an associative ring A is a well known. In fact, M could be characterized as
the set of all elements a in A such that any element in the principal ideal in A generated by a
is a regular element. He also had shown that the same characterization holds for Jordan rings.
Also, in 1969, McCrimmon [177] established a self-contained proof which does not depend on
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the classification of simple rings. The author has taken motivation for this proof from the work
of Jacobson [114] in which he has provided the proof in which he used the structure theory
to reduce the problem to the case of simple rings, and then proceeded to check the result for
each of the various types of simple rings that can occur.

Furthermore, in 1970, Meyberg [182] established a proof of Fundamental-Formula which
is considered to be a very important in Jordan rings and given a comparatively short proof of
Fundamental-Formula as first it was given by Jacobson [114]. Osborn [191] in 1970 presented
three related theorems, one on the structure of Jordan rings in which every element is either
nilpotent or invertible, and two on the structure of associative rings with involution in which
every symmetric element is either nilpotent or invertible. The first of these theorems was a
generalization of a well-known result on the structure of Jordan algebras which stated that
if each element of Jordan algebra can be expressed as the sum of a nilpotent element and
a scalar multiple of 1, then the nilpotent elements of J form an ideal. Also Tsai [253] in
1970 analyzed that an external characterization of the Levitzki radical of a Jordan ring U
as the intersection of a family of prime ideals U . He also discussed that by applying this
characterization, it was easy to see that the Levitzki radical of a Jordan ring contains the
prime radical of the same ring. For associative rings the same statement was well known, since
the prime radical in associative rings was called the Baer radical. If the minimal condition
on ideals holds on Jordan ring U , then the Levitzki radical, L(U), and the prime radical,
R(U) of U coincide. In 1971, McCrimmon [178] derived a general structure theory for non-
commutative Jordan rings. He defined a Jacobson radical and showed it coincides with the nil
radical for rings with descending chain condition on inner ideals; semisimple rings with D.C.C.
were shown to be direct sums of simple rings, and the simple rings to be essentially the familiar
ones. In addition he also obtained results, which seem to be new even in characteristic6= 2,
concerning algebras without finiteness conditions. He also showed that an arbitrary simple
non-commutative Jordan ring containing two nonzero idempotent whose sum is not 1 is either
commutative or quasi-associative. Erickson and Montgomery [46] in 1971 observed the special
Jordan ring R+, and when R has an involution and R is associative ring, the special Jordan
ring S of symmetric elements. They first showed that the prime radical of R equals the prime
radical of R+, and that the prime radical of R intersected with S is the prime radical of S.
Also they gave an elementary characterization, in terms of the associative structure of R, of
primeness of S. Finally, they proved that a prime ideal of R intersected with S is a prime
Jordan ideal of S. Also, in 1971, Shestakov [218] considered the class of non-commutative
Jordan rings. This class generalized the class of rings introduced by Block [13] and Thedy
[249]. Also he demonstrated, for rings of the given class, a theorem on nilpotency of null rings
with a maximality condition for sub-rings and for anti-commutative rings satisfying the third
Engel condition [152]. Moreover, he generalized nilpotency of finite-dimensional null algebras
of the corresponding classes. Also shown that two sufficiently broad subclasses of the class of
rings considered, there exists a locally nilpotent radical. He also considered finite-dimensional
non-commutative Jordan algebra. In 1972, Lewand [160] examined some radical properties of
quadratic Jordan algebras and showed that under certain conditions an ideal of a quadratic
Jordan algebra is the radical.

In 1973, Britin [15] restricted his attention to the Jordan ring of symmetric elements of an
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associative ring with involution. Although he considered the problem of integral domains in
this restricted case and his main result was more general. He used the approach via Goldie’s
theorem [113] for associative rings i.e.; T has a ring of quotients which is semi-simple Artinian
if and only if T is semi-prime, contains no infinite direct sum of left ideals and satisfies A.C.C.
on left annihilator ideals. He observed that if one replaced semi-prime by prime, then replaced
semi-simple by simple. Then it can be shown that the conditions put on left ideals are implied
by A.C.C. or D.C.C. on left ideals, when T has an involution. In 1974, Britin [16] he obtained
a Jordan ring of quotients for H(R) by observing that if R be a 2-torsion free semiprime
associative ring with involution. Conditions are put on the Jordan ring H(R) of symmetric
elements which imply the existence of a ring of quotients which is a direct sum of involution
simple artinian rings. Montgomery [184] in 1974 studied the concept of quotient rings in a
special class of Jordan rings. It is worth mentioning that this concept was not developed in
Jordan algebra before. In his work, he showed that if R is an associative ring with involution
and J is a Jordan sub-ring of the symmetric elements containing the norms and traces of R,
then if J is a Jordan domain with the common multiple property, J has a ring of quotients
which is Jordan division algebra. Also, Ng Seong-Nam [211] in 1974 generalized the result of
Osborn [192] which was basically proved for associative rings with involution. But Seong-Nam
generalized the result for non-associative Jordan rings with involution. In addition, Loustao
[161] in 1974 established some results regarding radical extensions of Jordan rings. Along the
way, he proved analogies for Jordan rings of commutativity results for associative rings found
in [90]. Further, he also extended commutativity results from [49, 127] to associative division
algebras with involution whose symmetric elements are a radical extension of a commutative
sub-algebra. In 1979, Petersson [197] completed the solution of the classification problem
for locally compact Jordan division rings initiated in [196]. He also examined that a locally
compact non-discrete Jordan division ring and a finite dimensional Jordan division algebra over
that field. He also considered the centroid of a locally compact non-discrete field.

Moreover, in 1986, Slinko in his article [235] described the structure of a connected com-
ponent of a locally compact alternative or Jordan ring. It was shown that each locally compact
semiprime alternative or Jordan ring is a topological direct sum of its zero connected com-
ponent, which is a semisimple finite-dimensional algebra over R and a totally disconnected
locally compact semiprime ring. This result can be viewed as a far reaching generalization of
the classical Pontryagin theorem on connected associative locally compact skew fields. Fur-
thermore, it was also proved that a connected locally compact alternative or Jordan ring having
no nonzero idempotents is nilpotent and also established that the quasi-regular radical of an
alternative or Jordan locally compact ring is closed. In 1986, Gonzalez et al., [56] introduced
the order relation in Jordan rings, he proved that the relation ≤ defined by x ≤ y if and only
if xy = x2, x2y = xy2 = x3 is an order relation for a class of Jordan rings and proved that
a Jordan ring R is isomorphic to a direct product of Jordan division rings if and only if ≤ is
a partial order on R such that R is hyperatomic and orthogonally complete. Later, in 1987,
Garijo [54] discussed the Jordan regular ring associated with finite JBW- algebra. In this paper,
he showed that every finite JBW-algebra A is contained in a Von Neumann regular Jordan ring
A such that A has no new idempotents. Moreover, he proved that every finite JBW- algebra
has the common multiple property (non-associative analogous to the Ore condition) and that
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a is the (unique) total ring of quotients of A. Hentzel and Peresi [84] in 1988 introduced
almost Jordan rings. He proved that any Jordan ring with characteristic 6= 2, 3 satisfies the
identity: 2((ax)x)x + a((xx)x) = 3(a(xx))x along with commutativity implies the Jordan
identity in any semiprime ring. In 1988, Slinko [236] generalized the result of Petersson [197]
that any continuous Jordan division ring is finite-dimensional over its centroid. Secondly, he
proved the condition of the solvability of the equations xUa = b, for a 6= 0. These conditions
were actually required for the definition of Jordan division ring.

In 1993, Chuvakov [30] proved that in the class non-commutative Jordan rings satisfying
the identity ([x, y], z, z) = 0 for an arbitrary radical r, any ideal of an r-semisimple ring is
r-semisimple. Thus the problem of heredity of a radical r in the class is equivalent to the
problem of r-radicality of any ideal of an r-radical ring. He also proved that in the class of
non-commutative Jordan rings M a locally-nilpotent radical is hereditary.

For more and intrinsic study the readers are referred to the excellent books by Braun
and Koecher [14] in 1966, Jacobson [114] in 1968 and McCrimmon [179] in 2004, on Jordan
algebras which contain substantial material on general non-associative algebras. Also some
relative research work can be found in the Proceedings of the international conferences on
non-associative algebra and its applications [55, 156, 201].

In 2011, Radu [107] gave us an overview of the most important applications of Jordan
structures inside mathematics and also to the physics. Nowadays, mathematics becomes more
and more non-associative and the author predicts in his paper that in few years non-associativity
will govern mathematics and applied sciences.

2.5. Loop Rings (1944-2015)

Historically, the concept of a non-associative loop ring according to our knowledge was first
introduced in a paper by Bruck in 1944 [20]. Non-associative loop rings appeared to have been
little more than a curiosity until the 1980s when the author found a class of non-associative
Moufang loops whose loop rings satisfy the alternative laws. One can defined loop ring as
given a loop L and a commutative associative ring R with 1, one forms the loop ring RL
just as one would form a group ring if L were a group. In the construction of RL the binary
operations addition “+” and multiplication “.” are defined as follows α+ β =

∑
g∈L

(αg + βg)g

and αβ =
∑
g∈L

(
∑

hk=g

αhβk)g.

In 1946, Bruck [22] revealed that the group ring result about the centre had a natural
extension and he established a result regarding the centre of loop algebra, i.e.; the centre of
loop algebra is spanned by conjugacy class sums. He also proved that a loop RL is associative
(commutative) if and only if L is associative (commutative). In 1955, Paige [193] gave a
striking example of phenomenon that the associative and commutative identities are very
special, however in general, an identity in L does not lift to RL and an identity on RL
imposes much more than simply the same identity on L. He also proved that if R is a ring of
characteristic relatively prime to 30 and L is a loop such that RL is commutative and power
associative, then L is a group. In 1959, Hall [77] did an excellent work on right Moufang loops.
A Moufang loop is a loop which satisfies this right Moufang identity: ((xy)z)y = x(y(zy)).
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The Moufang identity is named for Ruth Moufang who discovered it in some geometrical
investigations in the first half of this century [185]. Later, in 1974, Chein [25] discovered that
any group is a Moufang loop, but here is a family of Moufang loops which are not associative.

In 1983, Goodaire [57] proved that if the Moufang identity on L extends to a loop ring
RL, then RL must be an alternative ring. In 1985, Chein and Goodaire [26] presented the
method of constructing all RA loops, one which begins with the class of abelian groups pos-
sessing 2-torsion. They further determined when two RA loops constructed by this method are
isomorphic. In particular, they determined when two non-isomorphic groups with property LC
can both be embedded as index two sub-loops in the same RA loop. Subsequently, in 1986,
Goodair and Chein [27] worked with collaboration and yielded more satisfying information
about RA (right alternative) loops. Soon after, Goodaire and Parmenter [70] in 1986 demon-
strated that the certain well known theorems concerning units in integral group rings holds
more generally for integral loop rings which are alternative. Afterwards, in 1987, Goodaire
and Parmenter [71] endeavored to establish conditions which guarantee the semi-simplicity of
alternative loop rings with respect to any nil radical and with respect to the Jacobson radical.
In 1988, Goodaire and Milies [63] first suggested to settle the isomorphism problem for alter-
native loop rings, it was shown that a Moufang loop whose integral loop ring is alternative is
determined up to isomorphism by that loop ring. Secondly, it was shown that every normalized
automorphism of an alternative loop ring ZL is the product of an inner automorphism of QL
and an automorphism of L. Additionally, in 1989, Goodaire and Milies [64] established that
every torsion unit in an alternative loop ring over Z is ± a conjugate of a conjugate of a loop
element. They also assumed that ZL denotes the integral alternative loop ring of a finite loop
L. It is a well-known result of Higman [95] that if L is an abelian group then ±g, g ∈ L
are the only torsion units (invertible elements of finite order) in ZL. When L is not abelian,
another obvious source of units is the set ±γ−1gγ of conjugates of elements of L by invertible
elements in the rational loop algebra QL. In the alternative but not associative case, one can
form potentially more torsion units by considering conjugates of conjugates γ−1

1 (γ−1
2 gγ2)γ1

and so forth.
Furthermore, Chein and Goodaire [28] in 1990 continued their investigation of loops which

gave rise to alternative loop rings. If the coefficient ring has characteristic2, these loops turn
out to form a surprisingly wide class, in contrast to the situation of characteristic 6= 2. This
paper described many properties of this class, includes diverse examples of Moufang loops
which were united by the fact that they had loop rings which were alternative, and discussed
analogues in loop theory of a number of important group theoretic constructions. In 1992,
Vasantha Kandasamy [121] introduced a new notion in loop rings KL called normal elements
of the loop ring KL. An element x ∈ KL is called a normal element of KL if αKL = KLα.
If every element of KL is a normal element of KL and called KL the normal loop ring,
also defined normal sub loop rings. Vasantha Kandasamy [122] in 1994 investigated a notion
called strict right loop ring. He defined that if L be a loop and R a commutative ring with
1. The loop ring RL is called the strict loop ring if the set of all ideals of RL is ordered
by inclusion. He also gave a class of loop rings, which were not strict loop rings. Moreover,
Goodaire and Robinson [72] in 1994 exhibited a class of loops which have strongly right
alternative loop rings that are not alternative. And they also proved fundamental propositions
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which generalized the necessary and sufficient conditions for a loop to have a strongly right
alternative loop ring. Beside this in 1995, Vasantha Kandasamy [123] studied the mod p
envelope of associative structure. He discussed the case of non-associative groups which were
loops. That is in his study he replaced groups by loops. Again in 1995, Goodaire and Milies
[65] further generalized and discussed few examples of Moufang loops whose loop rings are
alternative, but not associative [57]. Since that time, there had been a great deal of work
devoted to the study of such loops and to their loop rings. In their paper authors gave a brief
discussion of those loops whose loop rings are alternative.

In 1996, Goodaire and Milies [66] considered an RA loop is a loop whose loop rings, in
characteristic different from 2, are alternative but not associative. Moreover, authors showed
that every finite sub-loop H of normalized units in the integral loop ring of an RA loop L is
isomorphic to a sub-loop of L. They also showed that there exist units in the rational loop
algebra. Thus, a conjecture of Zassenhaus which was open for group rings holds for alternative
loop rings (which were not associative). In addition to this Goodaire and Robinson [73] in
1996 proposed the construction of loops L which have right alternative loop rings RL which
were not left alternative. The construction generated loop rings RL which are Bol and hence,
right alternative merely set z = 1e in the Bol identity (xy.z)y = x(yz.y). Such loop rings
are called strongly right alternative as they satisfied the more stringent condition. Barros and
Juriaans [37] in 1996 discussed that Higman has proved a classical result giving necessary and
sufficient conditions for the units of an integral group ring to be trivial. In this paper authors
extended this result to a bigger class of diassociative loops which includes abelian groups,
groups with a unique non-identity commutator, RA loops, and other classes of loops. Again
in 1997, Barros and Juriaans [38] proved the isomorphism problem for integral loop rings of
finitely generated RA loops using a decomposition of the loop of units. Also they described
the finitely generated RA loops whose loops of units satisfy a certain property. In 1998, Kunen
[151] discussed that the right alternative law implies the left alternative law in loop rings of
characteristic other than 2. He also exhibited a loop which failed to be right Bol loop, even
though its characteristic 2 loop rings are right alternative. Also in 1999, Goodaire [58] sketched
the brief history of loop rings which were not associative from early results of Bruck and Paige
through the more recent discovery of alternative and right alternative rings and the work of
Chein, Robinson and by the Goodaire.

In 2001, Bhandari and Kaila [11] observed that the additive as well as multiplicative Jordan
decompositions hold in alternative loop algebras of finite RA loops and the RA loops for
which the additive Jordan decomposition holds in the integral loop ring were characterized.
Multiplicative Jordan decomposition (MJD) in ZL, where L is a finite RA loop with cyclic
centre is analyzed, besides settling MJD for integral loop rings of all RA loops of order ≤ 32.
It was also shown that for any finite RA loop L, µ(ZL) is an almost splittable Moufang loop.
Again in 2001, Goodaire and Milies [67] considered L be an RA loop, that is a loop whose
loop ring in any characteristic is an alternative, but not associative ring. They also investigated
necessary and sufficient conditions for the (Moufang) unit loop of RL to be solvable when R is
the ring of rational integers or an arbitrary field. On the way Goodaire and Milies [68] in 2001
observed that an RA loop has a torsion-free normal complement in the loop of normalized
units of its integral loop ring. They also examined whether an RA loop can be normal in its
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unit loop. Furthermore, in 2002, Nagy [187] showed that the fundamental ideal of loop ring
FL is nilpotent if and only if the multiplication group is p-group, where p is prime, L is finite
loop of p-power order and F is a field of characteristic p. Also in 2002, Vasantha Kandasamy
and Parimala Kanthi [124] introduced a new class of Jordan loops of order p+ 1 where p is a
prime. They also proved this new class of Jordan loops is not Moufang loops or Bruck loops.
Further they proved that the loop rings defined analogous to group rings by using a Jordan
loop Jp over rings which are commutative with unit or fields are Jordan rings only under special
type of rings. Finally they showed that the loop ring in case of the Jordan loop Jp over the
ring Z2 is a Jordan ring. Conversely if the loop ring KL is a Jordan ring then the loop L is
a Jordan loop. Also explained that these new class of Jordan loops are power associative so
the loop rings have proper associative sub-rings and these loop rings KJp had non-trivial zero
divisors and idempotents. In 2005, Goodaire, Yuanlin Li and Parmenter [44] have considered
L as RA loop, that is a loop whose loop rings are alternative, but not associative rings (in
any characteristic). They investigated the necessary and sufficient conditions under which the
hypercentral units in the integral loop ring ZL are central. In 2006, Goodaire and Milies [69]
discussed normality of f -unitary units in an alternative loop rings. In this paper, they also
found necessary and sufficient conditions for Uf (ZL) to be normal in U(ZL) (the loop of all
units in ZL) where for Uf (ZL) the set of all f -unitary units and U(ZL) is the loop of all
units in ZL.

Goodaire [61] in 2007 described some of the advances in the theory of loops whose loop
rings satisfy interesting identities. He wrote this paper in memory of his friend Robinson with
whom he did research. Again in 2007, Goodaire [62] discussed advances in the theory of loops
whose loop rings satisfy interesting identities that had taken place primarily since 1998. The
major emphasis were on Bol loops that had strongly right alternative loop rings and on Jordan
loops a hitherto largely ignored class of commutative loops some of whose loops rings satisfy
the Jordan identity (x2y)x = x2(yx). He raised a number of open questions and includes
several suggestions for further research. Doostie and Pourfaraj [40] in 2007 studied the finite
rings Zp[S] and Z(p1p2)i [Ln(m)], and proved that the first one is commuting regular and the
second ring contains the commuting regular element and idempotents as well (where p, p1 and
p2 are odd primes. Moreover, i,m and n are positive integers such that m < n, (m,n) = 1
and (m − 1, n) = 1. They also defined the commuting regular semigroup ring, commuting
regular loop ring and commuting regular groupoid ring. In 2008, Chein et al., [188] established
some connections between loops whose loop rings, in characteristic 2, satisfy the Moufang
identities and loops whose loop rings, in characteristic 2, and satisfy the right Bol identities.
Again in 2008, Chein and Goodaire [29] discussed that the possession of a unique non-identity
commutator or associator was a property that dominates the theory of loops whose loop
rings, while not associative, nevertheless satisfy an interesting identity. Furthermore, they also
considered all loops with loop rings satisfying the right Bol identity (such loops are called
SRAR) have been known to have this property. They presented various constructions of other
kinds of SRAR loops. Also considered Bol loops whose left nucleus is an abelian group of
index 2 and showed that the loop rings of some such loops were strongly right alternative and
exhibited various SRAR loops with more than two commutators.

In 2009, Dart and Goodaire [36] investigated the existence of loop rings that were not
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associative but which satisfied the Moufang or Bol identities (without being associative). Their
work turned out, with one exception, loop rings satisfying an identity of Bol-Moufang type
all satisfy a Moufang or Bol identity. They also highlighted some similarities and differences
in the consequences of several Bol- Moufang identities as they applied to loops and rings.
Moreover, in 2012, Giraldo Vergara [254] discussed in details the developments of theory of
loop rings that has been intrigued mathematicians from different areas. He also mentioned
that in recent years, this theory has been developed largely, and as an example of this the
complete description of the loop of invertible elements of the Zorn algebra is known to us.
Recently, in 2014, Jayalakshmi and Manjula [118] investigated the case where the ring has
characteristic 2 and extend to alternative loop rings by proving that the augmentation of order
2n in characteristic 2 is a nilpotent ideal (of dimension 2n− 1). This, of course, means that
virtually all the familiar radicals of alternative rings coincide with the augmentation ideal. Also,
in 2014, Jayalakshmi and Manjula [119] discussed that the right alternative law implies the
left alternative law in loop rings of characteristic other than 2. They also shown that there
exists a loop which fails to be an extra loop, even though its characteristic 2 loop rings are
right alternative.

2.6. LA-Ring (2006-2016)

After the concept of loop rings (1944), a new class of non-associative ring theory was given
by Yusuf in 2006 [265]. Although the concept of LA-ring was given in 2006, but the systematic
study and further developments was started in 2010 by Shah and Rehman in their paper [215].
It is worth mentioning that this new class of non-associative rings named Left almost rings
(LA-ring) is introduced after a huge gap of 6 decades since the introduction of loop rings. Left
almost rings (LA-ring) is actually an off shoot of LA-semigroup and LA-group. It is a non-
commutative and non-associative structure and gradually due to its peculiar characteristics
it has been emerging as useful non-associative class which intuitively would have reasonable
contribution to enhance non-associative ring theory. By an LA- ring, we mean a non-empty
set R with at least two elements such that (R,+) is an LA-group, (R, .) is an LA-semigroup,
both left and right distributive laws hold.

In [215], the authors have discussed LA-ring of finitely nonzero functions which is in fact
a generalization of a commutative semigroup ring. They generalized the structure of com-
mutative semigroup ring (ring of semigroup S over ring R represented as R[X;S] to a non-
associative LA-ring of commutative semigroup S over LA-ring R represented as R[Xs; s ∈ S],
consisting of finitely nonzero functions. Nevertheless it also possesses associative ring struc-
tures. Furthermore they also discussed the LA-ring homomorphism. On the way the first ever
definition of LA-module over an LA-ring was given by Shah and Rehman in the same paper
[215].

Later in 2010, Shah et al., [217] introduced the notion of topological LA-groups and
topological LA-rings which are some generalizations of topological groups and topological rings
respectively. They extended some characterizations of topological groups and topological rings
to topological LA-groups and topological LA-rings.

In 2011, Shah and Shah [213] established some basic and structural facts of LA-ring which
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will be useful for future research on LA-ring. They studied basic results such as if R is an
LA-ring then R cannot be idempotent and also (a+ b)2 = (b+ a)2 for all a, b ∈ R. If LA-ring
R has left identity e then e+ e 6= e, e+ 0 6= e and e = (e+ 0)2. If R is a cancellative LA-ring
with left identity e then e + e = 0 and thus a + a = 0 for all a ∈ R. An interesting result is
that if R is an LA-ring with left identity e then right distributivity implies left distributivity.
Also in 2011, Shah et al., [247] promoted the notion of LA-module over an LA-ring defined
in [215] and further established the substructures, operations on substructures and quotient
of an LA-module by its LA-sub module. They also indicated the non similarity of an LA-
module to the usual notion of a module over a commutative ring. Moreover, in 2011, Shah,
Rehman and Raees [245] have generalized the concept of LA-ring by introducing the notion
of near left almost ring (abbreviated as nLA-ring) (R,+, ·). (R,+) is an LA-group, (R, ·) is
an LA-semigroup and one distributive property of “·” over “+” holds, where both the binary
operations “+” and “.” are non-associative. In continuation to [245], Shah, Ali and Rehman
[246] in 2011 characterized nLA-ring through its ideals. They have shown that the sum of
ideals is again an ideal, and established the necessary and sufficient condition for an nLA-ring
to be direct sum of its ideals. Furthermore, they observed that the product of ideals is just a
left ideal.

In 2012, Shah and Rehman [216] explored some notations of ideals and M-systems in LA-
ring. They characterized LA-rings through some properties of their ideals. Moreover, they also
established that if every subtractive subset of an LA-ring R is semi-subtractive and also every
quasi-prime ideal of an LA-ring R with left identity e is semi-subtractive. Also in 2012, Shah
et al., [248] investigated the intuitionistic fuzzy normal sub-rings in non-associative rings. In
their study they extended the notions for a class of non-associative rings i.e.; LA-ring. They
established the notion of intuitionistic fuzzy normal LA-subrings of LA-rings. Specifically they
proved that if an IFSA = (µA, γA) is an intuitionistic fuzzy normal LA-subring of an LA-ring

R if and only if the fuzzy sets µA and
¯
γA are fuzzy normal LA-subrings of R. Also they showed

that an IFSA = (µA, γA) is an intuitionistic fuzzy normal LA-subring of an LA-ring R if and

only if the fuzzy sets
¯
µA and γA are anti-fuzzy normal LA-subrings of R.

In 2013, a notable development was done by Rehman et al., [106] when the existence of
LA-ring was shown by giving the non-trivial examples of LA-ring. The authors showed the
existence of LA-ring using the mathematical program Mace4. With the existence of non-
trivial LA-ring, ultimately the authors were able to abolish the ambiguity about the associative
multiplication because the first example on LA-ring given by Yusuf [265] was trivial. Also in
2013, Gaketem [53] studied the properties of quasi-ideals of P -regular nLA-ring which is in
fact a generalization of LA-ring.

In 2014, Alghamdi and Sahraoui [8] broaden the concept of LA-module given in the paper
[215] by constructing a tensor product of LA-modules. Although, LA-groups and LA-modules
need not to be abelian, the new construction behaves like standard definition of the tensor
product of usual modules over a ring. They also then extended some simple results from the
ordinary tensor to the new setting. In addition, Yiarayong [263] in 2014 studied left ideals,
left primary and weakly left primary ideals in LA-rings. Some characterizations of left primary
and weakly left primary ideals were obtained. Moreover, the author investigated relationships
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of left primary and weakly left primary ideals in LA-rings. Finally, he obtained necessary and
sufficient conditions of a weakly left primary ideal to be a left primary ideal in LA-rings.

Recently, in 2015, Hussain and W. Khan [104] characterized LA-rings by congruence rela-
tions. They had shown that each homomorphism of LA-rings defines a congruence relation on
LA-rings. They also then discussed quotient LA- rings. At the end they proved analogue of
the isomorphism theorems for LA-rings. Also Shah and Asima Razzaque in their paper [214]
discussed soft non-associative rings and explore some of its algebraic properties. The notions
of soft M-systems, soft P-systems, soft I-systems, soft quasi-prime ideals, soft quasi-semiprime
ideals, soft irreducible and soft strongly irreducible ideals were introduced and several related
properties were investigated. Moreover in 2016, Shah et al., [244] taken a step forward to
apply the concepts of soft set theory to LA-ring by introducing soft LA-rings, soft ideals, soft
prime ideals, idealistic soft LA-rings and soft LA-homomorphism. They provided a number of
examples to illustrate these concepts.

3. Conclusions

Nowadays, mathematics is becoming more and more non-associative and it is a general
prediction that in few years’ non-associativity will govern mathematics and applied sciences.
We would like to point out that application of non-associative ring theory is astonishing and has
become an instrumental in parts of physics, quantum mechanics, atomic spectroscopy, solid
state physics, differential and algebraic geometry, differential equations, space time theory and
etc. In this paper we tried to present the complete survey of all types of non-associative rings
and enumerate some of their various applications and developments in different directions to
date. We do believe that this survey would be unique in its own way for the reason that such
comprehensive and complete information regarding all types of non-associative rings under
one umbrella can hardly be found. We hope that this work will provide an endless source of
inspiration for future research in non-associative ring theory.
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